volumevariables.hh 9.66 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
 *   See the file COPYING for full copying permissions.                      *
 *                                                                           *
 *   This program is free software: you can redistribute it and/or modify    *
 *   it under the terms of the GNU General Public License as published by    *
 *   the Free Software Foundation, either version 2 of the License, or       *
 *   (at your option) any later version.                                     *
 *                                                                           *
 *   This program is distributed in the hope that it will be useful,         *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of          *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the            *
 *   GNU General Public License for more details.                            *
 *                                                                           *
 *   You should have received a copy of the GNU General Public License       *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.   *
 *****************************************************************************/
/*!
 * \file
 *
 * \brief Contains the quantities which are constant within a
 *        finite volume in the two-phase model.
 */
#ifndef DUMUX_2P_VOLUME_VARIABLES_HH
#define DUMUX_2P_VOLUME_VARIABLES_HH

#include "properties.hh"

30
#include <dumux/discretization/volumevariables.hh>
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

#include <dune/common/fvector.hh>

namespace Dumux
{
/*!
 * \ingroup TwoPModel
 * \ingroup ImplicitVolumeVariables
 * \brief Contains the quantities which are are constant within a
 *        finite volume in the two-phase model.
 */
template <class TypeTag>
class TwoPVolumeVariables : public ImplicitVolumeVariables<TypeTag>
{
    typedef ImplicitVolumeVariables<TypeTag> ParentType;

    typedef typename GET_PROP_TYPE(TypeTag, VolumeVariables) Implementation;
    typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
    typedef typename GET_PROP_TYPE(TypeTag, Problem) Problem;
    typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
    typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
    typedef typename GET_PROP_TYPE(TypeTag, FVElementGeometry) FVElementGeometry;
53
    typedef typename GET_PROP_TYPE(TypeTag, SubControlVolume) SubControlVolume;
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
    typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;

    typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
    enum {
        pwsn = Indices::pwsn,
        pnsw = Indices::pnsw,
        pressureIdx = Indices::pressureIdx,
        saturationIdx = Indices::saturationIdx,
        wPhaseIdx = Indices::wPhaseIdx,
        nPhaseIdx = Indices::nPhaseIdx,
        numPhases = GET_PROP_VALUE(TypeTag, NumPhases),
        formulation = GET_PROP_VALUE(TypeTag, Formulation)
    };

    typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
    typedef typename GridView::template Codim<0>::Entity Element;

public:
    // export type of fluid state for non-isothermal models
    typedef typename GET_PROP_TYPE(TypeTag, FluidState) FluidState;

    /*!
     * \copydoc ImplicitVolumeVariables::update
     */
    void update(const PrimaryVariables &priVars,
                const Problem &problem,
                const Element &element,
81
                const SubControlVolume& scv)
82
    {
83
        ParentType::update(priVars, problem, element, scv);
84

85
        completeFluidState(priVars, problem, element, scv, fluidState_);
86

87
        const auto& materialParams = problem.spatialParams().materialLawParams(element, scv);
88
89
90
91
92
93
94
95
96
97

        mobility_[wPhaseIdx] =
            MaterialLaw::krw(materialParams, fluidState_.saturation(wPhaseIdx))
            / fluidState_.viscosity(wPhaseIdx);

        mobility_[nPhaseIdx] =
            MaterialLaw::krn(materialParams, fluidState_.saturation(wPhaseIdx))
            / fluidState_.viscosity(nPhaseIdx);

        // porosity
98
        porosity_ = problem.spatialParams().porosity(scv);
99
100

        // energy related quantities not belonging to the fluid state
101
        asImp_().updateEnergy_(priVars, problem, element, scv);
102
103
104
105
106
107
108
109
    }

    /*!
     * \copydoc ImplicitModel::completeFluidState
     */
    static void completeFluidState(const PrimaryVariables& priVars,
                                   const Problem& problem,
                                   const Element& element,
110
                                   const SubControlVolume& scv,
111
112
                                   FluidState& fluidState)
    {
113
        Scalar t = Implementation::temperature_(priVars, problem, element, scv);
114
115
        fluidState.setTemperature(t);

116
        const auto& materialParams = problem.spatialParams().materialLawParams(element, scv);
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

        if (int(formulation) == pwsn) {
            Scalar sn = priVars[saturationIdx];
            fluidState.setSaturation(nPhaseIdx, sn);
            fluidState.setSaturation(wPhaseIdx, 1 - sn);

            Scalar pw = priVars[pressureIdx];
            fluidState.setPressure(wPhaseIdx, pw);
            fluidState.setPressure(nPhaseIdx,
                                   pw + MaterialLaw::pc(materialParams, 1 - sn));
        }
        else if (int(formulation) == pnsw) {
            Scalar sw = priVars[saturationIdx];
            fluidState.setSaturation(wPhaseIdx, sw);
            fluidState.setSaturation(nPhaseIdx, 1 - sw);

            Scalar pn = priVars[pressureIdx];
            fluidState.setPressure(nPhaseIdx, pn);
            fluidState.setPressure(wPhaseIdx,
                                   pn - MaterialLaw::pc(materialParams, sw));
        }

        typename FluidSystem::ParameterCache paramCache;
        paramCache.updateAll(fluidState);

        for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
            // compute and set the viscosity
            Scalar mu = FluidSystem::viscosity(fluidState, paramCache, phaseIdx);
            fluidState.setViscosity(phaseIdx, mu);

            // compute and set the density
            Scalar rho = FluidSystem::density(fluidState, paramCache, phaseIdx);
            fluidState.setDensity(phaseIdx, rho);

            // compute and set the enthalpy
            Scalar h = Implementation::enthalpy_(fluidState, paramCache, phaseIdx);
            fluidState.setEnthalpy(phaseIdx, h);
        }
    }

    /*!
     * \brief Returns the phase state for the control volume.
     */
    const FluidState &fluidState() const
    { return fluidState_; }

    /*!
     * \brief Returns the saturation of a given phase within
     *        the control volume in \f$[-]\f$.
     *
     * \param phaseIdx The phase index
     */
    Scalar saturation(int phaseIdx) const
    { return fluidState_.saturation(phaseIdx); }

    /*!
     * \brief Returns the mass density of a given phase within the
     *        control volume in \f$[kg/m^3]\f$.
     *
     * \param phaseIdx The phase index
     */
    Scalar density(int phaseIdx) const
    { return fluidState_.density(phaseIdx); }

    /*!
     * \brief Returns the effective pressure of a given phase within
     *        the control volume in \f$[kg/(m*s^2)=N/m^2=Pa]\f$.
     *
     * \param phaseIdx The phase index
     */
    Scalar pressure(int phaseIdx) const
    { return fluidState_.pressure(phaseIdx); }

    /*!
     * \brief Returns the capillary pressure within the control volume
     * in \f$[kg/(m*s^2)=N/m^2=Pa]\f$.
     */
    Scalar capillaryPressure() const
    { return fluidState_.pressure(nPhaseIdx) - fluidState_.pressure(wPhaseIdx); }

    /*!
     * \brief Returns temperature inside the sub-control volume
     * in \f$[K]\f$.
     *
     * Note that we assume thermodynamic equilibrium, i.e. the
     * temperature of the rock matrix and of all fluid phases are
     * identical.
     */
    Scalar temperature() const
    { return fluidState_.temperature(/*phaseIdx=*/0); }

208
209
210
211
212
213
214
215
216
    /*!
     * \brief Returns the dynamic viscosity of the fluid within the
     *        control volume in \f$\mathrm{[Pa s]}\f$.
     *
     * \param phaseIdx The phase index
     */
    Scalar viscosity(int phaseIdx) const
    { return fluidState_.viscosity(phaseIdx); }

217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
    /*!
     * \brief Returns the effective mobility of a given phase within
     *        the control volume in \f$[s*m/kg]\f$.
     *
     * \param phaseIdx The phase index
     */
    Scalar mobility(int phaseIdx) const
    { return mobility_[phaseIdx]; }

    /*!
     * \brief Returns the average porosity within the control volume in \f$[-]\f$.
     */
    Scalar porosity() const
    { return porosity_; }

protected:
    static Scalar temperature_(const PrimaryVariables &priVars,
                               const Problem& problem,
                               const Element &element,
236
                               const SubControlVolume &scv)
237
    {
238
        return problem.temperatureAtPos(scv.dofPosition());
239
240
241
242
243
    }

    template<class ParameterCache>
    static Scalar enthalpy_(const FluidState& fluidState,
                            const ParameterCache& paramCache,
244
                            const int phaseIdx)
245
246
247
248
249
    {
        return 0;
    }

    /*!
250
     * \brief Called by update() to compute the energy related quantities.
251
252
253
254
     */
    void updateEnergy_(const PrimaryVariables &sol,
                       const Problem &problem,
                       const Element &element,
255
                       const SubControlVolume& scv)
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
    { }

    FluidState fluidState_;
    Scalar porosity_;
    Scalar mobility_[numPhases];

private:
    Implementation &asImp_()
    { return *static_cast<Implementation*>(this); }

    const Implementation &asImp_() const
    { return *static_cast<const Implementation*>(this); }
};

}

#endif