el2pbasemodel.hh 34.5 KB
Newer Older
Bernd Flemisch's avatar
Bernd Flemisch committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
 *   See the file COPYING for full copying permissions.                      *
 *                                                                           *
 *   This program is free software: you can redistribute it and/or modify    *
 *   it under the terms of the GNU General Public License as published by    *
 *   the Free Software Foundation, either version 2 of the License, or       *
 *   (at your option) any later version.                                     *
 *                                                                           *
 *   This program is distributed in the hope that it will be useful,         *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of          *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the            *
 *   GNU General Public License for more details.                            *
 *                                                                           *
 *   You should have received a copy of the GNU General Public License       *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.   *
 *****************************************************************************/
/*!
 * \file
 * \brief Base class for fully-implicit models
 */
#ifndef DUMUX_ELASTIC2P_BASE_MODEL_HH
#define DUMUX_ELASTIC2P_BASE_MODEL_HH

26
#include <dune/common/version.hh>
Bernd Flemisch's avatar
Bernd Flemisch committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
#include <dune/geometry/type.hh>
#include <dune/istl/bvector.hh>

#include <dumux/implicit/common/implicitmodel.hh>
#include <dumux/common/valgrind.hh>
#include <dumux/parallel/vertexhandles.hh>

namespace Dumux
{

/*!
 * \ingroup ElTwoPBoxModel
 * \brief base class for the two-phase geomechanics model
 */
template<class TypeTag>
class ElTwoPBaseModel
{
    typedef typename GET_PROP_TYPE(TypeTag, Model) Implementation;
    typedef typename GET_PROP_TYPE(TypeTag, Problem) Problem;
    typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
    typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
    typedef typename GET_PROP_TYPE(TypeTag, ElementMapper) ElementMapper;
    typedef typename GET_PROP_TYPE(TypeTag, VertexMapper) VertexMapper;
    typedef typename GET_PROP_TYPE(TypeTag, SolutionVector) SolutionVector;
    typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
    typedef typename GET_PROP_TYPE(TypeTag, JacobianAssembler) JacobianAssembler;
    typedef typename GET_PROP_TYPE(TypeTag, ElementVolumeVariables) ElementVolumeVariables;
    typedef typename GET_PROP_TYPE(TypeTag, VolumeVariables) VolumeVariables;

    enum {
        numEq = GET_PROP_VALUE(TypeTag, NumEq),
        dim = GridView::dimension
    };

    typedef typename GET_PROP_TYPE(TypeTag, FVElementGeometry) FVElementGeometry;
    typedef typename GET_PROP_TYPE(TypeTag, LocalJacobian) LocalJacobian;
    typedef typename GET_PROP_TYPE(TypeTag, LocalResidual) LocalResidual;
    typedef typename GET_PROP_TYPE(TypeTag, NewtonMethod) NewtonMethod;
    typedef typename GET_PROP_TYPE(TypeTag, NewtonController) NewtonController;

    typedef typename GridView::ctype CoordScalar;
    typedef typename GridView::template Codim<0>::Entity Element;
    typedef typename GridView::template Codim<0>::Iterator ElementIterator;
    typedef typename GridView::IntersectionIterator IntersectionIterator;

    typedef typename Dune::ReferenceElements<CoordScalar, dim> ReferenceElements;
    typedef typename Dune::ReferenceElement<CoordScalar, dim> ReferenceElement;

    enum { isBox = GET_PROP_VALUE(TypeTag, ImplicitIsBox) };
    enum { dofCodim = isBox ? dim : 0 };

    // copying a model is not a good idea
    ElTwoPBaseModel(const ElTwoPBaseModel &);

public:
    /*!
     * \brief The constructor.
     */
    ElTwoPBaseModel()
    : problemPtr_(0)
    {
        enableHints_ = GET_PARAM_FROM_GROUP(TypeTag, bool, Implicit, EnableHints);
    }

    /*!
     * \brief Apply the initial conditions to the model.
     *
     * \param problem The object representing the problem which needs to
     *             be simulated.
     */
    void init(Problem &problem)
    {
        problemPtr_ = &problem;

        updateBoundaryIndices_();

        int numDofs = asImp_().numDofs();
        if (isBox)
            boxVolume_.resize(numDofs);

        localJacobian_.init(problem_());
        jacAsm_ = Dune::make_shared<JacobianAssembler>();
        jacAsm_->init(problem_());

        uCur_ = Dune::make_shared<SolutionVector>(jacAsm_->gridFunctionSpace());
        uPrev_ = Dune::make_shared<SolutionVector>(jacAsm_->gridFunctionSpace());

        asImp_().applyInitialSolution_();

        // resize the hint vectors
        if (isBox && enableHints_) {
            int numVertices = gridView_().size(dim);
            curHints_.resize(numVertices);
            prevHints_.resize(numVertices);
            hintsUsable_.resize(numVertices);
            std::fill(hintsUsable_.begin(),
                      hintsUsable_.end(),
                      false);
        }

        // also set the solution of the "previous" time step to the
        // initial solution.
        *uPrev_ = *uCur_;
    }

    void setHints(const Element &element,
                  ElementVolumeVariables &prevVolVars,
                  ElementVolumeVariables &curVolVars) const
    {
        if (!isBox || !enableHints_)
            return;

139
140
141
#if DUNE_VERSION_NEWER(DUNE_COMMON, 2, 4)
        int n = element.subEntities(dim);
#else
Bernd Flemisch's avatar
Bernd Flemisch committed
142
        int n = element.template count<dim>();
143
#endif
Bernd Flemisch's avatar
Bernd Flemisch committed
144
145
146
        prevVolVars.resize(n);
        curVolVars.resize(n);
        for (int i = 0; i < n; ++i) {
147
148
149
#if DUNE_VERSION_NEWER(DUNE_COMMON, 2, 4)
            int vIdxGlobal = vertexMapper().subIndex(element, i, dim);
#else
150
            int vIdxGlobal = vertexMapper().map(element, i, dim);
151
152
#endif
 
153
            if (!hintsUsable_[vIdxGlobal]) {
Bernd Flemisch's avatar
Bernd Flemisch committed
154
155
156
157
                curVolVars[i].setHint(NULL);
                prevVolVars[i].setHint(NULL);
            }
            else {
158
159
                curVolVars[i].setHint(&curHints_[vIdxGlobal]);
                prevVolVars[i].setHint(&prevHints_[vIdxGlobal]);
Bernd Flemisch's avatar
Bernd Flemisch committed
160
161
162
163
164
165
166
167
168
169
            }
        }
    }

    void setHints(const Element &element,
                  ElementVolumeVariables &curVolVars) const
    {
        if (!isBox || !enableHints_)
            return;

170
171
172
#if DUNE_VERSION_NEWER(DUNE_COMMON, 2, 4)
        int n = element.subEntities(dim);
#else
Bernd Flemisch's avatar
Bernd Flemisch committed
173
        int n = element.template count<dim>();
174
#endif
Bernd Flemisch's avatar
Bernd Flemisch committed
175
176
        curVolVars.resize(n);
        for (int i = 0; i < n; ++i) {
177
178
179
#if DUNE_VERSION_NEWER(DUNE_COMMON, 2, 4)
            int vIdxGlobal = vertexMapper().subIndex(element, i, dim);
#else
180
            int vIdxGlobal = vertexMapper().map(element, i, dim);
181
#endif
Bernd Flemisch's avatar
Bernd Flemisch committed
182

183
            if (!hintsUsable_[vIdxGlobal])
Bernd Flemisch's avatar
Bernd Flemisch committed
184
185
                curVolVars[i].setHint(NULL);
            else
186
                curVolVars[i].setHint(&curHints_[vIdxGlobal]);
Bernd Flemisch's avatar
Bernd Flemisch committed
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
        }
    }

    void updatePrevHints()
    {
        if (!isBox || !enableHints_)
            return;

        prevHints_ = curHints_;
    }

    void updateCurHints(const Element &element,
                        const ElementVolumeVariables &elemVolVars) const
    {
        if (!isBox || !enableHints_)
            return;

        for (unsigned int i = 0; i < elemVolVars.size(); ++i) {
205
206
207
#if DUNE_VERSION_NEWER(DUNE_COMMON, 2, 4)
            int vIdxGlobal = vertexMapper().subIndex(element, i, dim);
#else
208
            int vIdxGlobal = vertexMapper().map(element, i, dim);
209
#endif
210
211
212
213
            curHints_[vIdxGlobal] = elemVolVars[i];
            if (!hintsUsable_[vIdxGlobal])
                prevHints_[vIdxGlobal] = elemVolVars[i];
            hintsUsable_[vIdxGlobal] = true;
Bernd Flemisch's avatar
Bernd Flemisch committed
214
215
216
217
218
219
220
221
222
223
224
225
226
227
        }
    }


    /*!
     * \brief Compute the global residual for an arbitrary solution
     *        vector.
     *
     * \param residual Stores the result
     * \param u The solution for which the residual ought to be calculated
     */
    Scalar globalResidual(SolutionVector &residual,
                          const SolutionVector &u)
    {
228
        jacAsm_.gridOperator().residual(u, residual);
Bernd Flemisch's avatar
Bernd Flemisch committed
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

        // calculate the square norm of the residual
        Scalar result2 = residual.two_norm2();
        if (gridView_().comm().size() > 1)
            result2 = gridView_().comm().sum(result2);

        // add up the residuals on the process borders
        if (isBox && gridView_().comm().size() > 1) {
            VertexHandleSum<PrimaryVariables, SolutionVector, VertexMapper>
                sumHandle(residual, vertexMapper());
            gridView_().communicate(sumHandle,
                                    Dune::InteriorBorder_InteriorBorder_Interface,
                                    Dune::ForwardCommunication);
        }

        return std::sqrt(result2);
    }

247
248
249
250
251
252
253
254
255
256
257
    /*!
     * \brief Compute the global residual for the current solution
     *        vector.
     *
     * \param residual Stores the result
     */
    Scalar globalResidual(SolutionVector &residual)
    {
        return globalResidual(residual, curSol());
    }

Bernd Flemisch's avatar
Bernd Flemisch committed
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
    /*!
     * \brief Compute the integral over the domain of the storage
     *        terms of all conservation quantities.
     *
     * \param storage Stores the result
     */
    void globalStorage(PrimaryVariables &storage)
    {
        storage = 0;

        ElementIterator eIt = gridView_().template begin<0>();
        const ElementIterator eEndIt = gridView_().template end<0>();
        for (; eIt != eEndIt; ++eIt)
        {
            if(eIt->partitionType() == Dune::InteriorEntity)
            {
                localResidual().evalStorage(*eIt);

                if (isBox)
                {
278
279
280
#if DUNE_VERSION_NEWER(DUNE_COMMON, 2, 4)
                    for (int i = 0; i < eIt->subEntities(dim); ++i)
#else
Bernd Flemisch's avatar
Bernd Flemisch committed
281
                    for (int i = 0; i < eIt->template count<dim>(); ++i)
282
#endif
Bernd Flemisch's avatar
Bernd Flemisch committed
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
                        storage += localResidual().storageTerm()[i];
                }
                else
                {
                    storage += localResidual().storageTerm()[0];
                }
            }
        }

        if (gridView_().comm().size() > 1)
            storage = gridView_().comm().sum(storage);
    }

    /*!
     * \brief Returns the volume \f$\mathrm{[m^3]}\f$ of a given control volume.
     *
299
     * \param vIdxGlobal The global index of the control volume's
Bernd Flemisch's avatar
Bernd Flemisch committed
300
301
     *                  associated vertex
     */
302
    Scalar boxVolume(const int vIdxGlobal) const
Bernd Flemisch's avatar
Bernd Flemisch committed
303
304
305
    {
        if (isBox)
        {
306
            return boxVolume_[vIdxGlobal][0];
Bernd Flemisch's avatar
Bernd Flemisch committed
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
        }
        else
        {
            DUNE_THROW(Dune::InvalidStateException,
                       "requested box volume for cell-centered model");
        }
    }

    /*!
     * \brief Reference to the current solution as a block vector.
     */
    const SolutionVector &curSol() const
    { return *uCur_; }

    /*!
     * \brief Reference to the current solution as a block vector.
     */
    SolutionVector &curSol()
    { return *uCur_; }

    /*!
     * \brief Reference to the previous solution as a block vector.
     */
    const SolutionVector &prevSol() const
    { return *uPrev_; }

    /*!
     * \brief Reference to the previous solution as a block vector.
     */
    SolutionVector &prevSol()
    { return *uPrev_; }

    /*!
     * \brief Returns the operator assembler for the global jacobian of
     *        the problem.
     */
    JacobianAssembler &jacobianAssembler()
    { return *jacAsm_; }

    /*!
     * \copydoc jacobianAssembler()
     */
    const JacobianAssembler &jacobianAssembler() const
    { return *jacAsm_; }

    /*!
     * \brief Returns the local jacobian which calculates the local
     *        stiffness matrix for an arbitrary element.
     *
     * The local stiffness matrices of the element are used by
     * the jacobian assembler to produce a global linerization of the
     * problem.
     */
    LocalJacobian &localJacobian()
    { return localJacobian_; }
    /*!
     * \copydoc localJacobian()
     */
    const LocalJacobian &localJacobian() const
    { return localJacobian_; }

    /*!
     * \brief Returns the local residual function.
     */
    LocalResidual &localResidual()
    { return localJacobian().localResidual(); }
    /*!
     * \copydoc localResidual()
     */
    const LocalResidual &localResidual() const
    { return localJacobian().localResidual(); }

    /*!
Bernd Flemisch's avatar
Bernd Flemisch committed
380
     * \brief Returns the maximum relative shift between two vectors of
Bernd Flemisch's avatar
Bernd Flemisch committed
381
382
383
384
385
     *        primary variables.
     *
     * \param priVars1 The first vector of primary variables
     * \param priVars2 The second vector of primary variables
     */
Bernd Flemisch's avatar
Bernd Flemisch committed
386
387
    Scalar relativeShiftAtDof(const PrimaryVariables &priVars1,
                              const PrimaryVariables &priVars2)
Bernd Flemisch's avatar
Bernd Flemisch committed
388
389
390
391
392
393
394
395
396
397
398
    {
        Scalar result = 0.0;
        for (int j = 0; j < numEq; ++j) {
            Scalar eqErr = std::abs(priVars1[j] - priVars2[j]);
            eqErr /= std::max<Scalar>(1.0, std::abs(priVars1[j] + priVars2[j])/2);

            result = std::max(result, eqErr);
        }
        return result;
    }

Bernd Flemisch's avatar
Bernd Flemisch committed
399
400
401
402
403
404
405
406
    Scalar relativeErrorDof(const int dofIdxGlobal,
                            const PrimaryVariables &priVars1,
                            const PrimaryVariables &priVars2)
    DUNE_DEPRECATED_MSG("use relativeShiftAtDof(priVars1, priVars2) instead")
    {
        return relativeShiftAtDof(priVars1, priVars2);
    }

Bernd Flemisch's avatar
Bernd Flemisch committed
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
    /*!
     * \brief Try to progress the model to the next timestep.
     *
     * \param solver The non-linear solver
     * \param controller The controller which specifies the behaviour
     *                   of the non-linear solver
     */
    bool update(NewtonMethod &solver,
                NewtonController &controller)
    {
#if HAVE_VALGRIND
        for (size_t i = 0; i < curSol().base().size(); ++i)
            Valgrind::CheckDefined(curSol().base()[i]);
#endif // HAVE_VALGRIND

        asImp_().updateBegin();

        bool converged = solver.execute(controller);
        if (converged) {
            asImp_().updateSuccessful();
        }
        else
            asImp_().updateFailed();

#if HAVE_VALGRIND
        for (size_t i = 0; i < curSol().base().size(); ++i) {
            Valgrind::CheckDefined(curSol().base()[i]);
        }
#endif // HAVE_VALGRIND

        return converged;
    }

    /*!
     * \brief Check the plausibility of the current solution
     *
     *        This has to be done by the actual model, it knows
     *        best, what (ranges of) variables to check.
     *        This is primarily a hook
     *        which the actual model can overload.
     */
    void checkPlausibility() const
    { }

    /*!
     * \brief Called by the update() method before it tries to
     *        apply the newton method. This is primarily a hook
     *        which the actual model can overload.
     */
    void updateBegin()
    { }


    /*!
     * \brief Called by the update() method if it was
     *        successful. This is primarily a hook which the actual
     *        model can overload.
     */
    void updateSuccessful()
    { }

    /*!
     * \brief Called by the update() method if it was
     *        unsuccessful. This is primarily a hook which the actual
     *        model can overload.
     */
    void updateFailed()
    {
        // Reset the current solution to the one of the
        // previous time step so that we can start the next
        // update at a physically meaningful solution.
        *uCur_ = *uPrev_;
        if (isBox)
            curHints_ = prevHints_;

        jacAsm_->reassembleAll();
    }

    /*!
     * \brief Called by the problem if a time integration was
     *        successful, post processing of the solution is done and
     *        the result has been written to disk.
     *
     * This should prepare the model for the next time integration.
     */
    void advanceTimeLevel()
    {
        // make the current solution the previous one.
        *uPrev_ = *uCur_;
        if (isBox)
            prevHints_ = curHints_;

        updatePrevHints();
    }

    /*!
     * \brief Serializes the current state of the model.
     *
     * \tparam Restarter The type of the serializer class
     *
     * \param res The serializer object
     */
    template <class Restarter>
    void serialize(Restarter &res)
    {
        if (isBox)
            res.template serializeEntities<dim>(asImp_(), this->gridView_()); 
        else
            res.template serializeEntities<0>(asImp_(), this->gridView_());
    }

    /*!
     * \brief Deserializes the state of the model.
     *
     * \tparam Restarter The type of the serializer class
     *
     * \param res The serializer object
     */
    template <class Restarter>
    void deserialize(Restarter &res)
    {
        if (isBox)
            res.template deserializeEntities<dim>(asImp_(), this->gridView_());
        else
            res.template deserializeEntities<0>(asImp_(), this->gridView_());

        prevSol() = curSol();
    }

    /*!
     * \brief Write the current solution for a vertex to a restart
     *        file.
     *
     * \param outstream The stream into which the vertex data should
     *                  be serialized to
     * \param entity The entity which's data should be
     *               serialized, i.e. a vertex for the box method
     *               and an element for the cell-centered method
     */
    template <class Entity>
    void serializeEntity(std::ostream &outstream,
                         const Entity &entity)
    {
550
        int dofIdxGlobal = dofMapper().map(entity);
Bernd Flemisch's avatar
Bernd Flemisch committed
551
552
553
554
555

        // write phase state
        if (!outstream.good()) {
            DUNE_THROW(Dune::IOError,
                       "Could not serialize vertex "
556
                       << dofIdxGlobal);
Bernd Flemisch's avatar
Bernd Flemisch committed
557
558
559
        }

        for (int eqIdx = 0; eqIdx < numEq; ++eqIdx) {
560
            outstream << curSol()[dofIdxGlobal][eqIdx] << " ";
Bernd Flemisch's avatar
Bernd Flemisch committed
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
        }
    }

    /*!
     * \brief Reads the current solution variables for a vertex from a
     *        restart file.
     *
     * \param instream The stream from which the vertex data should
     *                  be deserialized from
     * \param entity The entity which's data should be
     *               serialized, i.e. a vertex for the box method
     *               and an element for the cell-centered method
     */
    template <class Entity>
    void deserializeEntity(std::istream &instream,
                           const Entity &entity)
    {
578
        int dofIdxGlobal = dofMapper().map(entity);
Bernd Flemisch's avatar
Bernd Flemisch committed
579
580
581
582
583

        for (int eqIdx = 0; eqIdx < numEq; ++eqIdx) {
            if (!instream.good())
                DUNE_THROW(Dune::IOError,
                           "Could not deserialize vertex "
584
585
                           << dofIdxGlobal);
            instream >> curSol()[dofIdxGlobal][eqIdx];
Bernd Flemisch's avatar
Bernd Flemisch committed
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
        }
    }

    /*!
     * \brief Returns the number of global degrees of freedoms (DOFs)
     */
    size_t numDofs() const
    {
        if (isBox)
            return gridView_().size(dim); 
        else
            return gridView_().size(0); 
    }

    /*!
     * \brief Mapper for the entities where degrees of freedoms are
     *        defined to indices.
     *
     * Is the box method is used, this means a mapper 
     * for vertices, if the cell centered method is used,
     * this means a mapper for elements.
     */
    template <class T = TypeTag>
    const typename std::enable_if<GET_PROP_VALUE(T, ImplicitIsBox), VertexMapper>::type &dofMapper() const
    {
        return problem_().vertexMapper();
    }
    template <class T = TypeTag>
    const typename std::enable_if<!GET_PROP_VALUE(T, ImplicitIsBox), ElementMapper>::type &dofMapper() const
    {
        return problem_().elementMapper();
    }

    /*!
     * \brief Mapper for vertices to indices.
     */
    const VertexMapper &vertexMapper() const
    { return problem_().vertexMapper(); }

    /*!
     * \brief Mapper for elements to indices.
     */
    const ElementMapper &elementMapper() const
    { return problem_().elementMapper(); }

    /*!
     * \brief Resets the Jacobian matrix assembler, so that the
     *        boundary types can be altered.
     */
    void resetJacobianAssembler ()
    {
        jacAsm_.template reset<JacobianAssembler>(0);
        jacAsm_ = Dune::make_shared<JacobianAssembler>();
        jacAsm_->init(problem_());
    }

    /*!
     * \brief Update the weights of all primary variables within an
     *        element given the complete set of volume variables
     *
     * \param element The DUNE codim 0 entity
     * \param volVars All volume variables for the element
     */
    void updatePVWeights(const Element &element,
                         const ElementVolumeVariables &volVars) const
    { }

    /*!
     * \brief Add the vector fields for analysing the convergence of
     *        the newton method to the a VTK multi writer.
     *
     * \tparam MultiWriter The type of the VTK multi writer
     *
     * \param writer  The VTK multi writer object on which the fields should be added.
     * \param u       The solution function
     * \param deltaU  The delta of the solution function before and after the Newton update
     */
    template <class MultiWriter>
    void addConvergenceVtkFields(MultiWriter &writer,
                                 const SolutionVector &u,
                                 const SolutionVector &deltaU)
    {
        typedef Dune::BlockVector<Dune::FieldVector<double, 1> > ScalarField;

        SolutionVector residual(u);
        asImp_().globalResidual(residual, u);

        // create the required scalar fields
        unsigned numDofs = asImp_().numDofs();

        // global defect of the two auxiliary equations
        ScalarField* def[numEq];
        ScalarField* delta[numEq];
        ScalarField* x[numEq];
        for (int eqIdx = 0; eqIdx < numEq; ++eqIdx) {
            x[eqIdx] = writer.allocateManagedBuffer(numDofs);
            delta[eqIdx] = writer.allocateManagedBuffer(numDofs);
            def[eqIdx] = writer.allocateManagedBuffer(numDofs);
        }

686
        for (unsigned int vIdxGlobal = 0; vIdxGlobal < u.base().size(); vIdxGlobal++)
Bernd Flemisch's avatar
Bernd Flemisch committed
687
        {
688
            for (int eqIdx = 0; eqIdx < numEq; ++eqIdx)
Bernd Flemisch's avatar
Bernd Flemisch committed
689
            {
690
691
692
                (*x[eqIdx])[vIdxGlobal] = u.base()[vIdxGlobal][eqIdx];
                (*delta[eqIdx])[vIdxGlobal] = - deltaU.base()[vIdxGlobal][eqIdx];
                (*def[eqIdx])[vIdxGlobal] = residual.base()[vIdxGlobal][eqIdx];
Bernd Flemisch's avatar
Bernd Flemisch committed
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
            }
        }

        for (int eqIdx = 0; eqIdx < numEq; ++eqIdx) {
            std::ostringstream oss;
            oss.str(""); oss << "x_" << eqIdx;
            if (isBox)
                writer.attachVertexData(*x[eqIdx], oss.str());
            else
                writer.attachCellData(*x[eqIdx], oss.str());
            oss.str(""); oss << "delta_" << eqIdx;
            if (isBox)
                writer.attachVertexData(*delta[eqIdx], oss.str());
            else
                writer.attachCellData(*delta[eqIdx], oss.str());
            oss.str(""); oss << "defect_" << eqIdx;
            if (isBox)
                writer.attachVertexData(*def[eqIdx], oss.str());
            else
                writer.attachCellData(*def[eqIdx], oss.str());
        }

        asImp_().addOutputVtkFields(u, writer);
    }

    /*!
     * \brief Add the quantities of a time step which ought to be written to disk.
     *
     * This should be overwritten by the actual model if any secondary
     * variables should be written out. Read: This should _always_ be
     * overwritten by well behaved models!
     *
     * \tparam MultiWriter The type of the VTK multi writer
     *
     * \param sol The global vector of primary variable values.
     * \param writer The VTK multi writer where the fields should be added.
     */
    template <class MultiWriter>
    void addOutputVtkFields(const SolutionVector &sol,
                            MultiWriter &writer)
    {
        typedef Dune::BlockVector<Dune::FieldVector<Scalar, 1> > ScalarField;

        // create the required scalar fields
        unsigned numDofs = asImp_().numDofs();

        // global defect of the two auxiliary equations
        ScalarField* x[numEq];
        for (int eqIdx = 0; eqIdx < numEq; ++eqIdx) {
            x[eqIdx] = writer.allocateManagedBuffer(numDofs);
        }

745
        for (int vIdxGlobal = 0; vIdxGlobal < sol.size(); vIdxGlobal++)
Bernd Flemisch's avatar
Bernd Flemisch committed
746
747
        {
            for (int eqIdx = 0; eqIdx < numEq; ++eqIdx) {
748
                (*x[eqIdx])[vIdxGlobal] = sol[vIdxGlobal][eqIdx];
Bernd Flemisch's avatar
Bernd Flemisch committed
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
            }
        }

        for (int eqIdx = 0; eqIdx < numEq; ++eqIdx) {
            std::ostringstream oss;
            oss << "primaryVar_" << eqIdx;
            if (isBox)
                writer.attachVertexData(*x[eqIdx], oss.str());
            else
                writer.attachCellData(*x[eqIdx], oss.str());
        }
    }

    /*!
     * \brief Reference to the grid view of the spatial domain.
     */
    const GridView &gridView() const
    { return problem_().gridView(); }

    /*!
769
     * \brief Returns true if the entity indicated by 'dofIdxGlobal' 
Bernd Flemisch's avatar
Bernd Flemisch committed
770
771
     * is located on / touches the grid's boundary.
     *
772
     * \param dofIdxGlobal The global index of the entity
Bernd Flemisch's avatar
Bernd Flemisch committed
773
     */
774
775
    bool onBoundary(const int dofIdxGlobal) const
    { return boundaryIndices_[dofIdxGlobal]; }
Bernd Flemisch's avatar
Bernd Flemisch committed
776
777
778
779
780
781
782
783
784
785
786
787

    /*!
     * \brief Returns true if a vertex is located on the grid's
     *        boundary.
     *
     * \param element A DUNE Codim<0> entity which contains the control
     *             volume's associated vertex.
     * \param vIdx The local vertex index inside element
     */
    bool onBoundary(const Element &element, const int vIdx) const
    {
        if (isBox)
788
789
790
#if DUNE_VERSION_NEWER(DUNE_COMMON, 2, 4)
            return onBoundary(vertexMapper().subIndex(element, vIdx, dim));
#else
Bernd Flemisch's avatar
Bernd Flemisch committed
791
            return onBoundary(vertexMapper().map(element, vIdx, dim));
792
#endif
Bernd Flemisch's avatar
Bernd Flemisch committed
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
        else
            DUNE_THROW(Dune::InvalidStateException,
                       "requested for cell-centered model");            
    }


    /*!
     * \brief Returns true if the control volume touches
     *        the grid's boundary.
     *
     * \param element A DUNE Codim<0> entity coinciding with the control
     *             volume.
     */
    bool onBoundary(const Element &element) const
    {
        if (!isBox)
            return onBoundary(elementMapper().map(element));
        else
            DUNE_THROW(Dune::InvalidStateException,
                       "requested for box model");
    }

    /*!
     * \brief Fill the fluid state according to the primary variables. 
     * 
     * Taking the information from the primary variables, 
     * the fluid state is filled with every information that is 
     * necessary to evaluate the model's local residual. 
     * 
     * \param priVars The primary variables of the model.
     * \param problem The problem at hand. 
     * \param element The current element. 
     * \param fvGeometry The finite volume element geometry.
     * \param scvIdx The index of the subcontrol volume. 
     * \param fluidState The fluid state to fill. 
     */
    template <class FluidState>
    static void completeFluidState(const PrimaryVariables& priVars,
                                   const Problem& problem,
                                   const Element& element,
                                   const FVElementGeometry& fvGeometry,
                                   const int scvIdx,
                                   FluidState& fluidState)
    {
        VolumeVariables::completeFluidState(priVars, problem, element,
                                            fvGeometry, scvIdx, fluidState);
    }
protected:
    /*!
     * \brief A reference to the problem on which the model is applied.
     */
    Problem &problem_()
    { return *problemPtr_; }
    /*!
     * \copydoc problem_()
     */
    const Problem &problem_() const
    { return *problemPtr_; }

    /*!
     * \brief Reference to the grid view of the spatial domain.
     */
    const GridView &gridView_() const
    { return problem_().gridView(); }

    /*!
     * \brief Reference to the local residal object
     */
    LocalResidual &localResidual_()
    { return localJacobian_.localResidual(); }

    /*!
     * \brief Applies the initial solution for all vertices of the grid.
     */
    void applyInitialSolution_()
    {
        // first set the whole domain to zero
        *uCur_ = Scalar(0.0);
        boxVolume_ = Scalar(0.0);

        FVElementGeometry fvGeometry;

        // iterate through leaf grid and evaluate initial
        // condition at the center of each sub control volume
        //
        // TODO: the initial condition needs to be unique for
        // each vertex. we should think about the API...
        ElementIterator eIt = gridView_().template begin<0>();
        const ElementIterator &eEndIt = gridView_().template end<0>();
        for (; eIt != eEndIt; ++eIt) {
            // deal with the current element
            fvGeometry.update(gridView_(), *eIt);

            // loop over all element vertices, i.e. sub control volumes
            for (int scvIdx = 0; scvIdx < fvGeometry.numScv; scvIdx++)
            {
                // get the global index of the degree of freedom
890
                int dofIdxGlobal = dofMapper().map(*eIt, scvIdx, dofCodim);
Bernd Flemisch's avatar
Bernd Flemisch committed
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908

                // let the problem do the dirty work of nailing down
                // the initial solution.
                PrimaryVariables initPriVars;
                Valgrind::SetUndefined(initPriVars);
                problem_().initial(initPriVars,
                                   *eIt,
                                   fvGeometry,
                                   scvIdx);
                Valgrind::CheckDefined(initPriVars);

                if (isBox)
                {
                    // add up the initial values of all sub-control
                    // volumes. If the initial values disagree for
                    // different sub control volumes, the initial value
                    // will be the arithmetic mean.
                    initPriVars *= fvGeometry.subContVol[scvIdx].volume;
909
                    boxVolume_[dofIdxGlobal] += fvGeometry.subContVol[scvIdx].volume;
Bernd Flemisch's avatar
Bernd Flemisch committed
910
911
                }

912
913
                uCur_->base()[dofIdxGlobal] += initPriVars;
                Valgrind::CheckDefined(uCur_->base()[dofIdxGlobal]);
Bernd Flemisch's avatar
Bernd Flemisch committed
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
            }
        }

        // add up the primary variables and the volumes of the boxes
        // which cross process borders
        if (isBox && gridView_().comm().size() > 1) {
            VertexHandleSum<Dune::FieldVector<Scalar, 1>,
                Dune::BlockVector<Dune::FieldVector<Scalar, 1> >,
                VertexMapper> sumVolumeHandle(boxVolume_, vertexMapper());
            gridView_().communicate(sumVolumeHandle,
                                    Dune::InteriorBorder_InteriorBorder_Interface,
                                    Dune::ForwardCommunication);

            VertexHandleSum<PrimaryVariables, SolutionVector, VertexMapper>
                sumPVHandle(uCur_->base(), vertexMapper());
            gridView_().communicate(sumPVHandle,
                                    Dune::InteriorBorder_InteriorBorder_Interface,
                                    Dune::ForwardCommunication);
        }

        if (isBox)
        {
            // divide all primary variables by the volume of their boxes
            for (unsigned int i = 0; i < uCur_->base().size(); ++i) {
                uCur_->base()[i] /= boxVolume(i);
            }
        }
    }

    /*!
     * \brief Find all indices of boundary vertices (box) / elements (cell centered).
     */
    void updateBoundaryIndices_()
    {
        boundaryIndices_.resize(numDofs());
        std::fill(boundaryIndices_.begin(), boundaryIndices_.end(), false);

        ElementIterator eIt = gridView_().template begin<0>();
        ElementIterator eEndIt = gridView_().template end<0>();
        for (; eIt != eEndIt; ++eIt) {
            Dune::GeometryType geomType = eIt->geometry().type();
            const ReferenceElement &refElement = ReferenceElements::general(geomType);

            IntersectionIterator isIt = gridView_().ibegin(*eIt);
            IntersectionIterator isEndIt = gridView_().iend(*eIt);
            for (; isIt != isEndIt; ++isIt) {
                if (isIt->boundary()) {
                    if (isBox)
                    {
                        // add all vertices on the intersection to the set of
                        // boundary vertices
965
966
                        int fIdx = isIt->indexInInside();
                        int numFaceVerts = refElement.size(fIdx, 1, dim);
967
968
969
                        for (int faceVertexIdx = 0;
                             faceVertexIdx < numFaceVerts;
                             ++faceVertexIdx)
Bernd Flemisch's avatar
Bernd Flemisch committed
970
                        {
971
                            int vIdx = refElement.subEntity(fIdx,
Bernd Flemisch's avatar
Bernd Flemisch committed
972
                                                                   1,
973
                                                                   faceVertexIdx,
Bernd Flemisch's avatar
Bernd Flemisch committed
974
                                                                   dim);
975
976
977
#if DUNE_VERSION_NEWER(DUNE_COMMON, 2, 4)
                            int vIdxGlobal = vertexMapper().subIndex(*eIt, vIdx, dim);
#else 
978
                            int vIdxGlobal = vertexMapper().map(*eIt, vIdx, dim);
979
#endif
980
                            boundaryIndices_[vIdxGlobal] = true;
Bernd Flemisch's avatar
Bernd Flemisch committed
981
982
983
984
                        }
                    }
                    else 
                    {
985
986
987
#if DUNE_VERSION_NEWER(DUNE_COMMON, 2, 4)
                        int eIdxGlobal = elementMapper().index(*eIt);
#else
988
                        int eIdxGlobal = elementMapper().map(*eIt);
989
#endif
990
                        boundaryIndices_[eIdxGlobal] = true;
Bernd Flemisch's avatar
Bernd Flemisch committed
991
992
993
994
995
996
997
998
999
1000
                    }
                }
            }
        }
    }

    // the hint cache for the previous and the current volume
    // variables
    mutable std::vector<bool> hintsUsable_;
    mutable std::vector<VolumeVariables> curHints_;
For faster browsing, not all history is shown. View entire blame