problem_stokes.hh 13.9 KB
Newer Older
1
2
3
4
5
6
7
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
 *   See the file COPYING for full copying permissions.                      *
 *                                                                           *
 *   This program is free software: you can redistribute it and/or modify    *
 *   it under the terms of the GNU General Public License as published by    *
8
 *   the Free Software Foundation, either version 3 of the License, or       *
9
10
11
12
13
14
15
16
17
18
19
20
 *   (at your option) any later version.                                     *
 *                                                                           *
 *   This program is distributed in the hope that it will be useful,         *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of          *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the            *
 *   GNU General Public License for more details.                            *
 *                                                                           *
 *   You should have received a copy of the GNU General Public License       *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.   *
 *****************************************************************************/
/*!
 * \file
21
 * \ingroup BoundaryTests
22
23
 * \brief A simple Navier-Stokes test problem for the staggered grid (Navier-)Stokes model.
 */
24

25
26
27
28
29
#ifndef DUMUX_STOKES_SUBPROBLEM_HH
#define DUMUX_STOKES_SUBPROBLEM_HH

#include <dune/grid/yaspgrid.hh>

30
#include <dumux/material/fluidsystems/1padapter.hh>
31
32
33
34
35
36
#include <dumux/material/fluidsystems/h2oair.hh>

#include <dumux/freeflow/navierstokes/problem.hh>
#include <dumux/discretization/staggered/freeflow/properties.hh>
#include <dumux/freeflow/compositional/navierstokesncmodel.hh>

37
namespace Dumux {
38
39
40
template <class TypeTag>
class StokesSubProblem;

41
namespace Properties {
42
43
44
45
// Create new type tags
namespace TTag {
struct StokesOnePTwoC { using InheritsFrom = std::tuple<NavierStokesNC, StaggeredFreeFlowModel>; };
} // end namespace TTag
46

47
// The fluid system
48
49
template<class TypeTag>
struct FluidSystem<TypeTag, TTag::StokesOnePTwoC>
50
{
51
  using H2OAir = FluidSystems::H2OAir<GetPropType<TypeTag, Properties::Scalar>>;
52
53
54
  static constexpr auto phaseIdx = H2OAir::liquidPhaseIdx; // simulate the water phase
  using type = FluidSystems::OnePAdapter<H2OAir, phaseIdx>;
};
55
56

// Set the grid type
57
58
template<class TypeTag>
struct Grid<TypeTag, TTag::StokesOnePTwoC> { using type = Dune::YaspGrid<2, Dune::EquidistantOffsetCoordinates<GetPropType<TypeTag, Properties::Scalar>, 2> >; };
59
60

// Set the problem property
61
62
template<class TypeTag>
struct Problem<TypeTag, TTag::StokesOnePTwoC> { using type = Dumux::StokesSubProblem<TypeTag> ; };
63

64
65
66
67
68
69
template<class TypeTag>
struct EnableFVGridGeometryCache<TypeTag, TTag::StokesOnePTwoC> { static constexpr bool value = true; };
template<class TypeTag>
struct EnableGridFluxVariablesCache<TypeTag, TTag::StokesOnePTwoC> { static constexpr bool value = true; };
template<class TypeTag>
struct EnableGridVolumeVariablesCache<TypeTag, TTag::StokesOnePTwoC> { static constexpr bool value = true; };
70
71

// Use moles
72
73
template<class TypeTag>
struct UseMoles<TypeTag, TTag::StokesOnePTwoC> { static constexpr bool value = true; };
74
75

// Do not replace one equation with a total mass balance
76
77
template<class TypeTag>
struct ReplaceCompEqIdx<TypeTag, TTag::StokesOnePTwoC> { static constexpr int value = 3; };
78
} // end namespace Properties
79
80

/*!
81
82
 * \ingroup BoundaryTests
 * \brief Test problem for the one-phase (Navier-) Stokes problem.
83
84
85
86
87
88
89
 *
 * Horizontal flow from left to right with a parabolic velocity profile.
 */
template <class TypeTag>
class StokesSubProblem : public NavierStokesProblem<TypeTag>
{
    using ParentType = NavierStokesProblem<TypeTag>;
90
91
92
93
94
    using GridView = GetPropType<TypeTag, Properties::GridView>;
    using Scalar = GetPropType<TypeTag, Properties::Scalar>;
    using Indices = typename GetPropType<TypeTag, Properties::ModelTraits>::Indices;
    using BoundaryTypes = GetPropType<TypeTag, Properties::BoundaryTypes>;
    using FVGridGeometry = GetPropType<TypeTag, Properties::FVGridGeometry>;
95
96
    using FVElementGeometry = typename FVGridGeometry::LocalView;
    using SubControlVolumeFace = typename FVElementGeometry::SubControlVolumeFace;
97
98
    using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
    using NumEqVector = GetPropType<TypeTag, Properties::NumEqVector>;
99
100
101
102

    using Element = typename GridView::template Codim<0>::Entity;
    using GlobalPosition = typename Element::Geometry::GlobalCoordinate;

103
    using CouplingManager = GetPropType<TypeTag, Properties::CouplingManager>;
104
    using TimeLoopPtr = std::shared_ptr<TimeLoop<Scalar>>;
105
106
107

public:
    StokesSubProblem(std::shared_ptr<const FVGridGeometry> fvGridGeometry, std::shared_ptr<CouplingManager> couplingManager)
108
    : ParentType(fvGridGeometry, "Stokes"), eps_(1e-6), couplingManager_(couplingManager)
109
    {
110
        problemName_  =  getParam<std::string>("Vtk.OutputName") + "_" + getParamFromGroup<std::string>(this->paramGroup(), "Problem.Name");
111
112
113

        // determine whether to simulate a vertical or horizontal flow configuration
        verticalFlow_ = problemName_.find("vertical") != std::string::npos;
114
115
116
117
118
119
120
121
    }

    /*!
     * \brief The problem name.
     */
    const std::string& name() const
    {
        return problemName_;
122
123
124
125
126
127
128
129
    }

   /*!
     * \name Problem parameters
     */
    // \{

   /*!
130
     * \brief Returns the temperature within the domain in [K].
131
132
133
134
135
136
137
     *
     * This problem assumes a temperature of 10 degrees Celsius.
     */
    Scalar temperature() const
    { return 273.15 + 10; } // 10°C

   /*!
138
     * \brief Returns the sources within the domain.
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
     *
     * \param globalPos The global position
     */
    NumEqVector sourceAtPos(const GlobalPosition &globalPos) const
    { return NumEqVector(0.0); }
    // \}

   /*!
     * \name Boundary conditions
     */
    // \{

    /*!
     * \brief Specifies which kind of boundary condition should be
     *        used for which equation on a given boundary segment.
     *
     * \param element The finite element
     * \param scvf The sub control volume face
     */
    BoundaryTypes boundaryTypes(const Element& element,
                                const SubControlVolumeFace& scvf) const
    {
        BoundaryTypes values;

        const auto& globalPos = scvf.dofPosition();

165
        if (verticalFlow_)
166
        {
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
            // inflow
            if(onUpperBoundary_(globalPos))
            {
                values.setDirichlet(Indices::velocityXIdx);
                values.setDirichlet(Indices::velocityYIdx);
                values.setDirichlet(Indices::conti0EqIdx + 1);
            }

            // left/right wall
            if (onRightBoundary_(globalPos) || (onLeftBoundary_(globalPos)))
            {
                values.setDirichlet(Indices::velocityXIdx);
                values.setDirichlet(Indices::velocityYIdx);
                values.setNeumann(Indices::conti0EqIdx);
                values.setNeumann(Indices::conti0EqIdx + 1);
            }

184
        }
185
        else // horizontal flow
186
        {
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
            if (onLeftBoundary_(globalPos))
            {
                values.setDirichlet(Indices::conti0EqIdx + 1);
                values.setDirichlet(Indices::velocityXIdx);
                values.setDirichlet(Indices::velocityYIdx);
            }
            else if (onRightBoundary_(globalPos))
            {
                values.setDirichlet(Indices::pressureIdx);
                values.setOutflow(Indices::conti0EqIdx + 1);
            }
            else
            {
                values.setDirichlet(Indices::velocityXIdx);
                values.setDirichlet(Indices::velocityYIdx);
                values.setNeumann(Indices::conti0EqIdx);
                values.setNeumann(Indices::conti0EqIdx + 1);
            }
205
206
207
208
209
210
211
212
213
214
215
216
217
218
        }

        if(couplingManager().isCoupledEntity(CouplingManager::stokesIdx, scvf))
        {
            values.setCouplingNeumann(Indices::conti0EqIdx);
            values.setCouplingNeumann(Indices::conti0EqIdx + 1);
            values.setCouplingNeumann(Indices::momentumYBalanceIdx);
            values.setBJS(Indices::momentumXBalanceIdx);
        }

        return values;
    }

    /*!
219
     * \brief Evaluates the boundary conditions for a Dirichlet control volume.
220
221
222
223
224
225
     */
    PrimaryVariables dirichletAtPos(const GlobalPosition& globalPos) const
    {
        PrimaryVariables values(0.0);
        values = initialAtPos(globalPos);

226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
        if (verticalFlow_)
        {
            // Check if this a pure diffusion problem.
            static const bool isDiffusionProblem = problemName_.find("diffusion") != std::string::npos;

            Scalar topMoleFraction = 1e-3;

            if (isDiffusionProblem)
            {
                // For the diffusion problem, change the top mole fraction after some time
                // in order to revert the concentration gradient.
                if (time() >= 1e10)
                    topMoleFraction = 0.0;
            }
            else // advection problem
            {
                // reverse the flow direction after some time for the advection problem
                if (time() >= 3e5)
                    values[Indices::velocityYIdx] *= -1.0;
            }

            if(globalPos[1] > this->fvGridGeometry().bBoxMax()[1] - eps_)
                values[Indices::conti0EqIdx + 1] = topMoleFraction;
        }
        else // horizontal flow
        {
            static const Scalar inletMoleFraction = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.InletMoleFraction");
            if(globalPos[0] < this->fvGridGeometry().bBoxMin()[0] + eps_)
                values[Indices::conti0EqIdx + 1] = inletMoleFraction;
        }

257
258
259
260
261

        return values;
    }

    /*!
262
     * \brief Evaluates the boundary conditions for a Neumann control volume.
263
264
     *
     * \param element The element for which the Neumann boundary condition is set
265
     * \param fvGeometry The fvGeometry
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
     * \param elemVolVars The element volume variables
     * \param elemFaceVars The element face variables
     * \param scvf The boundary sub control volume face
     */
    template<class ElementVolumeVariables, class ElementFaceVariables>
    NumEqVector neumann(const Element& element,
                        const FVElementGeometry& fvGeometry,
                        const ElementVolumeVariables& elemVolVars,
                        const ElementFaceVariables& elemFaceVars,
                        const SubControlVolumeFace& scvf) const
    {
        NumEqVector values(0.0);

        if(couplingManager().isCoupledEntity(CouplingManager::stokesIdx, scvf))
        {
281
            values[Indices::momentumYBalanceIdx] = couplingManager().couplingData().momentumCouplingCondition(element, fvGeometry, elemVolVars, elemFaceVars, scvf);
282

283
            const auto tmp = couplingManager().couplingData().massCouplingCondition(element, fvGeometry, elemVolVars, elemFaceVars, scvf);
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
            values[Indices::conti0EqIdx] = tmp[0];
            values[Indices::conti0EqIdx + 1] = tmp[1];
        }
        return values;
    }

    // \}

    //! Get the coupling manager
    const CouplingManager& couplingManager() const
    { return *couplingManager_; }

   /*!
     * \name Volume terms
     */
    // \{

   /*!
302
     * \brief Evaluates the initial value for a control volume.
303
304
305
     *
     * \param globalPos The global position
     */
306
    PrimaryVariables initialAtPos(const GlobalPosition& globalPos) const
307
308
    {
        PrimaryVariables values(0.0);
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
        values[Indices::pressureIdx] = 1e5;

        static const Scalar vMax = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.Velocity", 0.0);

        auto parabolicProfile = [&](const GlobalPosition& globalPos, int coord)
        {
            return vMax * (globalPos[coord] - this->fvGridGeometry().bBoxMin()[coord])
                        * (this->fvGridGeometry().bBoxMax()[coord] - globalPos[coord])
                        / (0.25 * (this->fvGridGeometry().bBoxMax()[coord] - this->fvGridGeometry().bBoxMin()[coord])
                        * (this->fvGridGeometry().bBoxMax()[coord] - this->fvGridGeometry().bBoxMin()[coord]));
        };

        if (verticalFlow_)
            values[Indices::velocityYIdx] = parabolicProfile(globalPos, 0);
        else // horizontal flow
            values[Indices::velocityXIdx] = parabolicProfile(globalPos, 1);
325
326
327
328
329

        return values;
    }

    /*!
330
331
     * \brief Returns the intrinsic permeability of required as input parameter
     *        for the Beavers-Joseph-Saffman boundary condition.
332
     */
333
    Scalar permeability(const Element& element, const SubControlVolumeFace& scvf) const
334
    {
335
        return couplingManager().couplingData().darcyPermeability(element, scvf);
336
337
338
    }

    /*!
339
340
     * \brief Returns the alpha value required as input parameter for the
     *        Beavers-Joseph-Saffman boundary condition.
341
342
343
344
345
346
     */
    Scalar alphaBJ(const SubControlVolumeFace& scvf) const
    {
        return 1.0;
    }

347
    /*!
348
     * \brief Sets the time loop pointer.
349
350
351
     */
    void setTimeLoop(TimeLoopPtr timeLoop)
    { timeLoop_ = timeLoop; }
352

353
    /*!
354
     * \brief Returns the time.
355
356
357
     */
    Scalar time() const
    { return timeLoop_->time(); }
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374

    // \}

private:
    bool onLeftBoundary_(const GlobalPosition &globalPos) const
    { return globalPos[0] < this->fvGridGeometry().bBoxMin()[0] + eps_; }

    bool onRightBoundary_(const GlobalPosition &globalPos) const
    { return globalPos[0] > this->fvGridGeometry().bBoxMax()[0] - eps_; }

    bool onLowerBoundary_(const GlobalPosition &globalPos) const
    { return globalPos[1] < this->fvGridGeometry().bBoxMin()[1] + eps_; }

    bool onUpperBoundary_(const GlobalPosition &globalPos) const
    { return globalPos[1] > this->fvGridGeometry().bBoxMax()[1] - eps_; }

    Scalar eps_;
375
    bool verticalFlow_;
376
    std::string problemName_;
377
    std::shared_ptr<CouplingManager> couplingManager_;
378
    TimeLoopPtr timeLoop_;
379
};
380
} // end namespace Dumux
381
382

#endif // DUMUX_STOKES_SUBPROBLEM_HH