heterogeneousproblemni.hh 20.9 KB
Newer Older
1
2
3
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
4
 *   See the file COPYING for full copying permissions.                      *
5
6
7
8
9
10
11
12
 *                                                                           *
 *   This program is free software: you can redistribute it and/or modify    *
 *   it under the terms of the GNU General Public License as published by    *
 *   the Free Software Foundation, either version 2 of the License, or       *
 *   (at your option) any later version.                                     *
 *                                                                           *
 *   This program is distributed in the hope that it will be useful,         *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of          *
13
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the            *
14
15
16
17
18
19
20
21
 *   GNU General Public License for more details.                            *
 *                                                                           *
 *   You should have received a copy of the GNU General Public License       *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.   *
 *****************************************************************************/
/*!
 * \file
 *
22
 * \brief Definition of a problem, where CO2 is injected in a reservoir.
23
24
25
26
27
28
 */
#ifndef DUMUX_HETEROGENEOUS_NI_PROBLEM_NI_HH
#define DUMUX_HETEROGENEOUS_NI_PROBLEM_NI_HH

#if HAVE_ALUGRID
#include <dune/grid/alugrid/2d/alugrid.hh>
29
30
#elif HAVE_DUNE_ALUGRID
#include <dune/alugrid/grid.hh>
31
#else
Christoph Grueninger's avatar
[co2ni]    
Christoph Grueninger committed
32
#warning ALUGrid is necessary for this test.
33
34
#endif

35
36
#include <dumux/implicit/2p2c/2p2cmodel.hh>
#include <dumux/implicit/co2/co2volumevariables.hh>
37
#include <dumux/implicit/co2/co2model.hh>
38
#include <dumux/material/fluidsystems/brineco2fluidsystem.hh>
39
#include <dumux/implicit/common/implicitporousmediaproblem.hh>
40
#include <dumux/implicit/box/intersectiontovertexbc.hh>
41
#include <test/implicit/co2/heterogeneousspatialparameters.hh>
42
43
44
45
46
47
48
49
50

#include "heterogeneousco2tables.hh"

#define ISOTHERMAL 0

namespace Dumux
{

template <class TypeTag>
51
class HeterogeneousNIProblem;
52
53
54

namespace Properties
{
55
56
57
NEW_TYPE_TAG(HeterogeneousNIProblem, INHERITS_FROM(TwoPTwoCNI, HeterogeneousSpatialParams));
NEW_TYPE_TAG(HeterogeneousNIBoxProblem, INHERITS_FROM(BoxModel, HeterogeneousNIProblem));
NEW_TYPE_TAG(HeterogeneousNICCProblem, INHERITS_FROM(CCModel, HeterogeneousNIProblem));
58
59
60


// Set the grid type
61
#if HAVE_ALUGRID || HAVE_DUNE_ALUGRID
62
SET_TYPE_PROP(HeterogeneousNIProblem, Grid, Dune::ALUGrid<2, 2, Dune::cube, Dune::nonconforming>);
63
#else
64
SET_TYPE_PROP(HeterogeneousNIProblem, Grid, Dune::YaspGrid<2>);
65
66
67
#endif

// Set the problem property
68
SET_PROP(HeterogeneousNIProblem, Problem)
69
{
70
    typedef Dumux::HeterogeneousNIProblem<TypeTag> type;
71
72
73
};

// Set fluid configuration
74
SET_PROP(HeterogeneousNIProblem, FluidSystem)
75
76
77
78
79
{
    typedef Dumux::BrineCO2FluidSystem<TypeTag> type;
};

// Set the CO2 table to be used; in this case not the the default table
80
SET_TYPE_PROP(HeterogeneousNIProblem, CO2Table, Dumux::Heterogeneous::CO2Tables);
81
// Set the salinity mass fraction of the brine in the reservoir
82
SET_SCALAR_PROP(HeterogeneousNIProblem, ProblemSalinity, 1e-1);
83
84

//! the CO2 Model and VolumeVariables properties
85
SET_TYPE_PROP(HeterogeneousNIProblem, IsothermalVolumeVariables, CO2VolumeVariables<TypeTag>);
86
SET_TYPE_PROP(HeterogeneousNIProblem, IsothermalModel, CO2Model<TypeTag>);
87

88
// Use Moles
89
SET_BOOL_PROP(HeterogeneousNIProblem, UseMoles, false);
90
91
92
93
94
}


/*!
 * \ingroup CO2NIModel
95
 * \ingroup ImplicitTestProblems
96
 * \brief Definition of a problem, where CO2 is injected in a reservoir.
97
98
99
100
101
102
103
104
105
106
107
108
109
 *
 * The domain is sized 200m times 100m and consists of four layers, a
 * permeable reservoir layer at the bottom, a barrier rock layer with reduced permeability followed by another reservoir layer
 * and at the top a barrier rock layer with a very low permeablility.
 *
 * CO2 is injected at the permeable bottom layer
 * from the left side. The domain is initially filled with brine.
 *
 * The grid is unstructered and permeability and porosity for the elements are read in from the grid file. The grid file
 * also contains so-called boundary ids which can be used assigned during the grid creation in order to differentiate
 * between different parts of the boundary.
 * These boundary ids can be imported into the problem where the boundary conditions can then be assigned accordingly.
 *
110
111
112
 * The model is able to use either mole or mass fractions. The property useMoles can be set to either true or false in the
 * problem file. Make sure that the according units are used in the problem setup. The default setting for useMoles is false.
 *
113
114
 * To run the simulation execute the following line in shell (works with the box and cell centered spatial discretization method):
 * <tt>./test_ccco2ni </tt> or <tt>./test_boxco2ni </tt>
115
 */
116
template <class TypeTag >
117
class HeterogeneousNIProblem : public ImplicitPorousMediaProblem<TypeTag>
118
{
119
    typedef ImplicitPorousMediaProblem<TypeTag> ParentType;
120
121
122
123
124
125
126
127

    typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
    typedef typename GET_PROP_TYPE(TypeTag, Grid) Grid;
    typedef Dune::GridPtr<Grid> GridPointer;
    typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
    typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
    typedef typename GET_PROP_TYPE(TypeTag, VolumeVariables) VolumeVariables;

128
129
    static const bool useMoles = GET_PROP_VALUE(TypeTag, UseMoles);

130
131
132
133
134
135
136
    enum {
        // Grid and world dimension
        dim = GridView::dimension,
        dimWorld = GridView::dimensionworld
    };

    // copy some indices for convenience
137
    typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
    enum {
        lPhaseIdx = Indices::wPhaseIdx,
        gPhaseIdx = Indices::nPhaseIdx,


        BrineIdx = FluidSystem::BrineIdx,
        CO2Idx = FluidSystem::CO2Idx,

        conti0EqIdx = Indices::conti0EqIdx,
        contiCO2EqIdx = conti0EqIdx + CO2Idx,
#if !ISOTHERMAL
        temperatureIdx = CO2Idx +1,
        energyEqIdx = contiCO2EqIdx +1,
#endif

    };


    typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
    typedef typename GET_PROP_TYPE(TypeTag, BoundaryTypes) BoundaryTypes;
    typedef typename GET_PROP_TYPE(TypeTag, TimeManager) TimeManager;

    typedef typename GridView::template Codim<0>::Entity Element;
    typedef typename GridView::template Codim<0>::Iterator ElementIterator;
    typedef typename GridView::template Codim<dim>::Entity Vertex;
    typedef typename GridView::Intersection Intersection;

    typedef typename GET_PROP_TYPE(TypeTag, FVElementGeometry) FVElementGeometry;
    typedef typename GET_PROP_TYPE(TypeTag, GridCreator) GridCreator;

    typedef Dune::FieldVector<Scalar, dimWorld> GlobalPosition;
    typedef typename GET_PROP_TYPE(TypeTag, PTAG(CO2Table)) CO2Table;
    typedef Dumux::CO2<Scalar, CO2Table> CO2;
171
172
    enum { isBox = GET_PROP_VALUE(TypeTag, ImplicitIsBox) };
    enum { dofCodim = isBox ? dim : 0 };
173
174
175
176
177
178
179
180

public:
    /*!
     * \brief The constructor
     *
     * \param timeManager The time manager
     * \param gridView The grid view
     */
181
    HeterogeneousNIProblem(TimeManager &timeManager,
182
                     const GridView &gridView)
183
        : ParentType(timeManager, GridCreator::grid().leafGridView()),
184
185
186
187
188
189
          //Boundary Id Setup:
          injectionTop_ (1),
          injectionBottom_(2),
          dirichletBoundary_(3),
          noFlowBoundary_(4),
          intersectionToVertexBC_(*this)
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
    {
        try
        {
            nTemperature_       = GET_RUNTIME_PARAM(TypeTag, int, FluidSystem.NTemperature);
            nPressure_          = GET_RUNTIME_PARAM(TypeTag, int, FluidSystem.NPressure);
            pressureLow_        = GET_RUNTIME_PARAM(TypeTag, Scalar, FluidSystem.PressureLow);
            pressureHigh_       = GET_RUNTIME_PARAM(TypeTag, Scalar, FluidSystem.PressureHigh);
            temperatureLow_     = GET_RUNTIME_PARAM(TypeTag, Scalar, FluidSystem.TemperatureLow);
            temperatureHigh_    = GET_RUNTIME_PARAM(TypeTag, Scalar, FluidSystem.TemperatureHigh);
            depthBOR_           = GET_RUNTIME_PARAM(TypeTag, Scalar, Problem.DepthBOR);
            name_               = GET_RUNTIME_PARAM(TypeTag, std::string, Problem.Name);
            injectionRate_      = GET_RUNTIME_PARAM(TypeTag, Scalar, Problem.InjectionRate);
            injectionPressure_ = GET_RUNTIME_PARAM(TypeTag, Scalar, Problem.InjectionPressure);
            injectionTemperature_ = GET_RUNTIME_PARAM(TypeTag, Scalar, Problem.InjectionTemperature);
        }
        catch (Dumux::ParameterException &e) {
            std::cerr << e << ". Abort!\n";
            exit(1) ;
        }
        catch (...) {
            std::cerr << "Unknown exception thrown!\n";
            exit(1);
        }

        /* Alternative syntax:
         * typedef typename GET_PROP(TypeTag, ParameterTree) ParameterTree;
         * const Dune::ParameterTree &tree = ParameterTree::tree();
         * nTemperature_       = tree.template get<int>("FluidSystem.nTemperature");
         *
         * + We see what we do
         * - Reporting whether it was used does not work
         * - Overwriting on command line not possible
        */

        GridPointer *gridPtr = &GridCreator::gridPtr();
        this->spatialParams().setParams(gridPtr);



        eps_ = 1e-6;

        // initialize the tables of the fluid system
        //FluidSystem::init();
        FluidSystem::init(/*Tmin=*/temperatureLow_,
                          /*Tmax=*/temperatureHigh_,
                          /*nT=*/nTemperature_,
                          /*pmin=*/pressureLow_,
                          /*pmax=*/pressureHigh_,
                          /*np=*/nPressure_);
239
240
241
242
243
244
245
246
247
248

        //stateing in the console whether mole or mass fractions are used
        if(!useMoles)
        {
        	std::cout<<"problem uses mass-fractions"<<std::endl;
        }
        else
        {
        	std::cout<<"problem uses mole-fractions"<<std::endl;
        }
249
250
251
    }

    /*!
252
253
254
     * \brief User defined output after the time integration
     *
     * Will be called diretly after the time integration.
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
     */
    void postTimeStep()
    {
        // Calculate storage terms
        PrimaryVariables storageL, storageG;
        this->model().globalPhaseStorage(storageL, lPhaseIdx);
        this->model().globalPhaseStorage(storageG, gPhaseIdx);

        // Write mass balance information for rank 0
        if (this->gridView().comm().rank() == 0) {
            std::cout<<"Storage: liquid=[" << storageL << "]"
                     << " gas=[" << storageG << "]\n";
        }
    }

270
    /*!
271
272
273
     * \brief Append all quantities of interest which can be derived
     *        from the solution of the current time step to the VTK
     *        writer.
274
     */
275
276
277
    void addOutputVtkFields()
        {
            typedef Dune::BlockVector<Dune::FieldVector<double, 1> > ScalarField;
278
279
280
281

            // get the number of degrees of freedom
            unsigned numDofs = this->model().numDofs();
            unsigned numElements = this->gridView().size(0);
282
283

            //create required scalar fields
284
285
286
287
288
            ScalarField *Kxx = this->resultWriter().allocateManagedBuffer(numElements);
            ScalarField *cellPorosity = this->resultWriter().allocateManagedBuffer(numElements);
            ScalarField *boxVolume = this->resultWriter().allocateManagedBuffer(numDofs);
            ScalarField *enthalpyW = this->resultWriter().allocateManagedBuffer(numDofs);
            ScalarField *enthalpyN = this->resultWriter().allocateManagedBuffer(numDofs);
289
290
291
            (*boxVolume) = 0;

            //Fill the scalar fields with values
292

293
294
            ScalarField *rank = this->resultWriter().allocateManagedBuffer(numElements);

295
            FVElementGeometry fvGeometry;
296
297
            VolumeVariables volVars;

298
299
300
            ElementIterator eIt = this->gridView().template begin<0>();
            ElementIterator eEndIt = this->gridView().template end<0>();
            for (; eIt != eEndIt; ++eIt)
301
            {
302
303
                int eIdx = this->elementMapper().map(*eIt);
                (*rank)[eIdx] = this->gridView().comm().rank();
304
                fvGeometry.update(this->gridView(), *eIt);
305
306


307
                for (int scvIdx = 0; scvIdx < fvGeometry.numScv; ++scvIdx)
308
                {
309
310
                    int dofIdxGlobal = this->model().dofMapper().map(*eIt, scvIdx, dofCodim);
                    volVars.update(this->model().curSol()[dofIdxGlobal],
311
                                   *this,
312
                                   *eIt,
313
314
                                   fvGeometry,
                                   scvIdx,
315
                                   false);
316
317
318
                    (*boxVolume)[dofIdxGlobal] += fvGeometry.subContVol[scvIdx].volume;
                    (*enthalpyW)[dofIdxGlobal] = volVars.enthalpy(lPhaseIdx);
                    (*enthalpyN)[dofIdxGlobal] = volVars.enthalpy(gPhaseIdx);
319
                }
320
321
                (*Kxx)[eIdx] = this->spatialParams().intrinsicPermeability(*eIt, fvGeometry, /*element data*/ 0);
                (*cellPorosity)[eIdx] = this->spatialParams().porosity(*eIt, fvGeometry, /*element data*/ 0);
322
323
324
            }

            //pass the scalar fields to the vtkwriter
325
326
327
328
329
            this->resultWriter().attachDofData(*boxVolume, "boxVolume", isBox);
            this->resultWriter().attachDofData(*Kxx, "Kxx", false); //element data
            this->resultWriter().attachDofData(*cellPorosity, "cellwisePorosity", false); //element data
            this->resultWriter().attachDofData(*enthalpyW, "enthalpyW", isBox);
            this->resultWriter().attachDofData(*enthalpyN, "enthalpyN", isBox);
330
331
332
333
334
335
336
337
338
339
340

        }

    /*!
     * \brief The problem name.
     *
     * This is used as a prefix for files generated by the simulation.
     */
    const std::string name() const
    { return name_; }

341
#if ISOTHERMAL
342
343
344
    /*!
     * \brief Returns the temperature within the domain.
     *
345
346
347
348
     * \param globalPos The position
     *
     * This problem assumes a geothermal gradient with 
     * a surface temperature of 10 degrees Celsius.
349
     */
350
    Scalar temperatureAtPos(const GlobalPosition &globalPos) const
351
352
    {
        return temperature_(globalPos);
353
    }
354
#endif
355

356
    /*!
357
     * \brief Returns the source term
358
     *
359
360
     * \param values Stores the source values for the conservation equations in
     *               \f$ [ \textnormal{unit of primary variable} / (m^\textrm{dim} \cdot s )] \f$
361
     * \param globalPos The global position
362
363
364
365
366
367
     *
     * Depending on whether useMoles is set on true or false, the flux has to be given either in
     * kg/(m^3*s) or mole/(m^3*s) in the input file!!
     *
     * Note that the energy balance is always calculated in terms of specific enthalpies [J/kg]
     * and that the Neumann fluxes have to be specified accordingly.
368
     */
369
370
371
372
373
374
375
376
377
    void sourceAtPos(PrimaryVariables &values,
                const GlobalPosition &globalPos) const
    {
        values = 0;
    }

    /*!
     * \name Boundary conditions
     */
378

379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
    /*!
     * \brief Specifies which kind of boundary condition should be
     *        used for which equation on a given boundary segment.
     *
     * \param values The boundary types for the conservation equations
     * \param vertex The vertex for which the boundary type is set
     */

    void boundaryTypes(BoundaryTypes &values, const Vertex &vertex) const
    {
        intersectionToVertexBC_.boundaryTypes(values, vertex);
    }

    /*!
     * \brief Specifies which kind of boundary condition should be
     *        used for which equation on a given boundary segment.
     *
     * \param values The boundary types for the conservation equations
397
     * \param intersection specifies the intersection at which boundary
398
     *           condition is to set
399
     */
400
    void boundaryTypes(BoundaryTypes &values, const Intersection &intersection) const
401
    {
402
        int boundaryId = intersection.boundaryId();
403
404
405
406
407
408
409
410
411
412
413
        if (boundaryId < 1 || boundaryId > 4)
        {
            std::cout<<"invalid boundaryId: "<<boundaryId<<std::endl;
            DUNE_THROW(Dune::InvalidStateException, "Invalid " << boundaryId);
        }
        if (boundaryId == dirichletBoundary_)
            values.setAllDirichlet();
        else
            values.setAllNeumann();
    }

414
    /*!
415
416
     * \brief Evaluates the boundary conditions for a Dirichlet
     *        boundary segment
417
     *
418
419
     * \param values Stores the Dirichlet values for the conservation equations in
     *               \f$ [ \textnormal{unit of primary variable} ] \f$
420
421
422
423
424
425
     * \param globalPos The global position
     */
    void dirichletAtPos(PrimaryVariables &values, const GlobalPosition &globalPos) const
    {
        initial_(values, globalPos);
    }
426

427
    /*!
428
     * \brief Evaluate the boundary conditions for a Neumann
429
430
     *        boundary segment.
     *
431
432
      * \param values Stores the Neumann values for the conservation equations in
     *               \f$ [ \textnormal{unit of conserved quantity} / (m^(dim-1) \cdot s )] \f$
433
     * \param element The finite element
434
     * \param fvGeometry The finite volume geometry of the element
435
     * \param intersection The intersection between element and boundary
436
     * \param scvIdx The local index of the sub-control volume
437
438
     * \param boundaryFaceIdx The index of the boundary face
     *
439
440
     * The \a values store the mass flux of each phase normal to the boundary.
     * Negative values indicate an inflow.
441
442
443
     *
     * Depending on whether useMoles is set on true or false, the flux has to be given either in
     * kg/(m^2*s) or mole/(m^2*s) in the input file!!
444
445
446
     */
    void neumann(PrimaryVariables &values,
                 const Element &element,
447
                 const FVElementGeometry &fvGeometry,
448
                 const Intersection &intersection,
449
450
451
                 int scvIdx,
                 int boundaryFaceIdx) const
    {
452
        int boundaryId = intersection.boundaryId();
453
454
455
456

        values = 0;
        if (boundaryId == injectionBottom_)
        {
457
            values[contiCO2EqIdx] = -injectionRate_; ///FluidSystem::molarMass(CO2Idx); // kg/(s*m^2) or mole/(m^2*s) !!
458
#if !ISOTHERMAL
459
460
            values[energyEqIdx] = -injectionRate_/*kg/(m^2 s)*/*CO2::gasEnthalpy(
                                    injectionTemperature_, injectionPressure_)/*J/kg*/; // W/(m^2)
461
462
463
464
465
466
467
468
469
470
471
472
#endif
        }
    }

    // \}

    /*!
     * \name Volume terms
     */
    // \{

    /*!
473
     * \brief Evaluates the initial values for a control volume
474
     *
475
476
477
     * \param values Stores the initial values for the conservation equations in
     *               \f$ [ \textnormal{unit of primary variables} ] \f$
     * \param globalPos The global position
478
     */
479
480
    void initialAtPos(PrimaryVariables &values,
                      const GlobalPosition &globalPos) const
481
482
483
484
485
    {
        initial_(values, globalPos);
    }

    /*!
486
     * \brief Returns the initial phase state for a control volume.
487
     *
488
     * \param vertex The vertex
489
     * \param vIdxGlobal The global index of the vertex
490
491
     * \param globalPos The global position
     */
492
    int initialPhasePresence(const Vertex &vertex,
493
                             int &vIdxGlobal,
494
                             const GlobalPosition &globalPos) const
495
    { return Indices::wPhaseOnly; }
496
497
498
499

    // \}

private:
500
501
502
503
504
505
506
507
508
    /*!
     * \brief Evaluates the initial values for a control volume
     *
     * The internal method for the initial condition
     *
     * \param values Stores the initial values for the conservation equations in
     *               \f$ [ \textnormal{unit of primary variables} ] \f$
     * \param globalPos The global position
     */
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
    void initial_(PrimaryVariables &values,
                  const GlobalPosition &globalPos) const
    {
        Scalar temp = temperature_(globalPos);
        Scalar densityW = FluidSystem::Brine::liquidDensity(temp, 1e7);

        Scalar pl =  1e5 - densityW*this->gravity()[dim-1]*(depthBOR_ - globalPos[dim-1]);
        Scalar moleFracLiquidCO2 = 0.00;
        Scalar moleFracLiquidBrine = 1.0 - moleFracLiquidCO2;

        Scalar meanM =
            FluidSystem::molarMass(BrineIdx)*moleFracLiquidBrine +
            FluidSystem::molarMass(CO2Idx)*moleFracLiquidCO2;

        Scalar massFracLiquidCO2 = moleFracLiquidCO2*FluidSystem::molarMass(CO2Idx)/meanM;

        values[Indices::pressureIdx] = pl;
        values[Indices::switchIdx] = massFracLiquidCO2;
#if !ISOTHERMAL
            values[temperatureIdx] = temperature_(globalPos); //K
#endif


    }

    Scalar temperature_(const GlobalPosition globalPos) const
    {
536
        Scalar T = 283.0 + (depthBOR_ - globalPos[dim-1])*0.03; 
537
        return T;
538
    }
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

    Scalar depthBOR_;
    Scalar injectionRate_;
    Scalar injectionPressure_;
    Scalar injectionTemperature_;
    Scalar eps_;

    int nTemperature_;
    int nPressure_;

    std::string name_ ;

    Scalar pressureLow_, pressureHigh_;
    Scalar temperatureLow_, temperatureHigh_;

    int injectionTop_;
    int injectionBottom_;
    int dirichletBoundary_;
    int noFlowBoundary_;

    const IntersectionToVertexBC<TypeTag> intersectionToVertexBC_;
};
} //end namespace

#endif