volumevariables.hh 11.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
 *   See the file COPYING for full copying permissions.                      *
 *                                                                           *
 *   This program is free software: you can redistribute it and/or modify    *
 *   it under the terms of the GNU General Public License as published by    *
 *   the Free Software Foundation, either version 2 of the License, or       *
 *   (at your option) any later version.                                     *
 *                                                                           *
 *   This program is distributed in the hope that it will be useful,         *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of          *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the            *
 *   GNU General Public License for more details.                            *
 *                                                                           *
 *   You should have received a copy of the GNU General Public License       *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.   *
 *****************************************************************************/
/*!
 * \file
21
 * \ingroup TwoPModel
22
23
24
25
26
27
 * \brief Contains the quantities which are constant within a
 *        finite volume in the two-phase model.
 */
#ifndef DUMUX_2P_VOLUME_VARIABLES_HH
#define DUMUX_2P_VOLUME_VARIABLES_HH

28
#include <dumux/porousmediumflow/volumevariables.hh>
29
30
#include <dumux/porousmediumflow/nonisothermal/volumevariables.hh>

31
#include "indices.hh"
32

33
34
namespace Dumux {

35
36
37
38
39
/*!
 * \ingroup TwoPModel
 * \brief Contains the quantities which are are constant within a
 *        finite volume in the two-phase model.
 */
40
41
template <class Traits>
class TwoPVolumeVariables
42
43
: public PorousMediumFlowVolumeVariables<Traits>
 ,public EnergyVolumeVariables<Traits, TwoPVolumeVariables<Traits> >
44
{
45
46
    using ParentType = PorousMediumFlowVolumeVariables<Traits>;
    using EnergyVolVars = EnergyVolumeVariables<Traits, TwoPVolumeVariables<Traits> >;
47
48
49
50
    using PermeabilityType = typename Traits::PermeabilityType;
    using ModelTraits = typename Traits::ModelTraits;
    using Indices = typename ModelTraits::Indices;
    using Scalar = typename Traits::PrimaryVariables::value_type;
51
    using FS = typename Traits::FluidSystem;
52
    static constexpr int numComp = ParentType::numComponents();
53
54
    enum
    {
55
56
        pressureIdx = Indices::pressureIdx,
        saturationIdx = Indices::saturationIdx,
57
58
59

        phase0Idx = FS::phase0Idx,
        phase1Idx = FS::phase1Idx
60
61
    };

62
    static constexpr auto formulation = ModelTraits::priVarFormulation();
63

64
public:
65
66
67
68
    //! export type of fluid system
    using FluidSystem = typename Traits::FluidSystem;
    //! export type of fluid state
    using FluidState = typename Traits::FluidState;
69
70
71
72
    //! export type of solid state
    using SolidState = typename Traits::SolidState;
    //! export type of solid system
    using SolidSystem = typename Traits::SolidSystem;
73
74

    /*!
75
76
77
78
79
80
81
82
     * \brief Update all quantities for a given control volume
     *
     * \param elemSol A vector containing all primary variables connected to the element
     * \param problem The object specifying the problem which ought to
     *                be simulated
     * \param element An element which contains part of the control volume
     * \param scv The sub control volume
    */
83
84
    template<class ElemSol, class Problem, class Element, class Scv>
    void update(const ElemSol &elemSol,
85
86
                const Problem &problem,
                const Element &element,
87
                const Scv& scv)
88
    {
89
        ParentType::update(elemSol, problem, element, scv);
90

91
        completeFluidState(elemSol, problem, element, scv, fluidState_, solidState_);
92

93
        using MaterialLaw = typename Problem::SpatialParams::MaterialLaw;
94
        const auto& materialParams = problem.spatialParams().materialLawParams(element, scv, elemSol);
95

96
97
98
        const int wPhaseIdx = problem.spatialParams().template wettingPhase<FluidSystem>(element, scv, elemSol);
        const int nPhaseIdx = 1 - wPhaseIdx;

99
100
101
102
103
104
105
106
        mobility_[wPhaseIdx] =
            MaterialLaw::krw(materialParams, fluidState_.saturation(wPhaseIdx))
            / fluidState_.viscosity(wPhaseIdx);

        mobility_[nPhaseIdx] =
            MaterialLaw::krn(materialParams, fluidState_.saturation(wPhaseIdx))
            / fluidState_.viscosity(nPhaseIdx);

107
108
109
110
111
        // porosity calculation over inert volumefraction
        updateSolidVolumeFractions(elemSol, problem, element, scv, solidState_, numComp);
        EnergyVolVars::updateSolidEnergyParams(elemSol, problem, element, scv, solidState_);
        Scalar minPorosity = problem.spatialParams().minimalPorosity(element, scv);
        solidState_.setMinPorosity(minPorosity);
112
        permeability_ = problem.spatialParams().permeability(element, scv, elemSol);
113
   }
114
115

    /*!
116
117
118
119
120
121
122
123
124
     * \brief Complete the fluid state
     *
     * \param elemSol A vector containing all primary variables connected to the element
     * \param problem The problem
     * \param element The element
     * \param scv The sub control volume
     * \param fluidState The fluid state
     *
     * Set temperature, saturations, capillary pressures, viscosities, densities and enthalpies.
125
     */
126
    template<class ElemSol, class Problem, class Element, class Scv>
127
128
129
130
    void completeFluidState(const ElemSol& elemSol,
                            const Problem& problem,
                            const Element& element,
                            const Scv& scv,
131
132
                            FluidState& fluidState,
                            SolidState& solidState)
133
    {
134
        EnergyVolVars::updateTemperature(elemSol, problem, element, scv, fluidState, solidState);
135

136
        using MaterialLaw = typename Problem::SpatialParams::MaterialLaw;
137
        const auto& materialParams = problem.spatialParams().materialLawParams(element, scv, elemSol);
138
        const auto& priVars = ParentType::extractDofPriVars(elemSol, scv);
139

140
141
142
143
        const int wPhaseIdx = problem.spatialParams().template wettingPhase<FluidSystem>(element, scv, elemSol);
        if (formulation == TwoPFormulation::p0s1)
        {
            fluidState.setPressure(phase0Idx, priVars[pressureIdx]);
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
            if (wPhaseIdx == phase1Idx)
            {
                fluidState.setSaturation(phase1Idx, priVars[saturationIdx]);
                fluidState.setSaturation(phase0Idx, 1 - priVars[saturationIdx]);
                pc_ = MaterialLaw::pc(materialParams, fluidState.saturation(wPhaseIdx));
                fluidState.setPressure(phase1Idx, priVars[pressureIdx] - pc_);
            }
            else
            {
                const auto Sn = Traits::SaturationReconstruction::reconstructSn(problem.spatialParams(), element,
                                                                                scv, elemSol, priVars[saturationIdx]);
                fluidState.setSaturation(phase1Idx, Sn);
                fluidState.setSaturation(phase0Idx, 1 - Sn);
                pc_ = MaterialLaw::pc(materialParams, fluidState.saturation(wPhaseIdx));
                fluidState.setPressure(phase1Idx, priVars[pressureIdx] + pc_);
            }
160
        }
161
162
163
        else if (formulation == TwoPFormulation::p1s0)
        {
            fluidState.setPressure(phase1Idx, priVars[pressureIdx]);
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
            if (wPhaseIdx == phase1Idx)
            {
                const auto Sn = Traits::SaturationReconstruction::reconstructSn(problem.spatialParams(), element,
                                                                                scv, elemSol, priVars[saturationIdx]);
                fluidState.setSaturation(phase0Idx, Sn);
                fluidState.setSaturation(phase1Idx, 1 - Sn);
                pc_ = MaterialLaw::pc(materialParams, fluidState.saturation(wPhaseIdx));
                fluidState.setPressure(phase0Idx, priVars[pressureIdx] + pc_);
            }
            else
            {
                fluidState.setSaturation(phase1Idx, priVars[saturationIdx]);
                fluidState.setSaturation(phase0Idx, 1 - priVars[saturationIdx]);
                pc_ = MaterialLaw::pc(materialParams, fluidState.saturation(wPhaseIdx));
                fluidState.setPressure(phase0Idx, priVars[pressureIdx] - pc_);
            }
180
181
182
183
184
        }

        typename FluidSystem::ParameterCache paramCache;
        paramCache.updateAll(fluidState);

185
        for (int phaseIdx = 0; phaseIdx < ModelTraits::numPhases(); ++phaseIdx) {
186
187
188
189
190
191
192
193
194
            // compute and set the viscosity
            Scalar mu = FluidSystem::viscosity(fluidState, paramCache, phaseIdx);
            fluidState.setViscosity(phaseIdx, mu);

            // compute and set the density
            Scalar rho = FluidSystem::density(fluidState, paramCache, phaseIdx);
            fluidState.setDensity(phaseIdx, rho);

            // compute and set the enthalpy
195
            Scalar h = EnergyVolVars::enthalpy(fluidState, paramCache, phaseIdx);
196
197
198
199
200
201
202
203
204
205
            fluidState.setEnthalpy(phaseIdx, h);
        }
    }

    /*!
     * \brief Returns the phase state for the control volume.
     */
    const FluidState &fluidState() const
    { return fluidState_; }

206
207
208
209
210
211
    /*!
     * \brief Returns the phase state for the control volume.
     */
    const SolidState &solidState() const
    { return solidState_; }

212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
    /*!
     * \brief Returns the saturation of a given phase within
     *        the control volume in \f$[-]\f$.
     *
     * \param phaseIdx The phase index
     */
    Scalar saturation(int phaseIdx) const
    { return fluidState_.saturation(phaseIdx); }

    /*!
     * \brief Returns the mass density of a given phase within the
     *        control volume in \f$[kg/m^3]\f$.
     *
     * \param phaseIdx The phase index
     */
    Scalar density(int phaseIdx) const
    { return fluidState_.density(phaseIdx); }

    /*!
     * \brief Returns the effective pressure of a given phase within
     *        the control volume in \f$[kg/(m*s^2)=N/m^2=Pa]\f$.
     *
     * \param phaseIdx The phase index
     */
    Scalar pressure(int phaseIdx) const
    { return fluidState_.pressure(phaseIdx); }

    /*!
     * \brief Returns the capillary pressure within the control volume
     * in \f$[kg/(m*s^2)=N/m^2=Pa]\f$.
     */
    Scalar capillaryPressure() const
244
    { return pc_; }
245
246
247
248
249
250
251
252
253
254
255
256

    /*!
     * \brief Returns temperature inside the sub-control volume
     * in \f$[K]\f$.
     *
     * Note that we assume thermodynamic equilibrium, i.e. the
     * temperature of the rock matrix and of all fluid phases are
     * identical.
     */
    Scalar temperature() const
    { return fluidState_.temperature(/*phaseIdx=*/0); }

257
258
259
260
261
262
263
264
265
    /*!
     * \brief Returns the dynamic viscosity of the fluid within the
     *        control volume in \f$\mathrm{[Pa s]}\f$.
     *
     * \param phaseIdx The phase index
     */
    Scalar viscosity(int phaseIdx) const
    { return fluidState_.viscosity(phaseIdx); }

266
267
268
269
270
271
272
273
274
275
276
277
278
    /*!
     * \brief Returns the effective mobility of a given phase within
     *        the control volume in \f$[s*m/kg]\f$.
     *
     * \param phaseIdx The phase index
     */
    Scalar mobility(int phaseIdx) const
    { return mobility_[phaseIdx]; }

    /*!
     * \brief Returns the average porosity within the control volume in \f$[-]\f$.
     */
    Scalar porosity() const
279
    { return solidState_.porosity(); }
280

281
282
283
    /*!
     * \brief Returns the permeability within the control volume in \f$[m^2]\f$.
     */
284
    const PermeabilityType& permeability() const
285
286
    { return permeability_; }

287
288
protected:
    FluidState fluidState_;
289
    SolidState solidState_;
290
291

private:
292
    Scalar pc_;
293
    Scalar porosity_;
294
    PermeabilityType permeability_;
295
    Scalar mobility_[ModelTraits::numPhases()];
296
297
};

298
} // end namespace Dumux
299
300

#endif