main.cc 7.18 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
 *   See the file COPYING for full copying permissions.                      *
 *                                                                           *
 *   This program is free software: you can redistribute it and/or modify    *
 *   it under the terms of the GNU General Public License as published by    *
 *   the Free Software Foundation, either version 3 of the License, or       *
 *   (at your option) any later version.                                     *
 *                                                                           *
 *   This program is distributed in the hope that it will be useful,         *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of          *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the            *
 *   GNU General Public License for more details.                            *
 *                                                                           *
 *   You should have received a copy of the GNU General Public License       *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.   *
 *****************************************************************************/
/*!
 * \file
 *
 * \brief Test for the two-phase pore-network model
 */
#include <config.h>

#include <ctime>
#include <iostream>

#include <dune/common/parallel/mpihelper.hh>
#include <dune/common/timer.hh>
#include <dune/grid/io/file/dgfparser/dgfexception.hh>
#include <dune/grid/io/file/vtk.hh>

#include <dumux/assembly/fvassembler.hh>
#include <dumux/common/properties.hh>
#include <dumux/common/parameters.hh>
#include <dumux/common/dumuxmessage.hh>
#include <dumux/io/grid/porenetwork/gridmanager.hh>
#include <dumux/linear/seqsolverbackend.hh>
#include <dumux/porenetwork/common/pnmvtkoutputmodule.hh>
#include <dumux/porenetwork/2p/newtonsolver.hh>

#include "properties.hh"

int main(int argc, char** argv)
{
    using namespace Dumux;

    using TypeTag = Properties::TTag::DrainageProblem;

    // initialize MPI, finalize is done automatically on exit
    const auto& mpiHelper = Dune::MPIHelper::instance(argc, argv);

    // print dumux start message
    if (mpiHelper.rank() == 0)
        DumuxMessage::print(/*firstCall=*/true);

    ////////////////////////////////////////////////////////////
    // parse the command line arguments and input file
    ////////////////////////////////////////////////////////////

    // parse command line arguments
    Parameters::init(argc, argv);

    //////////////////////////////////////////////////////////////////////
    // try to create a grid (from the given grid file or the input file)
    /////////////////////////////////////////////////////////////////////

    using GridManager = Dumux::PoreNetwork::GridManager<DIM>;
    GridManager gridManager;
    gridManager.init();

    // we compute on the leaf grid view
    const auto& leafGridView = gridManager.grid().leafGridView();
    auto gridData = gridManager.getGridData();

    // create the finite volume grid geometry
    using GridGeometry = GetPropType<TypeTag, Properties::GridGeometry>;
    auto gridGeometry = std::make_shared<GridGeometry>(leafGridView, *gridData);

    // the spatial parameters
    using SpatialParams = GetPropType<TypeTag, Properties::SpatialParams>;
    auto spatialParams = std::make_shared<SpatialParams>(gridGeometry);

    // the problem (boundary conditions)
    using Problem = GetPropType<TypeTag, Properties::Problem>;
    auto problem = std::make_shared<Problem>(gridGeometry, spatialParams);

    // the solution vector
    using GridView = typename GridGeometry::GridView;
    using SolutionVector = GetPropType<TypeTag, Properties::SolutionVector>;
    SolutionVector x(leafGridView.size(GridView::dimension));
    problem->applyInitialSolution(x);
    auto xOld = x;

    // the grid variables
    using GridVariables = GetPropType<TypeTag, Properties::GridVariables>;
    auto gridVariables = std::make_shared<GridVariables>(problem, gridGeometry);
    gridVariables->init(x);

    // get some time loop parameters
    using Scalar = GetPropType<TypeTag, Properties::Scalar>;
    const auto tEnd = getParam<Scalar>("TimeLoop.TEnd");
    const auto maxDt = getParam<Scalar>("TimeLoop.MaxTimeStepSize");
    auto dt = getParam<Scalar>("TimeLoop.DtInitial");

    // check if we are about to restart a previously interrupted simulation
    Scalar restartTime = 0;
    if (Parameters::getTree().hasKey("Restart") || Parameters::getTree().hasKey("TimeLoop.Restart"))
        restartTime = getParam<Scalar>("TimeLoop.Restart");

    // instantiate time loop
    auto timeLoop = std::make_shared<TimeLoop<Scalar>>(restartTime, dt, tEnd);
    timeLoop->setMaxTimeStepSize(maxDt);

    problem->setTimeLoop(timeLoop);

    // intialize the vtk output module
    using IOFields = GetPropType<TypeTag, Properties::IOFields>;
    typedef PoreNetwork::VtkOutputModule<GridVariables, GetPropType<TypeTag, Properties::FluxVariables>, SolutionVector> VtkWriter;
    PoreNetwork::VtkOutputModule<GridVariables, GetPropType<TypeTag, Properties::FluxVariables>, SolutionVector> vtkWriter(*gridVariables, x, problem->name());
    IOFields::initOutputModule(vtkWriter); //! Add model specific output fields
    vtkWriter.addField(gridGeometry->poreVolume(), "poreVolume", VtkWriter::FieldType::vertex);
    vtkWriter.write(0.0);

    // the assembler with time loop for instationary problem
    using Assembler = FVAssembler<TypeTag, DiffMethod::numeric>;
    auto assembler = std::make_shared<Assembler>(problem, gridGeometry, gridVariables, timeLoop, xOld);

    // the linear solver
    using LinearSolver = UMFPackBackend;
    auto linearSolver = std::make_shared<LinearSolver>();

    // the non-linear solver
135
    using NewtonSolver = PoreNetwork::TwoPNewtonSolver<Assembler, LinearSolver,  REGULARIZED>;
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
    NewtonSolver nonLinearSolver(assembler, linearSolver);

    // time loop
    timeLoop->start(); do
    {
        // set previous solution for storage evaluations
        assembler->setPreviousSolution(xOld);

        // try solving the non-linear system
        nonLinearSolver.solve(x, *timeLoop);

        // make the new solution the old solution
        xOld = x;
        gridVariables->advanceTimeStep();

        // advance to the time loop to the next step
        timeLoop->advanceTimeStep();

        // write vtk output
        if(problem->shouldWriteOutput(timeLoop->timeStepIndex(), *gridVariables))
            vtkWriter.write(timeLoop->time());

        // report statistics of this time step
        timeLoop->reportTimeStep();

        // set new dt as suggested by newton solver
        timeLoop->setTimeStepSize(nonLinearSolver.suggestTimeStepSize(timeLoop->timeStepSize()));

    } while (!timeLoop->finished());

    ////////////////////////////////////////////////////////////
    // finalize, print dumux message to say goodbye
    ////////////////////////////////////////////////////////////
    timeLoop->finalize(leafGridView.comm());

    // print dumux end message
    if (mpiHelper.rank() == 0)
    {
        Parameters::print();
        DumuxMessage::print(/*firstCall=*/false);
    }
}