heterogeneousproblemni.hh 20.6 KB
Newer Older
1
2
3
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
4
 *   See the file COPYING for full copying permissions.                      *
5
6
7
8
9
10
11
12
 *                                                                           *
 *   This program is free software: you can redistribute it and/or modify    *
 *   it under the terms of the GNU General Public License as published by    *
 *   the Free Software Foundation, either version 2 of the License, or       *
 *   (at your option) any later version.                                     *
 *                                                                           *
 *   This program is distributed in the hope that it will be useful,         *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of          *
13
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the            *
14
15
16
17
18
19
20
21
 *   GNU General Public License for more details.                            *
 *                                                                           *
 *   You should have received a copy of the GNU General Public License       *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.   *
 *****************************************************************************/
/*!
 * \file
 *
22
 * \brief Definition of a problem, where CO2 is injected in a reservoir.
23
 */
24
25
#ifndef DUMUX_HETEROGENEOUS_PROBLEM_NI_HH
#define DUMUX_HETEROGENEOUS_PROBLEM_NI_HH
26
27
28

#if HAVE_ALUGRID
#include <dune/grid/alugrid/2d/alugrid.hh>
29
30
#elif HAVE_DUNE_ALUGRID
#include <dune/alugrid/grid.hh>
31
#else
Christoph Grueninger's avatar
[co2ni]    
Christoph Grueninger committed
32
#warning ALUGrid is necessary for this test.
33
#include <dune/grid/io/file/dgfparser/dgfyasp.hh>
34
35
#endif

36
#include <dumux/implicit/co2/co2volumevariables.hh>
37
#include <dumux/implicit/co2/co2model.hh>
38
#include <dumux/material/fluidsystems/brineco2fluidsystem.hh>
39
#include <dumux/implicit/common/implicitporousmediaproblem.hh>
40
#include <dumux/implicit/box/intersectiontovertexbc.hh>
41

42
#include "heterogeneousspatialparameters.hh"
43
44
45
46
47
48
#include "heterogeneousco2tables.hh"

namespace Dumux
{

template <class TypeTag>
49
class HeterogeneousNIProblem;
50
51
52

namespace Properties
{
53
54
55
NEW_TYPE_TAG(HeterogeneousNIProblem, INHERITS_FROM(TwoPTwoCNI, HeterogeneousSpatialParams));
NEW_TYPE_TAG(HeterogeneousNIBoxProblem, INHERITS_FROM(BoxModel, HeterogeneousNIProblem));
NEW_TYPE_TAG(HeterogeneousNICCProblem, INHERITS_FROM(CCModel, HeterogeneousNIProblem));
56
57
58


// Set the grid type
59
#if HAVE_ALUGRID || HAVE_DUNE_ALUGRID
60
SET_TYPE_PROP(HeterogeneousNIProblem, Grid, Dune::ALUGrid<2, 2, Dune::cube, Dune::nonconforming>);
61
#else
62
SET_TYPE_PROP(HeterogeneousNIProblem, Grid, Dune::YaspGrid<2>);
63
64
65
#endif

// Set the problem property
66
SET_TYPE_PROP(HeterogeneousNIProblem, Problem, Dumux::HeterogeneousNIProblem<TypeTag>);
67
68

// Set fluid configuration
69
SET_TYPE_PROP(HeterogeneousNIProblem, FluidSystem, Dumux::BrineCO2FluidSystem<TypeTag>);
70
71

// Set the CO2 table to be used; in this case not the the default table
72
SET_TYPE_PROP(HeterogeneousNIProblem, CO2Table, Dumux::HeterogeneousCO2Tables::CO2Tables);
73

74
// Set the salinity mass fraction of the brine in the reservoir
75
SET_SCALAR_PROP(HeterogeneousNIProblem, ProblemSalinity, 1e-1);
76
77

//! the CO2 Model and VolumeVariables properties
78
SET_TYPE_PROP(HeterogeneousNIProblem, IsothermalVolumeVariables, CO2VolumeVariables<TypeTag>);
79
SET_TYPE_PROP(HeterogeneousNIProblem, IsothermalModel, CO2Model<TypeTag>);
80

81
// Use Moles
82
SET_BOOL_PROP(HeterogeneousNIProblem, UseMoles, false);
83
84
85
86
87
}


/*!
 * \ingroup CO2NIModel
88
 * \ingroup ImplicitTestProblems
89
 * \brief Definition of a problem, where CO2 is injected in a reservoir.
90
91
92
93
94
95
96
97
98
99
100
101
102
 *
 * The domain is sized 200m times 100m and consists of four layers, a
 * permeable reservoir layer at the bottom, a barrier rock layer with reduced permeability followed by another reservoir layer
 * and at the top a barrier rock layer with a very low permeablility.
 *
 * CO2 is injected at the permeable bottom layer
 * from the left side. The domain is initially filled with brine.
 *
 * The grid is unstructered and permeability and porosity for the elements are read in from the grid file. The grid file
 * also contains so-called boundary ids which can be used assigned during the grid creation in order to differentiate
 * between different parts of the boundary.
 * These boundary ids can be imported into the problem where the boundary conditions can then be assigned accordingly.
 *
103
104
105
 * The model is able to use either mole or mass fractions. The property useMoles can be set to either true or false in the
 * problem file. Make sure that the according units are used in the problem setup. The default setting for useMoles is false.
 *
106
107
 * To run the simulation execute the following line in shell (works with the box and cell centered spatial discretization method):
 * <tt>./test_ccco2ni </tt> or <tt>./test_boxco2ni </tt>
108
 */
109
template <class TypeTag >
110
class HeterogeneousNIProblem : public ImplicitPorousMediaProblem<TypeTag>
111
{
112
    typedef ImplicitPorousMediaProblem<TypeTag> ParentType;
113
114
115
116
117
118
119
120

    typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
    typedef typename GET_PROP_TYPE(TypeTag, Grid) Grid;
    typedef Dune::GridPtr<Grid> GridPointer;
    typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
    typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
    typedef typename GET_PROP_TYPE(TypeTag, VolumeVariables) VolumeVariables;

121
122
    static const bool useMoles = GET_PROP_VALUE(TypeTag, UseMoles);

123
124
125
126
127
128
129
    enum {
        // Grid and world dimension
        dim = GridView::dimension,
        dimWorld = GridView::dimensionworld
    };

    // copy some indices for convenience
130
    typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
131
132
133
134
135
136
137
138
139
140
141
    enum {
        lPhaseIdx = Indices::wPhaseIdx,
        gPhaseIdx = Indices::nPhaseIdx,


        BrineIdx = FluidSystem::BrineIdx,
        CO2Idx = FluidSystem::CO2Idx,

        conti0EqIdx = Indices::conti0EqIdx,
        contiCO2EqIdx = conti0EqIdx + CO2Idx,
#if !ISOTHERMAL
142
143
        temperatureIdx = Indices::temperatureIdx,
        energyEqIdx = Indices::energyEqIdx,
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
#endif

    };


    typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
    typedef typename GET_PROP_TYPE(TypeTag, BoundaryTypes) BoundaryTypes;
    typedef typename GET_PROP_TYPE(TypeTag, TimeManager) TimeManager;

    typedef typename GridView::template Codim<0>::Entity Element;
    typedef typename GridView::template Codim<0>::Iterator ElementIterator;
    typedef typename GridView::template Codim<dim>::Entity Vertex;
    typedef typename GridView::Intersection Intersection;

    typedef typename GET_PROP_TYPE(TypeTag, FVElementGeometry) FVElementGeometry;
    typedef typename GET_PROP_TYPE(TypeTag, GridCreator) GridCreator;

    typedef Dune::FieldVector<Scalar, dimWorld> GlobalPosition;
162
    typedef typename GET_PROP_TYPE(TypeTag, CO2Table) CO2Table;
163
    typedef Dumux::CO2<Scalar, CO2Table> CO2;
164
165
    enum { isBox = GET_PROP_VALUE(TypeTag, ImplicitIsBox) };
    enum { dofCodim = isBox ? dim : 0 };
166
167
168
169
170
171
172
173

public:
    /*!
     * \brief The constructor
     *
     * \param timeManager The time manager
     * \param gridView The grid view
     */
174
    HeterogeneousNIProblem(TimeManager &timeManager,
175
                     const GridView &gridView)
176
        : ParentType(timeManager, GridCreator::grid().leafGridView()),
177
          //Boundary Id Setup:
178
          injectionTop_(1),
179
180
181
182
          injectionBottom_(2),
          dirichletBoundary_(3),
          noFlowBoundary_(4),
          intersectionToVertexBC_(*this)
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
    {
            nTemperature_       = GET_RUNTIME_PARAM(TypeTag, int, FluidSystem.NTemperature);
            nPressure_          = GET_RUNTIME_PARAM(TypeTag, int, FluidSystem.NPressure);
            pressureLow_        = GET_RUNTIME_PARAM(TypeTag, Scalar, FluidSystem.PressureLow);
            pressureHigh_       = GET_RUNTIME_PARAM(TypeTag, Scalar, FluidSystem.PressureHigh);
            temperatureLow_     = GET_RUNTIME_PARAM(TypeTag, Scalar, FluidSystem.TemperatureLow);
            temperatureHigh_    = GET_RUNTIME_PARAM(TypeTag, Scalar, FluidSystem.TemperatureHigh);
            depthBOR_           = GET_RUNTIME_PARAM(TypeTag, Scalar, Problem.DepthBOR);
            name_               = GET_RUNTIME_PARAM(TypeTag, std::string, Problem.Name);
            injectionRate_      = GET_RUNTIME_PARAM(TypeTag, Scalar, Problem.InjectionRate);
            injectionPressure_ = GET_RUNTIME_PARAM(TypeTag, Scalar, Problem.InjectionPressure);
            injectionTemperature_ = GET_RUNTIME_PARAM(TypeTag, Scalar, Problem.InjectionTemperature);

        /* Alternative syntax:
         * typedef typename GET_PROP(TypeTag, ParameterTree) ParameterTree;
         * const Dune::ParameterTree &tree = ParameterTree::tree();
         * nTemperature_       = tree.template get<int>("FluidSystem.nTemperature");
         *
         * + We see what we do
         * - Reporting whether it was used does not work
         * - Overwriting on command line not possible
        */

        GridPointer *gridPtr = &GridCreator::gridPtr();
        this->spatialParams().setParams(gridPtr);



        eps_ = 1e-6;

        // initialize the tables of the fluid system
        FluidSystem::init(/*Tmin=*/temperatureLow_,
                          /*Tmax=*/temperatureHigh_,
                          /*nT=*/nTemperature_,
                          /*pmin=*/pressureLow_,
                          /*pmax=*/pressureHigh_,
                          /*np=*/nPressure_);
220
221
222
223
224
225
226
227
228
229

        //stateing in the console whether mole or mass fractions are used
        if(!useMoles)
        {
        	std::cout<<"problem uses mass-fractions"<<std::endl;
        }
        else
        {
        	std::cout<<"problem uses mole-fractions"<<std::endl;
        }
230
231
232
    }

    /*!
233
234
235
     * \brief User defined output after the time integration
     *
     * Will be called diretly after the time integration.
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
     */
    void postTimeStep()
    {
        // Calculate storage terms
        PrimaryVariables storageL, storageG;
        this->model().globalPhaseStorage(storageL, lPhaseIdx);
        this->model().globalPhaseStorage(storageG, gPhaseIdx);

        // Write mass balance information for rank 0
        if (this->gridView().comm().rank() == 0) {
            std::cout<<"Storage: liquid=[" << storageL << "]"
                     << " gas=[" << storageG << "]\n";
        }
    }

251
    /*!
252
253
254
     * \brief Append all quantities of interest which can be derived
     *        from the solution of the current time step to the VTK
     *        writer.
255
     */
256
257
258
    void addOutputVtkFields()
        {
            typedef Dune::BlockVector<Dune::FieldVector<double, 1> > ScalarField;
259
260
261
262

            // get the number of degrees of freedom
            unsigned numDofs = this->model().numDofs();
            unsigned numElements = this->gridView().size(0);
263
264

            //create required scalar fields
265
266
267
268
269
            ScalarField *Kxx = this->resultWriter().allocateManagedBuffer(numElements);
            ScalarField *cellPorosity = this->resultWriter().allocateManagedBuffer(numElements);
            ScalarField *boxVolume = this->resultWriter().allocateManagedBuffer(numDofs);
            ScalarField *enthalpyW = this->resultWriter().allocateManagedBuffer(numDofs);
            ScalarField *enthalpyN = this->resultWriter().allocateManagedBuffer(numDofs);
270
271
272
            (*boxVolume) = 0;

            //Fill the scalar fields with values
273

274
275
            ScalarField *rank = this->resultWriter().allocateManagedBuffer(numElements);

276
            FVElementGeometry fvGeometry;
277
278
            VolumeVariables volVars;

279
280
281
            ElementIterator eIt = this->gridView().template begin<0>();
            ElementIterator eEndIt = this->gridView().template end<0>();
            for (; eIt != eEndIt; ++eIt)
282
            {
283
284
                int eIdx = this->elementMapper().map(*eIt);
                (*rank)[eIdx] = this->gridView().comm().rank();
285
                fvGeometry.update(this->gridView(), *eIt);
286
287


288
                for (int scvIdx = 0; scvIdx < fvGeometry.numScv; ++scvIdx)
289
                {
290
291
                    int dofIdxGlobal = this->model().dofMapper().map(*eIt, scvIdx, dofCodim);
                    volVars.update(this->model().curSol()[dofIdxGlobal],
292
                                   *this,
293
                                   *eIt,
294
295
                                   fvGeometry,
                                   scvIdx,
296
                                   false);
297
298
299
                    (*boxVolume)[dofIdxGlobal] += fvGeometry.subContVol[scvIdx].volume;
                    (*enthalpyW)[dofIdxGlobal] = volVars.enthalpy(lPhaseIdx);
                    (*enthalpyN)[dofIdxGlobal] = volVars.enthalpy(gPhaseIdx);
300
                }
301
302
                (*Kxx)[eIdx] = this->spatialParams().intrinsicPermeability(*eIt, fvGeometry, /*element data*/ 0);
                (*cellPorosity)[eIdx] = this->spatialParams().porosity(*eIt, fvGeometry, /*element data*/ 0);
303
304
305
            }

            //pass the scalar fields to the vtkwriter
306
307
308
309
310
            this->resultWriter().attachDofData(*boxVolume, "boxVolume", isBox);
            this->resultWriter().attachDofData(*Kxx, "Kxx", false); //element data
            this->resultWriter().attachDofData(*cellPorosity, "cellwisePorosity", false); //element data
            this->resultWriter().attachDofData(*enthalpyW, "enthalpyW", isBox);
            this->resultWriter().attachDofData(*enthalpyN, "enthalpyN", isBox);
311
312
313
314
315
316
317
318
319
320
321

        }

    /*!
     * \brief The problem name.
     *
     * This is used as a prefix for files generated by the simulation.
     */
    const std::string name() const
    { return name_; }

322
#if ISOTHERMAL
323
324
325
    /*!
     * \brief Returns the temperature within the domain.
     *
326
327
328
329
     * \param globalPos The position
     *
     * This problem assumes a geothermal gradient with 
     * a surface temperature of 10 degrees Celsius.
330
     */
331
    Scalar temperatureAtPos(const GlobalPosition &globalPos) const
332
333
    {
        return temperature_(globalPos);
334
    }
335
#endif
336

337
    /*!
338
     * \brief Returns the source term
339
     *
340
341
     * \param values Stores the source values for the conservation equations in
     *               \f$ [ \textnormal{unit of primary variable} / (m^\textrm{dim} \cdot s )] \f$
342
     * \param globalPos The global position
343
344
345
346
347
348
     *
     * Depending on whether useMoles is set on true or false, the flux has to be given either in
     * kg/(m^3*s) or mole/(m^3*s) in the input file!!
     *
     * Note that the energy balance is always calculated in terms of specific enthalpies [J/kg]
     * and that the Neumann fluxes have to be specified accordingly.
349
     */
350
351
352
353
354
355
356
357
358
    void sourceAtPos(PrimaryVariables &values,
                const GlobalPosition &globalPos) const
    {
        values = 0;
    }

    /*!
     * \name Boundary conditions
     */
359

360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
    /*!
     * \brief Specifies which kind of boundary condition should be
     *        used for which equation on a given boundary segment.
     *
     * \param values The boundary types for the conservation equations
     * \param vertex The vertex for which the boundary type is set
     */

    void boundaryTypes(BoundaryTypes &values, const Vertex &vertex) const
    {
        intersectionToVertexBC_.boundaryTypes(values, vertex);
    }

    /*!
     * \brief Specifies which kind of boundary condition should be
     *        used for which equation on a given boundary segment.
     *
     * \param values The boundary types for the conservation equations
378
     * \param intersection specifies the intersection at which boundary
379
     *           condition is to set
380
     */
381
    void boundaryTypes(BoundaryTypes &values, const Intersection &intersection) const
382
    {
383
        int boundaryId = intersection.boundaryId();
384
385
386
387
388
389
390
391
392
393
394
        if (boundaryId < 1 || boundaryId > 4)
        {
            std::cout<<"invalid boundaryId: "<<boundaryId<<std::endl;
            DUNE_THROW(Dune::InvalidStateException, "Invalid " << boundaryId);
        }
        if (boundaryId == dirichletBoundary_)
            values.setAllDirichlet();
        else
            values.setAllNeumann();
    }

395
    /*!
396
397
     * \brief Evaluates the boundary conditions for a Dirichlet
     *        boundary segment
398
     *
399
400
     * \param values Stores the Dirichlet values for the conservation equations in
     *               \f$ [ \textnormal{unit of primary variable} ] \f$
401
402
403
404
405
406
     * \param globalPos The global position
     */
    void dirichletAtPos(PrimaryVariables &values, const GlobalPosition &globalPos) const
    {
        initial_(values, globalPos);
    }
407

408
    /*!
409
     * \brief Evaluate the boundary conditions for a Neumann
410
411
     *        boundary segment.
     *
412
413
      * \param values Stores the Neumann values for the conservation equations in
     *               \f$ [ \textnormal{unit of conserved quantity} / (m^(dim-1) \cdot s )] \f$
414
     * \param element The finite element
415
     * \param fvGeometry The finite volume geometry of the element
416
     * \param intersection The intersection between element and boundary
417
     * \param scvIdx The local index of the sub-control volume
418
419
     * \param boundaryFaceIdx The index of the boundary face
     *
420
421
     * The \a values store the mass flux of each phase normal to the boundary.
     * Negative values indicate an inflow.
422
423
     *
     * Depending on whether useMoles is set on true or false, the flux has to be given either in
424
     * kg/(m^2*s) or mole/(m^2*s) in the input file!! Convert dividing by molar mass from the fluid system FluidSystem::molarMass(CO2Idx)
425
426
427
     */
    void neumann(PrimaryVariables &values,
                 const Element &element,
428
                 const FVElementGeometry &fvGeometry,
429
                 const Intersection &intersection,
430
431
432
                 int scvIdx,
                 int boundaryFaceIdx) const
    {
433
        int boundaryId = intersection.boundaryId();
434
435
436
437

        values = 0;
        if (boundaryId == injectionBottom_)
        {
438
            values[contiCO2EqIdx] = -injectionRate_; // see above comment: kg/(s*m^2) or mole/(m^2*s) depending on useMoles!!
439
#if !ISOTHERMAL
440
441
            values[energyEqIdx] = -injectionRate_/*kg/(m^2 s)*/*CO2::gasEnthalpy(
                                    injectionTemperature_, injectionPressure_)/*J/kg*/; // W/(m^2)
442
443
444
445
446
447
448
449
450
451
452
453
#endif
        }
    }

    // \}

    /*!
     * \name Volume terms
     */
    // \{

    /*!
454
     * \brief Evaluates the initial values for a control volume
455
     *
456
457
458
     * \param values Stores the initial values for the conservation equations in
     *               \f$ [ \textnormal{unit of primary variables} ] \f$
     * \param globalPos The global position
459
     */
460
461
    void initialAtPos(PrimaryVariables &values,
                      const GlobalPosition &globalPos) const
462
463
464
465
466
    {
        initial_(values, globalPos);
    }

    /*!
467
     * \brief Returns the initial phase state for a control volume.
468
     *
469
     * \param vertex The vertex
470
     * \param vIdxGlobal The global index of the vertex
471
472
     * \param globalPos The global position
     */
473
    int initialPhasePresence(const Vertex &vertex,
474
                             int &vIdxGlobal,
475
                             const GlobalPosition &globalPos) const
476
    { return Indices::wPhaseOnly; }
477
478
479
480

    // \}

private:
481
482
483
484
485
486
487
488
489
    /*!
     * \brief Evaluates the initial values for a control volume
     *
     * The internal method for the initial condition
     *
     * \param values Stores the initial values for the conservation equations in
     *               \f$ [ \textnormal{unit of primary variables} ] \f$
     * \param globalPos The global position
     */
490
491
492
493
494
495
    void initial_(PrimaryVariables &values,
                  const GlobalPosition &globalPos) const
    {
        Scalar temp = temperature_(globalPos);
        Scalar densityW = FluidSystem::Brine::liquidDensity(temp, 1e7);

496
        Scalar pl =  1e5 - densityW*this->gravity()[dim-1]*(depthBOR_ - globalPos[dim-1]);
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
        Scalar moleFracLiquidCO2 = 0.00;
        Scalar moleFracLiquidBrine = 1.0 - moleFracLiquidCO2;

        Scalar meanM =
            FluidSystem::molarMass(BrineIdx)*moleFracLiquidBrine +
            FluidSystem::molarMass(CO2Idx)*moleFracLiquidCO2;

        Scalar massFracLiquidCO2 = moleFracLiquidCO2*FluidSystem::molarMass(CO2Idx)/meanM;

        values[Indices::pressureIdx] = pl;
        values[Indices::switchIdx] = massFracLiquidCO2;
#if !ISOTHERMAL
            values[temperatureIdx] = temperature_(globalPos); //K
#endif


    }

    Scalar temperature_(const GlobalPosition globalPos) const
    {
517
        Scalar T = 283.0 + (depthBOR_ - globalPos[dim-1])*0.03; 
518
        return T;
519
    }
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544

    Scalar depthBOR_;
    Scalar injectionRate_;
    Scalar injectionPressure_;
    Scalar injectionTemperature_;
    Scalar eps_;

    int nTemperature_;
    int nPressure_;

    std::string name_ ;

    Scalar pressureLow_, pressureHigh_;
    Scalar temperatureLow_, temperatureHigh_;

    int injectionTop_;
    int injectionBottom_;
    int dirichletBoundary_;
    int noFlowBoundary_;

    const IntersectionToVertexBC<TypeTag> intersectionToVertexBC_;
};
} //end namespace

#endif