heterogeneousproblemni.hh 20.6 KB
Newer Older
1
2
3
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
4
 *   See the file COPYING for full copying permissions.                      *
5
6
7
8
9
10
11
12
 *                                                                           *
 *   This program is free software: you can redistribute it and/or modify    *
 *   it under the terms of the GNU General Public License as published by    *
 *   the Free Software Foundation, either version 2 of the License, or       *
 *   (at your option) any later version.                                     *
 *                                                                           *
 *   This program is distributed in the hope that it will be useful,         *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of          *
13
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the            *
14
15
16
17
18
19
20
21
 *   GNU General Public License for more details.                            *
 *                                                                           *
 *   You should have received a copy of the GNU General Public License       *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.   *
 *****************************************************************************/
/*!
 * \file
 *
22
 * \brief Definition of a problem, where CO2 is injected under a reservoir.
23
24
25
26
27
28
29
 */
#ifndef DUMUX_HETEROGENEOUS_NI_PROBLEM_NI_HH
#define DUMUX_HETEROGENEOUS_NI_PROBLEM_NI_HH

#if HAVE_ALUGRID
#include <dune/grid/alugrid/2d/alugrid.hh>
#else
Christoph Grueninger's avatar
[co2ni]    
Christoph Grueninger committed
30
#warning ALUGrid is necessary for this test.
31
32
33
#endif

#include <dune/grid/io/file/dgfparser/dgfs.hh>
34
35
#include <dumux/implicit/co2ni/co2nimodel.hh>
#include <dumux/implicit/co2ni/co2nivolumevariables.hh>
36
#include <dumux/material/fluidsystems/brineco2fluidsystem.hh>
37
#include <dumux/implicit/common/implicitporousmediaproblem.hh>
38
#include <dumux/implicit/box/intersectiontovertexbc.hh>
39
#include <test/implicit/co2/heterogeneousspatialparameters.hh>
40
41
42
43
44
45
46
47
48

#include "heterogeneousco2tables.hh"

#define ISOTHERMAL 0

namespace Dumux
{

template <class TypeTag>
49
class HeterogeneousNIProblem;
50
51
52

namespace Properties
{
53
54
55
NEW_TYPE_TAG(HeterogeneousNIProblem, INHERITS_FROM(TwoPTwoCNI, HeterogeneousSpatialParams));
NEW_TYPE_TAG(HeterogeneousNIBoxProblem, INHERITS_FROM(BoxModel, HeterogeneousNIProblem));
NEW_TYPE_TAG(HeterogeneousNICCProblem, INHERITS_FROM(CCModel, HeterogeneousNIProblem));
56
57
58
59


// Set the grid type
#if HAVE_ALUGRID
60
SET_TYPE_PROP(HeterogeneousNIProblem, Grid, Dune::ALUGrid<2, 2, Dune::cube, Dune::nonconforming>);
61
#else
62
SET_TYPE_PROP(HeterogeneousNIProblem, Grid, Dune::YaspGrid<2>);
63
64
65
#endif

// Set the problem property
66
SET_PROP(HeterogeneousNIProblem, Problem)
67
{
68
    typedef Dumux::HeterogeneousNIProblem<TypeTag> type;
69
70
71
};

// Set fluid configuration
72
SET_PROP(HeterogeneousNIProblem, FluidSystem)
73
74
75
76
77
{
    typedef Dumux::BrineCO2FluidSystem<TypeTag> type;
};

// Set the CO2 table to be used; in this case not the the default table
78
SET_TYPE_PROP(HeterogeneousNIProblem, CO2Table, Dumux::Heterogeneous::CO2Tables);
79
// Set the salinity mass fraction of the brine in the reservoir
80
SET_SCALAR_PROP(HeterogeneousNIProblem, ProblemSalinity, 1e-1);
81
82

//! the CO2 Model and VolumeVariables properties
83
84
SET_TYPE_PROP(HeterogeneousNIProblem, Model, CO2NIModel<TypeTag>);
SET_TYPE_PROP(HeterogeneousNIProblem, VolumeVariables, CO2NIVolumeVariables<TypeTag>);
85
86

// Enable gravity
87
SET_BOOL_PROP(HeterogeneousNIProblem, ProblemEnableGravity, true);
88

89
90
SET_BOOL_PROP(HeterogeneousNIProblem, ImplicitEnableJacobianRecycling, false);
SET_BOOL_PROP(HeterogeneousNIProblem, VtkAddVelocity, false);
91
92

SET_BOOL_PROP(HeterogeneousNIProblem, UseMoles, false);
93
94
95
96
97
}


/*!
 * \ingroup CO2NIModel
98
 * \ingroup ImplicitTestProblems
99
100
101
102
103
104
105
106
107
108
109
110
111
112
 * \brief Problem where CO2 is injected under a low permeable layer in a depth of 1200m.
 *
 * The domain is sized 200m times 100m and consists of four layers, a
 * permeable reservoir layer at the bottom, a barrier rock layer with reduced permeability followed by another reservoir layer
 * and at the top a barrier rock layer with a very low permeablility.
 *
 * CO2 is injected at the permeable bottom layer
 * from the left side. The domain is initially filled with brine.
 *
 * The grid is unstructered and permeability and porosity for the elements are read in from the grid file. The grid file
 * also contains so-called boundary ids which can be used assigned during the grid creation in order to differentiate
 * between different parts of the boundary.
 * These boundary ids can be imported into the problem where the boundary conditions can then be assigned accordingly.
 *
113
114
115
 * The model is able to use either mole or mass fractions. The property useMoles can be set to either true or false in the
 * problem file. Make sure that the according units are used in the problem setup. The default setting for useMoles is false.
 *
116
117
 * To run the simulation execute the following line in shell (works with the box and cell centered spatial discretization method):
 * <tt>./test_ccco2ni </tt> or <tt>./test_boxco2ni </tt>
118
 */
119
template <class TypeTag >
120
class HeterogeneousNIProblem : public ImplicitPorousMediaProblem<TypeTag>
121
{
122
    typedef ImplicitPorousMediaProblem<TypeTag> ParentType;
123
124
125
126
127
128
129
130

    typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
    typedef typename GET_PROP_TYPE(TypeTag, Grid) Grid;
    typedef Dune::GridPtr<Grid> GridPointer;
    typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
    typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
    typedef typename GET_PROP_TYPE(TypeTag, VolumeVariables) VolumeVariables;

131
132
    static const bool useMoles = GET_PROP_VALUE(TypeTag, UseMoles);

133
134
135
136
137
138
139
    enum {
        // Grid and world dimension
        dim = GridView::dimension,
        dimWorld = GridView::dimensionworld
    };

    // copy some indices for convenience
140
    typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
    enum {
        lPhaseIdx = Indices::wPhaseIdx,
        gPhaseIdx = Indices::nPhaseIdx,


        BrineIdx = FluidSystem::BrineIdx,
        CO2Idx = FluidSystem::CO2Idx,

        conti0EqIdx = Indices::conti0EqIdx,
        contiCO2EqIdx = conti0EqIdx + CO2Idx,
#if !ISOTHERMAL
        temperatureIdx = CO2Idx +1,
        energyEqIdx = contiCO2EqIdx +1,
#endif

    };


    typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
    typedef typename GET_PROP_TYPE(TypeTag, BoundaryTypes) BoundaryTypes;
    typedef typename GET_PROP_TYPE(TypeTag, TimeManager) TimeManager;

    typedef typename GridView::template Codim<0>::Entity Element;
    typedef typename GridView::template Codim<0>::Iterator ElementIterator;
    typedef typename GridView::template Codim<dim>::Entity Vertex;
    typedef typename GridView::Intersection Intersection;

    typedef typename GET_PROP_TYPE(TypeTag, FVElementGeometry) FVElementGeometry;
    typedef typename GET_PROP_TYPE(TypeTag, GridCreator) GridCreator;

    typedef Dune::FieldVector<Scalar, dimWorld> GlobalPosition;
    typedef typename GET_PROP_TYPE(TypeTag, PTAG(CO2Table)) CO2Table;
    typedef Dumux::CO2<Scalar, CO2Table> CO2;
174
175
    enum { isBox = GET_PROP_VALUE(TypeTag, ImplicitIsBox) };
    enum { dofCodim = isBox ? dim : 0 };
176
177
178
179
180
181
182
183

public:
    /*!
     * \brief The constructor
     *
     * \param timeManager The time manager
     * \param gridView The grid view
     */
184
    HeterogeneousNIProblem(TimeManager &timeManager,
185
                     const GridView &gridView)
186
187
188
189
190
191
192
        : ParentType(timeManager, GridCreator::grid().leafView()),
          //Boundary Id Setup:
          injectionTop_ (1),
          injectionBottom_(2),
          dirichletBoundary_(3),
          noFlowBoundary_(4),
          intersectionToVertexBC_(*this)
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
    {
        try
        {
            nTemperature_       = GET_RUNTIME_PARAM(TypeTag, int, FluidSystem.NTemperature);
            nPressure_          = GET_RUNTIME_PARAM(TypeTag, int, FluidSystem.NPressure);
            pressureLow_        = GET_RUNTIME_PARAM(TypeTag, Scalar, FluidSystem.PressureLow);
            pressureHigh_       = GET_RUNTIME_PARAM(TypeTag, Scalar, FluidSystem.PressureHigh);
            temperatureLow_     = GET_RUNTIME_PARAM(TypeTag, Scalar, FluidSystem.TemperatureLow);
            temperatureHigh_    = GET_RUNTIME_PARAM(TypeTag, Scalar, FluidSystem.TemperatureHigh);
            depthBOR_           = GET_RUNTIME_PARAM(TypeTag, Scalar, Problem.DepthBOR);
            name_               = GET_RUNTIME_PARAM(TypeTag, std::string, Problem.Name);
            injectionRate_      = GET_RUNTIME_PARAM(TypeTag, Scalar, Problem.InjectionRate);
            injectionPressure_ = GET_RUNTIME_PARAM(TypeTag, Scalar, Problem.InjectionPressure);
            injectionTemperature_ = GET_RUNTIME_PARAM(TypeTag, Scalar, Problem.InjectionTemperature);
        }
        catch (Dumux::ParameterException &e) {
            std::cerr << e << ". Abort!\n";
            exit(1) ;
        }
        catch (...) {
            std::cerr << "Unknown exception thrown!\n";
            exit(1);
        }

        /* Alternative syntax:
         * typedef typename GET_PROP(TypeTag, ParameterTree) ParameterTree;
         * const Dune::ParameterTree &tree = ParameterTree::tree();
         * nTemperature_       = tree.template get<int>("FluidSystem.nTemperature");
         *
         * + We see what we do
         * - Reporting whether it was used does not work
         * - Overwriting on command line not possible
        */

        GridPointer *gridPtr = &GridCreator::gridPtr();
        this->spatialParams().setParams(gridPtr);



        eps_ = 1e-6;

        // initialize the tables of the fluid system
        //FluidSystem::init();
        FluidSystem::init(/*Tmin=*/temperatureLow_,
                          /*Tmax=*/temperatureHigh_,
                          /*nT=*/nTemperature_,
                          /*pmin=*/pressureLow_,
                          /*pmax=*/pressureHigh_,
                          /*np=*/nPressure_);
242
243
244
245
246
247
248
249
250
251

        //stateing in the console whether mole or mass fractions are used
        if(!useMoles)
        {
        	std::cout<<"problem uses mass-fractions"<<std::endl;
        }
        else
        {
        	std::cout<<"problem uses mole-fractions"<<std::endl;
        }
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
    }

    /*!
     * \brief Called directly after the time integration.
     */
    void postTimeStep()
    {
        // Calculate storage terms
        PrimaryVariables storageL, storageG;
        this->model().globalPhaseStorage(storageL, lPhaseIdx);
        this->model().globalPhaseStorage(storageG, gPhaseIdx);

        // Write mass balance information for rank 0
        if (this->gridView().comm().rank() == 0) {
            std::cout<<"Storage: liquid=[" << storageL << "]"
                     << " gas=[" << storageG << "]\n";
        }
    }

271
272
273
    /*!
     * \brief Add enthalpy and peremeability to output.
     */
274
275
276
    void addOutputVtkFields()
        {
            typedef Dune::BlockVector<Dune::FieldVector<double, 1> > ScalarField;
277
278
279
280

            // get the number of degrees of freedom
            unsigned numDofs = this->model().numDofs();
            unsigned numElements = this->gridView().size(0);
281
282

            //create required scalar fields
283
284
285
286
287
            ScalarField *Kxx = this->resultWriter().allocateManagedBuffer(numElements);
            ScalarField *cellPorosity = this->resultWriter().allocateManagedBuffer(numElements);
            ScalarField *boxVolume = this->resultWriter().allocateManagedBuffer(numDofs);
            ScalarField *enthalpyW = this->resultWriter().allocateManagedBuffer(numDofs);
            ScalarField *enthalpyN = this->resultWriter().allocateManagedBuffer(numDofs);
288
289
290
            (*boxVolume) = 0;

            //Fill the scalar fields with values
291

292
293
            ScalarField *rank = this->resultWriter().allocateManagedBuffer(numElements);

294
            FVElementGeometry fvGeometry;
295
296
            VolumeVariables volVars;

297
298
299
            ElementIterator eIt = this->gridView().template begin<0>();
            ElementIterator eEndIt = this->gridView().template end<0>();
            for (; eIt != eEndIt; ++eIt)
300
            {
301
302
                int eIdx = this->elementMapper().map(*eIt);
                (*rank)[eIdx] = this->gridView().comm().rank();
303
                fvGeometry.update(this->gridView(), *eIt);
304
305


306
                for (int scvIdx = 0; scvIdx < fvGeometry.numScv; ++scvIdx)
307
                {
308
                    int globalIdx = this->model().dofMapper().map(*eIt, scvIdx, dofCodim);
309
310
                    volVars.update(this->model().curSol()[globalIdx],
                                   *this,
311
                                   *eIt,
312
313
                                   fvGeometry,
                                   scvIdx,
314
                                   false);
315
                    (*boxVolume)[globalIdx] += fvGeometry.subContVol[scvIdx].volume;
316
317
318
                    (*enthalpyW)[globalIdx] = volVars.enthalpy(lPhaseIdx);
                    (*enthalpyN)[globalIdx] = volVars.enthalpy(gPhaseIdx);
                }
319
320
                (*Kxx)[eIdx] = this->spatialParams().intrinsicPermeability(*eIt, fvGeometry, /*element data*/ 0);
                (*cellPorosity)[eIdx] = this->spatialParams().porosity(*eIt, fvGeometry, /*element data*/ 0);
321
322
323
            }

            //pass the scalar fields to the vtkwriter
324
325
326
327
328
            this->resultWriter().attachDofData(*boxVolume, "boxVolume", isBox);
            this->resultWriter().attachDofData(*Kxx, "Kxx", false); //element data
            this->resultWriter().attachDofData(*cellPorosity, "cellwisePorosity", false); //element data
            this->resultWriter().attachDofData(*enthalpyW, "enthalpyW", isBox);
            this->resultWriter().attachDofData(*enthalpyN, "enthalpyN", isBox);
329
330
331
332
333
334
335
336
337
338
339

        }

    /*!
     * \brief The problem name.
     *
     * This is used as a prefix for files generated by the simulation.
     */
    const std::string name() const
    { return name_; }

340
#if ISOTHERMAL
341
342
343
    /*!
     * \brief Returns the temperature within the domain.
     *
344
345
346
347
     * \param globalPos The position
     *
     * This problem assumes a geothermal gradient with 
     * a surface temperature of 10 degrees Celsius.
348
     */
349
    Scalar temperatureAtPos(const GlobalPosition &globalPos) const
350
351
    {
        return temperature_(globalPos);
352
353
    };
#endif
354

355
356
357
358
359
    /*!
     * \brief Returns the sources within the domain.
     *
     * \param values Stores the source values, acts as return value
     * \param globalPos The global position
360
361
362
363
364
365
     *
     * Depending on whether useMoles is set on true or false, the flux has to be given either in
     * kg/(m^3*s) or mole/(m^3*s) in the input file!!
     *
     * Note that the energy balance is always calculated in terms of specific enthalpies [J/kg]
     * and that the Neumann fluxes have to be specified accordingly.
366
     */
367
368
369
370
371
372
373
374
375
    void sourceAtPos(PrimaryVariables &values,
                const GlobalPosition &globalPos) const
    {
        values = 0;
    }

    /*!
     * \name Boundary conditions
     */
376

377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
    /*!
     * \brief Specifies which kind of boundary condition should be
     *        used for which equation on a given boundary segment.
     *
     * \param values The boundary types for the conservation equations
     * \param vertex The vertex for which the boundary type is set
     */

    void boundaryTypes(BoundaryTypes &values, const Vertex &vertex) const
    {
        intersectionToVertexBC_.boundaryTypes(values, vertex);
    }

    /*!
     * \brief Specifies which kind of boundary condition should be
     *        used for which equation on a given boundary segment.
     *
     * \param values The boundary types for the conservation equations
395
     * \param intersection specifies the intersection at which boundary
396
     *           condition is to set
397
     */
398
    void boundaryTypes(BoundaryTypes &values, const Intersection &intersection) const
399
    {
400
        int boundaryId = intersection.boundaryId();
401
402
403
404
405
406
407
408
409
410
411
        if (boundaryId < 1 || boundaryId > 4)
        {
            std::cout<<"invalid boundaryId: "<<boundaryId<<std::endl;
            DUNE_THROW(Dune::InvalidStateException, "Invalid " << boundaryId);
        }
        if (boundaryId == dirichletBoundary_)
            values.setAllDirichlet();
        else
            values.setAllNeumann();
    }

412
413
414
415
416
417
418
419
420
421
422
423
424
    /*!
     * \brief Evaluate the boundary conditions for a dirichlet
     *        boundary segment.
     *
     * \param values The dirichlet values for the primary variables
     * \param globalPos The global position
     *
     * For this method, the \a values parameter stores primary variables.
     */
    void dirichletAtPos(PrimaryVariables &values, const GlobalPosition &globalPos) const
    {
        initial_(values, globalPos);
    }
425

426
427
428
429
430
431
    /*!
     * \brief Evaluate the boundary conditions for a neumann
     *        boundary segment.
     *
     * \param values The neumann values for the conservation equations
     * \param element The finite element
432
     * \param fvGeometry The finite-volume geometry in the box scheme
433
     * \param intersection The intersection between element and boundary
434
435
436
437
438
     * \param scvIdx The local vertex index
     * \param boundaryFaceIdx The index of the boundary face
     *
     * For this method, the \a values parameter stores the mass flux
     * in normal direction of each phase. Negative values mean influx.
439
440
441
442
443
     *
     * Depending on whether useMoles is set on true or false, the flux has to be given either in
     * kg/(m^2*s) or mole/(m^2*s) in the input file!!
     * Note that the energy balance is always calculated in terms of specific enthalpies [J/kg]
     * and that the Neumann fluxes have to be specified accordingly.
444
445
446
     */
    void neumann(PrimaryVariables &values,
                 const Element &element,
447
                 const FVElementGeometry &fvGeometry,
448
                 const Intersection &intersection,
449
450
451
                 int scvIdx,
                 int boundaryFaceIdx) const
    {
452
        int boundaryId = intersection.boundaryId();
453
454
455
456

        values = 0;
        if (boundaryId == injectionBottom_)
        {
457
            values[contiCO2EqIdx] = -injectionRate_; ///FluidSystem::molarMass(CO2Idx); // kg/(s*m^2) or mole/(m^2*s) !!
458
#if !ISOTHERMAL
459
460
            values[energyEqIdx] = -injectionRate_/*kg/(m^2 s)*/*CO2::gasEnthalpy(
                                    injectionTemperature_, injectionPressure_)/*J/kg*/; // W/(m^2)
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
#endif
        }
    }

    // \}

    /*!
     * \name Volume terms
     */
    // \{

    /*!
     * \brief Evaluate the initial value for a control volume.
     *
     * \param values The initial values for the primary variables
476
     * \param globalPos The center of the finite volume which ought to be set.
477
478
479
480
     *
     * For this method, the \a values parameter stores primary
     * variables.
     */
481
482
    void initialAtPos(PrimaryVariables &values,
                      const GlobalPosition &globalPos) const
483
484
485
486
487
488
489
    {
        initial_(values, globalPos);
    }

    /*!
     * \brief Return the initial phase state inside a control volume.
     *
490
     * \param vertex The vertex
491
492
493
     * \param globalIdx The index of the global vertex
     * \param globalPos The global position
     */
494
    int initialPhasePresence(const Vertex &vertex,
495
496
                             int &globalIdx,
                             const GlobalPosition &globalPos) const
497
    { return Indices::wPhaseOnly; }
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529

    // \}

private:
    // the internal method for the initial condition
    void initial_(PrimaryVariables &values,
                  const GlobalPosition &globalPos) const
    {
        Scalar temp = temperature_(globalPos);
        Scalar densityW = FluidSystem::Brine::liquidDensity(temp, 1e7);

        Scalar pl =  1e5 - densityW*this->gravity()[dim-1]*(depthBOR_ - globalPos[dim-1]);
        Scalar moleFracLiquidCO2 = 0.00;
        Scalar moleFracLiquidBrine = 1.0 - moleFracLiquidCO2;

        Scalar meanM =
            FluidSystem::molarMass(BrineIdx)*moleFracLiquidBrine +
            FluidSystem::molarMass(CO2Idx)*moleFracLiquidCO2;

        Scalar massFracLiquidCO2 = moleFracLiquidCO2*FluidSystem::molarMass(CO2Idx)/meanM;

        values[Indices::pressureIdx] = pl;
        values[Indices::switchIdx] = massFracLiquidCO2;
#if !ISOTHERMAL
            values[temperatureIdx] = temperature_(globalPos); //K
#endif


    }

    Scalar temperature_(const GlobalPosition globalPos) const
    {
530
        Scalar T = 283.0 + (depthBOR_ - globalPos[dim-1])*0.03; 
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
        return T;
    };

    Scalar depthBOR_;
    Scalar injectionRate_;
    Scalar injectionPressure_;
    Scalar injectionTemperature_;
    Scalar eps_;

    int nTemperature_;
    int nPressure_;

    std::string name_ ;

    Scalar pressureLow_, pressureHigh_;
    Scalar temperatureLow_, temperatureHigh_;

    int injectionTop_;
    int injectionBottom_;
    int dirichletBoundary_;
    int noFlowBoundary_;

    const IntersectionToVertexBC<TypeTag> intersectionToVertexBC_;
};
} //end namespace

#endif