volumevariables.hh 9.93 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
 *   See the file COPYING for full copying permissions.                      *
 *                                                                           *
 *   This program is free software: you can redistribute it and/or modify    *
 *   it under the terms of the GNU General Public License as published by    *
 *   the Free Software Foundation, either version 2 of the License, or       *
 *   (at your option) any later version.                                     *
 *                                                                           *
 *   This program is distributed in the hope that it will be useful,         *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of          *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the            *
 *   GNU General Public License for more details.                            *
 *                                                                           *
 *   You should have received a copy of the GNU General Public License       *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.   *
 *****************************************************************************/
/*!
 * \file
21
 * \ingroup TwoPModel
22
23
24
25
26
27
 * \brief Contains the quantities which are constant within a
 *        finite volume in the two-phase model.
 */
#ifndef DUMUX_2P_VOLUME_VARIABLES_HH
#define DUMUX_2P_VOLUME_VARIABLES_HH

Timo Koch's avatar
Timo Koch committed
28
#include <dumux/common/properties.hh>
29
#include <dumux/porousmediumflow/volumevariables.hh>
30
31
32
33
34
35
36
37
38
39
#include <dune/common/fvector.hh>

namespace Dumux
{
/*!
 * \ingroup TwoPModel
 * \brief Contains the quantities which are are constant within a
 *        finite volume in the two-phase model.
 */
template <class TypeTag>
40
class TwoPVolumeVariables : public PorousMediumFlowVolumeVariables<TypeTag>
41
{
42
    using ParentType = PorousMediumFlowVolumeVariables<TypeTag>;
43
44
45
46

    using Implementation = typename GET_PROP_TYPE(TypeTag, VolumeVariables);
    using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar);
    using Problem = typename GET_PROP_TYPE(TypeTag, Problem);
47
48
    using SpatialParams = typename GET_PROP_TYPE(TypeTag, SpatialParams);
    using PermeabilityType = typename SpatialParams::PermeabilityType;
49
50
51
    using Indices = typename GET_PROP_TYPE(TypeTag, Indices);
    using FluidSystem = typename GET_PROP_TYPE(TypeTag, FluidSystem);
    using MaterialLaw = typename GET_PROP_TYPE(TypeTag, MaterialLaw);
52
    using FVElementGeometry = typename GET_PROP_TYPE(TypeTag, FVGridGeometry)::LocalView;
53
    using SubControlVolume = typename FVElementGeometry::SubControlVolume;
54
55
56
57
    using ElementSolutionVector = typename GET_PROP_TYPE(TypeTag, ElementSolutionVector);

    enum
    {
58
59
60
61
62
63
64
65
66
67
        pwsn = Indices::pwsn,
        pnsw = Indices::pnsw,
        pressureIdx = Indices::pressureIdx,
        saturationIdx = Indices::saturationIdx,
        wPhaseIdx = Indices::wPhaseIdx,
        nPhaseIdx = Indices::nPhaseIdx,
        numPhases = GET_PROP_VALUE(TypeTag, NumPhases),
        formulation = GET_PROP_VALUE(TypeTag, Formulation)
    };

68
69
70
    using GridView = typename GET_PROP_TYPE(TypeTag, GridView);
    using Element = typename GridView::template Codim<0>::Entity;

71
72
public:
    // export type of fluid state for non-isothermal models
73
    using FluidState = typename GET_PROP_TYPE(TypeTag, FluidState);
74
75

    /*!
76
77
78
79
80
81
82
83
     * \brief Update all quantities for a given control volume
     *
     * \param elemSol A vector containing all primary variables connected to the element
     * \param problem The object specifying the problem which ought to
     *                be simulated
     * \param element An element which contains part of the control volume
     * \param scv The sub control volume
    */
84
    void update(const ElementSolutionVector &elemSol,
85
86
                const Problem &problem,
                const Element &element,
87
                const SubControlVolume& scv)
88
    {
89
        ParentType::update(elemSol, problem, element, scv);
90

91
        completeFluidState(elemSol, problem, element, scv, fluidState_);
92

93
        const auto& materialParams = problem.spatialParams().materialLawParams(element, scv, elemSol);
94
95
96
97
98
99
100
101
102
103

        mobility_[wPhaseIdx] =
            MaterialLaw::krw(materialParams, fluidState_.saturation(wPhaseIdx))
            / fluidState_.viscosity(wPhaseIdx);

        mobility_[nPhaseIdx] =
            MaterialLaw::krn(materialParams, fluidState_.saturation(wPhaseIdx))
            / fluidState_.viscosity(nPhaseIdx);

        // porosity
104
105
        porosity_ = problem.spatialParams().porosity(element, scv, elemSol);
        permeability_ = problem.spatialParams().permeability(element, scv, elemSol);
106
107
108
109

    }

    /*!
110
111
112
113
114
115
116
117
118
     * \brief Complete the fluid state
     *
     * \param elemSol A vector containing all primary variables connected to the element
     * \param problem The problem
     * \param element The element
     * \param scv The sub control volume
     * \param fluidState The fluid state
     *
     * Set temperature, saturations, capillary pressures, viscosities, densities and enthalpies.
119
     */
120
    static void completeFluidState(const ElementSolutionVector& elemSol,
121
122
                                   const Problem& problem,
                                   const Element& element,
123
                                   const SubControlVolume& scv,
124
125
                                   FluidState& fluidState)
    {
126
        Scalar t =  ParentType::temperature(elemSol, problem, element, scv);
127
128
        fluidState.setTemperature(t);

129
        const auto& materialParams = problem.spatialParams().materialLawParams(element, scv, elemSol);
130
        const auto& priVars = ParentType::extractDofPriVars(elemSol, scv);
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

        if (int(formulation) == pwsn) {
            Scalar sn = priVars[saturationIdx];
            fluidState.setSaturation(nPhaseIdx, sn);
            fluidState.setSaturation(wPhaseIdx, 1 - sn);

            Scalar pw = priVars[pressureIdx];
            fluidState.setPressure(wPhaseIdx, pw);
            fluidState.setPressure(nPhaseIdx,
                                   pw + MaterialLaw::pc(materialParams, 1 - sn));
        }
        else if (int(formulation) == pnsw) {
            Scalar sw = priVars[saturationIdx];
            fluidState.setSaturation(wPhaseIdx, sw);
            fluidState.setSaturation(nPhaseIdx, 1 - sw);

            Scalar pn = priVars[pressureIdx];
            fluidState.setPressure(nPhaseIdx, pn);
            fluidState.setPressure(wPhaseIdx,
                                   pn - MaterialLaw::pc(materialParams, sw));
        }

        typename FluidSystem::ParameterCache paramCache;
        paramCache.updateAll(fluidState);

        for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
            // compute and set the viscosity
            Scalar mu = FluidSystem::viscosity(fluidState, paramCache, phaseIdx);
            fluidState.setViscosity(phaseIdx, mu);

            // compute and set the density
            Scalar rho = FluidSystem::density(fluidState, paramCache, phaseIdx);
            fluidState.setDensity(phaseIdx, rho);

            // compute and set the enthalpy
166
            Scalar h = ParentType::enthalpy(fluidState, paramCache, phaseIdx);
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
            fluidState.setEnthalpy(phaseIdx, h);
        }
    }

    /*!
     * \brief Returns the phase state for the control volume.
     */
    const FluidState &fluidState() const
    { return fluidState_; }

    /*!
     * \brief Returns the saturation of a given phase within
     *        the control volume in \f$[-]\f$.
     *
     * \param phaseIdx The phase index
     */
    Scalar saturation(int phaseIdx) const
    { return fluidState_.saturation(phaseIdx); }

    /*!
     * \brief Returns the mass density of a given phase within the
     *        control volume in \f$[kg/m^3]\f$.
     *
     * \param phaseIdx The phase index
     */
    Scalar density(int phaseIdx) const
    { return fluidState_.density(phaseIdx); }

    /*!
     * \brief Returns the effective pressure of a given phase within
     *        the control volume in \f$[kg/(m*s^2)=N/m^2=Pa]\f$.
     *
     * \param phaseIdx The phase index
     */
    Scalar pressure(int phaseIdx) const
    { return fluidState_.pressure(phaseIdx); }

    /*!
     * \brief Returns the capillary pressure within the control volume
     * in \f$[kg/(m*s^2)=N/m^2=Pa]\f$.
     */
    Scalar capillaryPressure() const
    { return fluidState_.pressure(nPhaseIdx) - fluidState_.pressure(wPhaseIdx); }

    /*!
     * \brief Returns temperature inside the sub-control volume
     * in \f$[K]\f$.
     *
     * Note that we assume thermodynamic equilibrium, i.e. the
     * temperature of the rock matrix and of all fluid phases are
     * identical.
     */
    Scalar temperature() const
    { return fluidState_.temperature(/*phaseIdx=*/0); }

222
223
224
225
226
227
228
229
230
    /*!
     * \brief Returns the dynamic viscosity of the fluid within the
     *        control volume in \f$\mathrm{[Pa s]}\f$.
     *
     * \param phaseIdx The phase index
     */
    Scalar viscosity(int phaseIdx) const
    { return fluidState_.viscosity(phaseIdx); }

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
    /*!
     * \brief Returns the effective mobility of a given phase within
     *        the control volume in \f$[s*m/kg]\f$.
     *
     * \param phaseIdx The phase index
     */
    Scalar mobility(int phaseIdx) const
    { return mobility_[phaseIdx]; }

    /*!
     * \brief Returns the average porosity within the control volume in \f$[-]\f$.
     */
    Scalar porosity() const
    { return porosity_; }

246
247
248
    /*!
     * \brief Returns the permeability within the control volume in \f$[m^2]\f$.
     */
249
    const PermeabilityType& permeability() const
250
251
    { return permeability_; }

252
253
254
255
protected:

    FluidState fluidState_;
    Scalar porosity_;
256
    PermeabilityType permeability_;
257
258
259
260
261
262
263
264
265
266
267
268
269
    Scalar mobility_[numPhases];

private:
    Implementation &asImp_()
    { return *static_cast<Implementation*>(this); }

    const Implementation &asImp_() const
    { return *static_cast<const Implementation*>(this); }
};

}

#endif