stokesproblem.hh 11.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
 *   See the file COPYING for full copying permissions.                      *
 *                                                                           *
 *   This program is free software: you can redistribute it and/or modify    *
 *   it under the terms of the GNU General Public License as published by    *
 *   the Free Software Foundation, either version 2 of the License, or       *
 *   (at your option) any later version.                                     *
 *                                                                           *
 *   This program is distributed in the hope that it will be useful,         *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of          *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the            *
 *   GNU General Public License for more details.                            *
 *                                                                           *
 *   You should have received a copy of the GNU General Public License       *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.   *
 *****************************************************************************/
/*!
 * \file
 * \ingroup NavierStokesTests
 * \brief A simple Navier-Stokes test problem for the staggered grid (Navier-)Stokes model.
 */
#ifndef DUMUX_STOKES_SUBPROBLEM_HH
#define DUMUX_STOKES_SUBPROBLEM_HH

#include <dune/grid/yaspgrid.hh>

29
#include <dumux/material/fluidsystems/1padapter.hh>
30
31
32
33
34
35
36
37
38
39
40
41
42
#include <dumux/material/fluidsystems/h2oair.hh>

#include <dumux/freeflow/navierstokes/problem.hh>
#include <dumux/discretization/staggered/freeflow/properties.hh>
#include <dumux/freeflow/compositional/navierstokesncmodel.hh>

namespace Dumux
{
template <class TypeTag>
class StokesSubProblem;

namespace Properties
{
43
NEW_TYPE_TAG(StokesOnePTwoC, INHERITS_FROM(StaggeredFreeFlowModel, NavierStokesNC));
44

45
// The fluid system
46
SET_PROP(StokesOnePTwoC, FluidSystem)
47
48
49
50
51
{
  using H2OAir = FluidSystems::H2OAir<typename GET_PROP_TYPE(TypeTag, Scalar)>;
  static constexpr auto phaseIdx = H2OAir::liquidPhaseIdx; // simulate the water phase
  using type = FluidSystems::OnePAdapter<H2OAir, phaseIdx>;
};
52
53

// Set the grid type
54
SET_TYPE_PROP(StokesOnePTwoC, Grid, Dune::YaspGrid<2, Dune::EquidistantOffsetCoordinates<typename GET_PROP_TYPE(TypeTag, Scalar), 2> >);
55
56

// Set the problem property
57
SET_TYPE_PROP(StokesOnePTwoC, Problem, Dumux::StokesSubProblem<TypeTag> );
58

59
60
61
SET_BOOL_PROP(StokesOnePTwoC, EnableFVGridGeometryCache, true);
SET_BOOL_PROP(StokesOnePTwoC, EnableGridFluxVariablesCache, true);
SET_BOOL_PROP(StokesOnePTwoC, EnableGridVolumeVariablesCache, true);
62
63

// Use moles
64
SET_BOOL_PROP(StokesOnePTwoC, UseMoles, true);
65
66

// Do not replace one equation with a total mass balance
67
SET_INT_PROP(StokesOnePTwoC, ReplaceCompEqIdx, 3);
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
}

/*!
 * \ingroup NavierStokesTests
 * \brief  Test problem for the one-phase (Navier-) Stokes problem.
 *
 * Horizontal flow from left to right with a parabolic velocity profile.
 */
template <class TypeTag>
class StokesSubProblem : public NavierStokesProblem<TypeTag>
{
    using ParentType = NavierStokesProblem<TypeTag>;
    using GridView = typename GET_PROP_TYPE(TypeTag, GridView);
    using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar);
    using Indices = typename GET_PROP_TYPE(TypeTag, ModelTraits)::Indices;
    using FluidSystem = typename GET_PROP_TYPE(TypeTag, FluidSystem);
    using BoundaryTypes = typename GET_PROP_TYPE(TypeTag, BoundaryTypes);
    using FVGridGeometry = typename GET_PROP_TYPE(TypeTag, FVGridGeometry);
    using FVElementGeometry = typename FVGridGeometry::LocalView;
    using SubControlVolumeFace = typename FVElementGeometry::SubControlVolumeFace;
    using PrimaryVariables = typename GET_PROP_TYPE(TypeTag, PrimaryVariables);
    using NumEqVector = typename GET_PROP_TYPE(TypeTag, NumEqVector);

    using Element = typename GridView::template Codim<0>::Entity;
    using GlobalPosition = typename Element::Geometry::GlobalCoordinate;

    using CouplingManager = typename GET_PROP_TYPE(TypeTag, CouplingManager);

public:
    StokesSubProblem(std::shared_ptr<const FVGridGeometry> fvGridGeometry, std::shared_ptr<CouplingManager> couplingManager)
    : ParentType(fvGridGeometry, "Stokes"), eps_(1e-6), injectionState_(false), couplingManager_(couplingManager)
    {
        inletVelocity_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.Velocity");
        pressure_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.Pressure");
        inletMoleFraction_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.InletMoleFraction");
    }

   /*!
     * \name Problem parameters
     */
    // \{

    bool shouldWriteRestartFile() const
    { return false; }

   /*!
     * \brief Return the temperature within the domain in [K].
     *
     * This problem assumes a temperature of 10 degrees Celsius.
     */
    Scalar temperature() const
    { return 273.15 + 10; } // 10°C

   /*!
     * \brief Return the sources within the domain.
     *
     * \param globalPos The global position
     */
    NumEqVector sourceAtPos(const GlobalPosition &globalPos) const
    { return NumEqVector(0.0); }
    // \}

   /*!
     * \name Boundary conditions
     */
    // \{

    /*!
     * \brief Specifies which kind of boundary condition should be
     *        used for which equation on a given boundary segment.
     *
     * \param element The finite element
     * \param scvf The sub control volume face
     */
    BoundaryTypes boundaryTypes(const Element& element,
                                const SubControlVolumeFace& scvf) const
    {
        BoundaryTypes values;

        const auto& globalPos = scvf.dofPosition();

        if(onLeftBoundary_(globalPos))
        {
            values.setDirichlet(Indices::conti0EqIdx + 1);
            values.setDirichlet(Indices::velocityXIdx);
            values.setDirichlet(Indices::velocityYIdx);
        }
        else if(onRightBoundary_(globalPos))
        {
            values.setDirichlet(Indices::pressureIdx);
            values.setOutflow(Indices::conti0EqIdx + 1);
        }
        else
        {
            values.setDirichlet(Indices::velocityXIdx);
            values.setDirichlet(Indices::velocityYIdx);
            values.setNeumann(Indices::conti0EqIdx);
            values.setNeumann(Indices::conti0EqIdx + 1);
        }

        if(couplingManager().isCoupledEntity(CouplingManager::stokesIdx, scvf))
        {
            values.setCouplingNeumann(Indices::conti0EqIdx);
            values.setCouplingNeumann(Indices::conti0EqIdx + 1);
            values.setCouplingNeumann(Indices::momentumYBalanceIdx);
            values.setBJS(Indices::momentumXBalanceIdx);
        }

        return values;
    }

    /*!
     * \brief Evaluate the boundary conditions for a Dirichlet control volume.
     *
     * \param element The element
     * \param scvf The sub control volume face
     */
    PrimaryVariables dirichletAtPos(const GlobalPosition& globalPos) const
    {
        PrimaryVariables values(0.0);
        values = initialAtPos(globalPos);

        // start injecting after the velocity field had enough time to initialize
        if(globalPos[0] < this->fvGridGeometry().bBoxMin()[0] + eps_ && isInjectionPeriod())
            values[Indices::conti0EqIdx + 1] = inletMoleFraction_;

        return values;
    }

    /*!
     * \brief Evaluate the boundary conditions for a Neumann control volume.
     *
     * \param element The element for which the Neumann boundary condition is set
     * \param fvGeomentry The fvGeometry
     * \param elemVolVars The element volume variables
     * \param elemFaceVars The element face variables
     * \param scvf The boundary sub control volume face
     */
    template<class ElementVolumeVariables, class ElementFaceVariables>
    NumEqVector neumann(const Element& element,
                        const FVElementGeometry& fvGeometry,
                        const ElementVolumeVariables& elemVolVars,
                        const ElementFaceVariables& elemFaceVars,
                        const SubControlVolumeFace& scvf) const
    {
        NumEqVector values(0.0);

        if(couplingManager().isCoupledEntity(CouplingManager::stokesIdx, scvf))
        {
            values[Indices::momentumYBalanceIdx] = couplingManager().couplingData().momentumCouplingCondition(fvGeometry, elemVolVars, elemFaceVars, scvf);

            const auto tmp = couplingManager().couplingData().massCouplingCondition(fvGeometry, elemVolVars, elemFaceVars, scvf);
            values[Indices::conti0EqIdx] = tmp[0];
            values[Indices::conti0EqIdx + 1] = tmp[1];
        }
        return values;
    }

    // \}

    //! Set the coupling manager
    void setCouplingManager(std::shared_ptr<CouplingManager> cm)
    { couplingManager_ = cm; }

    //! Get the coupling manager
    const CouplingManager& couplingManager() const
    { return *couplingManager_; }

   /*!
     * \name Volume terms
     */
    // \{

   /*!
     * \brief Evaluate the initial value for a control volume.
     *
     * \param globalPos The global position
     */
    PrimaryVariables initialAtPos(const GlobalPosition &globalPos) const
    {
        PrimaryVariables values(0.0);
        values[Indices::pressureIdx] = pressure_;
        values[Indices::velocityXIdx] = inletVelocity_ * (globalPos[1] - this->fvGridGeometry().bBoxMin()[1])
                                              * (this->fvGridGeometry().bBoxMax()[1] - globalPos[1])
                                              / (0.25 * (this->fvGridGeometry().bBoxMax()[1] - this->fvGridGeometry().bBoxMin()[1])
                                              * (this->fvGridGeometry().bBoxMax()[1] - this->fvGridGeometry().bBoxMin()[1]));

        return values;
    }

    /*!
     * \brief Returns the intrinsic permeability of required as input parameter for the Beavers-Joseph-Saffman boundary condition
     */
    Scalar permeability(const SubControlVolumeFace& scvf) const
    {
        return couplingManager().couplingData().darcyPermeability(scvf);
    }

    /*!
     * \brief Returns the alpha value required as input parameter for the Beavers-Joseph-Saffman boundary condition
     */
    Scalar alphaBJ(const SubControlVolumeFace& scvf) const
    {
        return 1.0;
    }

    void setInjectionState(const bool yesNo)
    {
        injectionState_ = yesNo;
    }

    bool isInjectionPeriod() const
    {
        return injectionState_;
    }

    // \}

private:
    bool onLeftBoundary_(const GlobalPosition &globalPos) const
    { return globalPos[0] < this->fvGridGeometry().bBoxMin()[0] + eps_; }

    bool onRightBoundary_(const GlobalPosition &globalPos) const
    { return globalPos[0] > this->fvGridGeometry().bBoxMax()[0] - eps_; }

    bool onLowerBoundary_(const GlobalPosition &globalPos) const
    { return globalPos[1] < this->fvGridGeometry().bBoxMin()[1] + eps_; }

    bool onUpperBoundary_(const GlobalPosition &globalPos) const
    { return globalPos[1] > this->fvGridGeometry().bBoxMax()[1] - eps_; }

    Scalar eps_;
    Scalar inletVelocity_;
    Scalar pressure_;
    Scalar inletMoleFraction_;
    bool injectionState_;

    std::shared_ptr<CouplingManager> couplingManager_;
};
} //end namespace

#endif // DUMUX_STOKES_SUBPROBLEM_HH