advection.hh 7.65 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
 *   See the file COPYING for full copying permissions.                      *
 *                                                                           *
 *   This program is free software: you can redistribute it and/or modify    *
 *   it under the terms of the GNU General Public License as published by    *
 *   the Free Software Foundation, either version 3 of the License, or       *
 *   (at your option) any later version.                                     *
 *                                                                           *
 *   This program is distributed in the hope that it will be useful,         *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of          *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the            *
 *   GNU General Public License for more details.                            *
 *                                                                           *
 *   You should have received a copy of the GNU General Public License       *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.   *
 *****************************************************************************/
/*!
 * \file
21
 * \ingroup PoreNetworkFlux
22
23
24
25
26
27
 * \brief This file contains the data which is required to calculate
 *        the fluxes of the pore network model over a face of a finite volume.
 */
#ifndef DUMUX_FLUX_PNM_ADVECTION_HH
#define DUMUX_FLUX_PNM_ADVECTION_HH

Timo Koch's avatar
Timo Koch committed
28
29
30
#include <array>
#include <dumux/common/parameters.hh>

31
32
33
34
35
36
37
38
39
40
41
namespace Dumux::PoreNetwork::Detail {

template<class... TransmissibilityLawTypes>
struct Transmissibility : public TransmissibilityLawTypes... {};

} // end namespace Dumux::PoreNetwork::Detail

namespace Dumux::PoreNetwork {

/*!
 * \file
42
 * \ingroup PoreNetworkFlux
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
 * \brief Hagen–Poiseuille-type flux law to describe the advective flux for pore-network models.
 */
template<class ScalarT, class... TransmissibilityLawTypes>
class CreepingFlow
{

public:
    //! Export the Scalar type
    using Scalar = ScalarT;

    //! Export the transmissibility law
    using Transmissibility = Detail::Transmissibility<TransmissibilityLawTypes...>;

    /*!
     * \brief Returns the advective flux of a fluid phase
     *        across the given sub-control volume face (corresponding to a pore throat).
     * \note The flux is given in N*m, and can be converted
     *       into a volume flux (m^3/s) or mass flux (kg/s) by applying an upwind scheme
     *       for the mobility (1/viscosity) or the product of density and mobility, respectively.
     */
    template<class Problem, class Element, class FVElementGeometry,
             class ElementVolumeVariables, class SubControlVolumeFace, class ElemFluxVarsCache>
    static Scalar flux(const Problem& problem,
                       const Element& element,
                       const FVElementGeometry& fvGeometry,
                       const ElementVolumeVariables& elemVolVars,
                       const SubControlVolumeFace& scvf,
                       const int phaseIdx,
                       const ElemFluxVarsCache& elemFluxVarsCache)
    {
        const auto& fluxVarsCache = elemFluxVarsCache[scvf];

        // Get the inside and outside volume variables
        const auto& insideScv = fvGeometry.scv(scvf.insideScvIdx());
        const auto& outsideScv = fvGeometry.scv(scvf.outsideScvIdx());
        const auto& insideVolVars = elemVolVars[insideScv];
        const auto& outsideVolVars = elemVolVars[outsideScv];

        // calculate the pressure difference
        const Scalar deltaP = insideVolVars.pressure(phaseIdx) - outsideVolVars.pressure(phaseIdx);
        const Scalar transmissibility = fluxVarsCache.transmissibility(phaseIdx);

        Scalar volumeFlow = transmissibility*deltaP;

        // add gravity term
        static const bool enableGravity = getParamFromGroup<bool>(problem.paramGroup(), "Problem.EnableGravity");
        if (enableGravity)
        {
            const Scalar rho = 0.5*insideVolVars.density(phaseIdx) + 0.5*outsideVolVars.density(phaseIdx);
            const Scalar g = problem.spatialParams().gravity(scvf.center()) * scvf.unitOuterNormal();

            // The transmissibility is with respect to the effective throat length (potentially dropping the pore body radii).
            // For gravity, we need to consider the total throat length (i.e., the cell-center to cell-center distance).
            // This might cause some inconsistencies TODO: is there a better way?
            volumeFlow += transmissibility * fluxVarsCache.poreToPoreDistance() * rho * g;
        }

        return volumeFlow;
    }

    /*!
     * \brief Returns the throat conductivity
     */
    template<class Problem, class Element, class FVElementGeometry, class ElementVolumeVariables, class FluxVariablesCache>
    static Scalar calculateTransmissibility(const Problem& problem,
                                            const Element& element,
                                            const FVElementGeometry& fvGeometry,
                                            const typename FVElementGeometry::SubControlVolumeFace& scvf,
                                            const ElementVolumeVariables& elemVolVars,
                                            const FluxVariablesCache& fluxVarsCache,
                                            const int phaseIdx)
    {
        if constexpr (ElementVolumeVariables::VolumeVariables::numFluidPhases() == 1)
            return Transmissibility::singlePhaseTransmissibility(problem, element, fvGeometry, scvf, elemVolVars, fluxVarsCache, phaseIdx);
        else
        {
            static_assert(ElementVolumeVariables::VolumeVariables::numFluidPhases() == 2);

            const auto& spatialParams = problem.spatialParams();
            using FluidSystem = typename ElementVolumeVariables::VolumeVariables::FluidSystem;
            const int wPhaseIdx = spatialParams.template wettingPhase<FluidSystem>(element, elemVolVars);
            const bool invaded = fluxVarsCache.invaded();

            if (phaseIdx == wPhaseIdx)
            {
                return invaded ? Transmissibility::wettingLayerTransmissibility(element, fvGeometry, scvf, fluxVarsCache)
                               : Transmissibility::singlePhaseTransmissibility(problem, element, fvGeometry, scvf, elemVolVars, fluxVarsCache, phaseIdx);
            }
            else // non-wetting phase
            {
                return invaded ? Transmissibility::nonWettingPhaseTransmissibility(element, fvGeometry, scvf, fluxVarsCache)
                               : 0.0;
            }
        }
    }

    template<class Problem, class Element, class FVElementGeometry, class ElementVolumeVariables, class FluxVariablesCache>
    static std::array<Scalar, 2> calculateTransmissibilities(const Problem& problem,
                                                             const Element& element,
                                                             const FVElementGeometry& fvGeometry,
                                                             const ElementVolumeVariables& elemVolVars,
                                                             const typename FVElementGeometry::SubControlVolumeFace& scvf,
                                                             const FluxVariablesCache& fluxVarsCache)
    {
        static_assert(ElementVolumeVariables::VolumeVariables::numFluidPhases() == 1);
        const Scalar t = calculateTransmissibility(problem, element, fvGeometry, scvf, elemVolVars, fluxVarsCache, 0);
        return {t, -t};
    }
};


} // end namespace Dumux

#endif