implicitmodel.hh 33.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
 *   See the file COPYING for full copying permissions.                      *
 *                                                                           *
 *   This program is free software: you can redistribute it and/or modify    *
 *   it under the terms of the GNU General Public License as published by    *
 *   the Free Software Foundation, either version 2 of the License, or       *
 *   (at your option) any later version.                                     *
 *                                                                           *
 *   This program is distributed in the hope that it will be useful,         *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of          *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the            *
 *   GNU General Public License for more details.                            *
 *                                                                           *
 *   You should have received a copy of the GNU General Public License       *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.   *
 *****************************************************************************/
/*!
 * \file
 *
 * \brief Base class for models using box discretization
 */
24
25
#ifndef DUMUX_IMPLICIT_MODEL_HH
#define DUMUX_IMPLICIT_MODEL_HH
26

27
28
#include "implicitproperties.hh"
#include "implicitpropertydefaults.hh"
29

30
31
32
#include "implicitelementvolumevariables.hh"
#include "implicitlocaljacobian.hh"
#include "implicitlocalresidual.hh"
33
34
35
36
37
38
39
40
41

#include <dumux/parallel/vertexhandles.hh>

#include <dune/grid/common/geometry.hh>

namespace Dumux
{

/*!
42
 * \ingroup ImplicitModel
43
44
45
46
47
 *
 * \brief The base class for the vertex centered finite volume
 *        discretization scheme.
 */
template<class TypeTag>
48
class ImplicitModel
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
{
    typedef typename GET_PROP_TYPE(TypeTag, Model) Implementation;
    typedef typename GET_PROP_TYPE(TypeTag, Problem) Problem;
    typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
    typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
    typedef typename GET_PROP_TYPE(TypeTag, ElementMapper) ElementMapper;
    typedef typename GET_PROP_TYPE(TypeTag, VertexMapper) VertexMapper;
    typedef typename GET_PROP_TYPE(TypeTag, DofMapper) DofMapper;
    typedef typename GET_PROP_TYPE(TypeTag, SolutionVector) SolutionVector;
    typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
    typedef typename GET_PROP_TYPE(TypeTag, JacobianAssembler) JacobianAssembler;
    typedef typename GET_PROP_TYPE(TypeTag, ElementVolumeVariables) ElementVolumeVariables;
    typedef typename GET_PROP_TYPE(TypeTag, VolumeVariables) VolumeVariables;

    enum {
        numEq = GET_PROP_VALUE(TypeTag, NumEq),
        dim = GridView::dimension
    };

    typedef typename GET_PROP_TYPE(TypeTag, FVElementGeometry) FVElementGeometry;
    typedef typename GET_PROP_TYPE(TypeTag, LocalJacobian) LocalJacobian;
    typedef typename GET_PROP_TYPE(TypeTag, LocalResidual) LocalResidual;
    typedef typename GET_PROP_TYPE(TypeTag, NewtonMethod) NewtonMethod;
    typedef typename GET_PROP_TYPE(TypeTag, NewtonController) NewtonController;

    typedef typename GridView::ctype CoordScalar;
    typedef typename GridView::template Codim<0>::Entity Element;
    typedef typename GridView::template Codim<0>::Iterator ElementIterator;
    typedef typename GridView::template Codim<dim>::Entity Vertex;
    typedef typename GridView::template Codim<dim>::Iterator VertexIterator;
    typedef typename GridView::IntersectionIterator IntersectionIterator;

    typedef typename Dune::GenericReferenceElements<CoordScalar, dim> ReferenceElements;
    typedef typename Dune::GenericReferenceElement<CoordScalar, dim> ReferenceElement;

84
85
    enum { isBox = GET_PROP_VALUE(TypeTag, ImplicitIsBox) };
    
86
    // copying a model is not a good idea
87
    ImplicitModel(const ImplicitModel &);
88
89
90
91
92

public:
    /*!
     * \brief The constructor.
     */
93
    ImplicitModel()
94
95
96
97
    {
        enableHints_ = GET_PARAM_FROM_GROUP(TypeTag, bool, Implicit, EnableHints);
    }

98
    ~ImplicitModel()
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
    { delete jacAsm_;  }

    /*!
     * \brief Apply the initial conditions to the model.
     *
     * \param problem The object representing the problem which needs to
     *             be simulated.
     */
    void init(Problem &problem)
    {
        problemPtr_ = &problem;

        updateBoundaryIndices_();

        int nDofs = asImp_().numDofs();
        uCur_.resize(nDofs);
        uPrev_.resize(nDofs);
116
117
        if (isBox)
            boxVolume_.resize(nDofs);
118
119
120
121
122
123
124
125

        localJacobian_.init(problem_());
        jacAsm_ = new JacobianAssembler();
        jacAsm_->init(problem_());

        asImp_().applyInitialSolution_();

        // resize the hint vectors
126
        if (isBox && enableHints_) {
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
            int nVerts = gridView_().size(dim);
            curHints_.resize(nVerts);
            prevHints_.resize(nVerts);
            hintsUsable_.resize(nVerts);
            std::fill(hintsUsable_.begin(),
                      hintsUsable_.end(),
                      false);
        }

        // also set the solution of the "previous" time step to the
        // initial solution.
        uPrev_ = uCur_;
    }

    void setHints(const Element &element,
                  ElementVolumeVariables &prevVolVars,
                  ElementVolumeVariables &curVolVars) const
    {
145
        if (!isBox || !enableHints_)
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
            return;

        int n = element.template count<dim>();
        prevVolVars.resize(n);
        curVolVars.resize(n);
        for (int i = 0; i < n; ++i) {
            int globalIdx = vertexMapper().map(element, i, dim);

            if (!hintsUsable_[globalIdx]) {
                curVolVars[i].setHint(NULL);
                prevVolVars[i].setHint(NULL);
            }
            else {
                curVolVars[i].setHint(&curHints_[globalIdx]);
                prevVolVars[i].setHint(&prevHints_[globalIdx]);
            }
        }
    }

    void setHints(const Element &element,
                  ElementVolumeVariables &curVolVars) const
    {
168
        if (!isBox || !enableHints_)
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
            return;

        int n = element.template count<dim>();
        curVolVars.resize(n);
        for (int i = 0; i < n; ++i) {
            int globalIdx = vertexMapper().map(element, i, dim);

            if (!hintsUsable_[globalIdx])
                curVolVars[i].setHint(NULL);
            else
                curVolVars[i].setHint(&curHints_[globalIdx]);
        }
    }

    void updatePrevHints()
    {
185
        if (!isBox || !enableHints_)
186
187
188
189
190
191
192
193
            return;

        prevHints_ = curHints_;
    }

    void updateCurHints(const Element &element,
                        const ElementVolumeVariables &elemVolVars) const
    {
194
        if (!isBox || !enableHints_)
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
            return;

        for (unsigned int i = 0; i < elemVolVars.size(); ++i) {
            int globalIdx = vertexMapper().map(element, i, dim);
            curHints_[globalIdx] = elemVolVars[i];
            if (!hintsUsable_[globalIdx])
                prevHints_[globalIdx] = elemVolVars[i];
            hintsUsable_[globalIdx] = true;
        }
    }


    /*!
     * \brief Compute the global residual for an arbitrary solution
     *        vector.
     *
     * \param residual Stores the result
     * \param u The solution for which the residual ought to be calculated
     */
    Scalar globalResidual(SolutionVector &residual,
                          const SolutionVector &u)
    {
        SolutionVector tmp(curSol());
        curSol() = u;
        Scalar res = globalResidual(residual);
        curSol() = tmp;
        return res;
    }

    /*!
     * \brief Compute the global residual for the current solution
     *        vector.
     *
     * \param residual Stores the result
     */
    Scalar globalResidual(SolutionVector &residual)
    {
        residual = 0;

        ElementIterator elemIt = gridView_().template begin<0>();
        const ElementIterator elemEndIt = gridView_().template end<0>();
        for (; elemIt != elemEndIt; ++elemIt) {
            localResidual().eval(*elemIt);

239
240
241
242
243
244
245
246
247
248
249
            if (isBox)
            {
                for (int i = 0; i < elemIt->template count<dim>(); ++i) {
                    int globalI = vertexMapper().map(*elemIt, i, dim);
                    residual[globalI] += localResidual().residual(i);
                }
            }
            else
            {
                int globalI = elementMapper().map(*elemIt);
                dest[globalI] = localResidual().residual(0);
250
251
252
253
254
255
256
257
258
            }
        }

        // calculate the square norm of the residual
        Scalar result2 = residual.two_norm2();
        if (gridView_().comm().size() > 1)
            result2 = gridView_().comm().sum(result2);

        // add up the residuals on the process borders
259
        if (isBox && gridView_().comm().size() > 1) {
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
            VertexHandleSum<PrimaryVariables, SolutionVector, VertexMapper>
                sumHandle(residual, vertexMapper());
            gridView_().communicate(sumHandle,
                                    Dune::InteriorBorder_InteriorBorder_Interface,
                                    Dune::ForwardCommunication);
        }

        return std::sqrt(result2);
    }

    /*!
     * \brief Compute the integral over the domain of the storage
     *        terms of all conservation quantities.
     *
     * \param storage Stores the result
     */
    void globalStorage(PrimaryVariables &storage)
    {
        storage = 0;

        ElementIterator elemIt = gridView_().template begin<0>();
        const ElementIterator elemEndIt = gridView_().template end<0>();
        for (; elemIt != elemEndIt; ++elemIt) {
            localResidual().evalStorage(*elemIt);

285
286
287
288
289
290
291
292
293
            if (isBox)
            {
                for (int i = 0; i < elemIt->template count<dim>(); ++i)
                    storage += localResidual().storageTerm()[i];
            }
            else
            {
                storage += localResidual().storageTerm()[0];
            }
294
295
296
297
298
299
300
301
302
303
304
305
306
        }

        if (gridView_().comm().size() > 1)
            storage = gridView_().comm().sum(storage);
    }

    /*!
     * \brief Returns the volume \f$\mathrm{[m^3]}\f$ of a given control volume.
     *
     * \param globalIdx The global index of the control volume's
     *                  associated vertex
     */
    Scalar boxVolume(const int globalIdx) const
307
308
309
310
311
312
313
314
315
316
317
    {
        if (isBox)
        {
            return boxVolume_[globalIdx][0];
        }
        else
        {
            DUNE_THROW(Dune::InvalidStateError,
                       "requested box volume for cell-centered model");
        }
    }
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386

    /*!
     * \brief Reference to the current solution as a block vector.
     */
    const SolutionVector &curSol() const
    { return uCur_; }

    /*!
     * \brief Reference to the current solution as a block vector.
     */
    SolutionVector &curSol()
    { return uCur_; }

    /*!
     * \brief Reference to the previous solution as a block vector.
     */
    const SolutionVector &prevSol() const
    { return uPrev_; }

    /*!
     * \brief Reference to the previous solution as a block vector.
     */
    SolutionVector &prevSol()
    { return uPrev_; }

    /*!
     * \brief Returns the operator assembler for the global jacobian of
     *        the problem.
     */
    JacobianAssembler &jacobianAssembler()
    { return *jacAsm_; }

    /*!
     * \copydoc jacobianAssembler()
     */
    const JacobianAssembler &jacobianAssembler() const
    { return *jacAsm_; }

    /*!
     * \brief Returns the local jacobian which calculates the local
     *        stiffness matrix for an arbitrary element.
     *
     * The local stiffness matrices of the element are used by
     * the jacobian assembler to produce a global linerization of the
     * problem.
     */
    LocalJacobian &localJacobian()
    { return localJacobian_; }
    /*!
     * \copydoc localJacobian()
     */
    const LocalJacobian &localJacobian() const
    { return localJacobian_; }

    /*!
     * \brief Returns the local residual function.
     */
    LocalResidual &localResidual()
    { return localJacobian().localResidual(); }
    /*!
     * \copydoc localResidual()
     */
    const LocalResidual &localResidual() const
    { return localJacobian().localResidual(); }

    /*!
     * \brief Returns the relative error between two vectors of
     *        primary variables.
     *
387
388
     * \param dofIdx The global index of the control volume's
     *               associated degree of freedom
389
390
391
     * \param priVars1 The first vector of primary variables
     * \param priVars2 The second vector of primary variables
     */
392
393
394
    Scalar relativeErrorDof(const int dofIdx,
                            const PrimaryVariables &priVars1,
                            const PrimaryVariables &priVars2)
395
396
397
398
399
    {
        Scalar result = 0.0;
        for (int j = 0; j < numEq; ++j) {
            Scalar eqErr = std::abs(priVars1[j] - priVars2[j]);
            eqErr /= std::max<Scalar>(1.0, std::abs(priVars1[j] + priVars2[j])/2);
400
            
401
402
403
404
            result = std::max(result, eqErr);
        }
        return result;
    }
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
    
    /*!
     * \brief Returns the relative error between two vectors of
     *        primary variables.
     *
     * \param vertexIdx The global index of the control volume's
     *                  associated vertex
     * \param priVars1 The first vector of primary variables
     * \param priVars2 The second vector of primary variables
     */
    DUNE_DEPRECATED_MSG("Use relativeErrorDof instead.")
    Scalar relativeErrorVertex(const int vertexIdx,
                               const PrimaryVariables &priVars1,
                               const PrimaryVariables &priVars2)
    {
        return relativeErrorDof(vertexIdx, priVars1, priVars2);
    }
    
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
    /*!
     * \brief Try to progress the model to the next timestep.
     *
     * \param solver The non-linear solver
     * \param controller The controller which specifies the behaviour
     *                   of the non-linear solver
     */
    bool update(NewtonMethod &solver,
                NewtonController &controller)
    {
#if HAVE_VALGRIND
        for (size_t i = 0; i < curSol().size(); ++i)
            Valgrind::CheckDefined(curSol()[i]);
#endif // HAVE_VALGRIND

        asImp_().updateBegin();

        bool converged = solver.execute(controller);
        if (converged) {
            asImp_().updateSuccessful();
        }
        else
            asImp_().updateFailed();

#if HAVE_VALGRIND
        for (size_t i = 0; i < curSol().size(); ++i) {
            Valgrind::CheckDefined(curSol()[i]);
        }
#endif // HAVE_VALGRIND

        return converged;
    }


    /*!
     * \brief Called by the update() method before it tries to
     *        apply the newton method. This is primary a hook
     *        which the actual model can overload.
     */
    void updateBegin()
    { }


    /*!
     * \brief Called by the update() method if it was
     *        successful. This is primary a hook which the actual
     *        model can overload.
     */
    void updateSuccessful()
    { }

    /*!
     * \brief Called by the update() method if it was
     *        unsuccessful. This is primary a hook which the actual
     *        model can overload.
     */
    void updateFailed()
    {
        // Reset the current solution to the one of the
        // previous time step so that we can start the next
        // update at a physically meaningful solution.
        uCur_ = uPrev_;
485
486
        if (isBox)
            curHints_ = prevHints_;
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501

        jacAsm_->reassembleAll();
    }

    /*!
     * \brief Called by the problem if a time integration was
     *        successful, post processing of the solution is done and
     *        the result has been written to disk.
     *
     * This should prepare the model for the next time integration.
     */
    void advanceTimeLevel()
    {
        // make the current solution the previous one.
        uPrev_ = uCur_;
502
503
        if (isBox)
            prevHints_ = curHints_;
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538

        updatePrevHints();
    }

    /*!
     * \brief Serializes the current state of the model.
     *
     * \tparam Restarter The type of the serializer class
     *
     * \param res The serializer object
     */
    template <class Restarter>
    void serialize(Restarter &res)
    { res.template serializeEntities<dim>(asImp_(), this->gridView_()); }

    /*!
     * \brief Deserializes the state of the model.
     *
     * \tparam Restarter The type of the serializer class
     *
     * \param res The serializer object
     */
    template <class Restarter>
    void deserialize(Restarter &res)
    {
        res.template deserializeEntities<dim>(asImp_(), this->gridView_());
        prevSol() = curSol();
    }

    /*!
     * \brief Write the current solution for a vertex to a restart
     *        file.
     *
     * \param outstream The stream into which the vertex data should
     *                  be serialized to
539
540
541
     * \param entity The entity which's data should be
     *               serialized, i.e. a vertex for the box method
     *               and an element for the cell-centered method
542
     */
543
    template <class Entity>
544
    void serializeEntity(std::ostream &outstream,
545
                         const Entity &entity)
546
    {
547
        int dofIdx = dofMapper().map(entity);
548
549
550
551
552

        // write phase state
        if (!outstream.good()) {
            DUNE_THROW(Dune::IOError,
                       "Could not serialize vertex "
553
                       << dofIdx);
554
555
556
        }

        for (int eqIdx = 0; eqIdx < numEq; ++eqIdx) {
557
            outstream << curSol()[dofIdx][eqIdx] << " ";
558
559
560
561
562
563
564
565
566
        }
    }

    /*!
     * \brief Reads the current solution variables for a vertex from a
     *        restart file.
     *
     * \param instream The stream from which the vertex data should
     *                  be deserialized from
567
568
569
     * \param entity The entity which's data should be
     *               serialized, i.e. a vertex for the box method
     *               and an element for the cell-centered method
570
     */
571
    template <class Entity>
572
    void deserializeEntity(std::istream &instream,
573
                           const Entity &entity)
574
    {
575
        int dofIdx = dofMapper().map(entity);
576
577
578
579
        for (int eqIdx = 0; eqIdx < numEq; ++eqIdx) {
            if (!instream.good())
                DUNE_THROW(Dune::IOError,
                           "Could not deserialize vertex "
580
581
                           << dofIdx);
            instream >> curSol()[dofIdx][eqIdx];
582
583
584
585
586
587
588
        }
    }

    /*!
     * \brief Returns the number of global degrees of freedoms (DOFs)
     */
    size_t numDofs() const
589
590
591
592
593
594
    {
        if (isBox)
            return gridView_().size(dim); 
        else
            return gridView_().size(dim); 
    }
595
596
597
598
599

    /*!
     * \brief Mapper for the entities where degrees of freedoms are
     *        defined to indices.
     *
600
601
602
     * Is the box method is used, this means a mapper 
     * for vertices, if the cell centered method is used,
     * this means a mapper for elements.
603
604
     */
    const DofMapper &dofMapper() const
605
606
607
608
609
610
    {
        if (isBox)
            return problem_().vertexMapper();
        else
            return problem_().elementMapper();
    }
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666

    /*!
     * \brief Mapper for vertices to indices.
     */
    const VertexMapper &vertexMapper() const
    { return problem_().vertexMapper(); }

    /*!
     * \brief Mapper for elements to indices.
     */
    const ElementMapper &elementMapper() const
    { return problem_().elementMapper(); }

    /*!
     * \brief Resets the Jacobian matrix assembler, so that the
     *        boundary types can be altered.
     */
    void resetJacobianAssembler ()
    {
        delete jacAsm_;
        jacAsm_ = new JacobianAssembler;
        jacAsm_->init(problem_());
    }

    /*!
     * \brief Update the weights of all primary variables within an
     *        element given the complete set of volume variables
     *
     * \param element The DUNE codim 0 entity
     * \param volVars All volume variables for the element
     */
    void updatePVWeights(const Element &element,
                         const ElementVolumeVariables &volVars) const
    { }

    /*!
     * \brief Add the vector fields for analysing the convergence of
     *        the newton method to the a VTK multi writer.
     *
     * \tparam MultiWriter The type of the VTK multi writer
     *
     * \param writer  The VTK multi writer object on which the fields should be added.
     * \param u       The solution function
     * \param deltaU  The delta of the solution function before and after the Newton update
     */
    template <class MultiWriter>
    void addConvergenceVtkFields(MultiWriter &writer,
                                 const SolutionVector &u,
                                 const SolutionVector &deltaU)
    {
        typedef Dune::BlockVector<Dune::FieldVector<double, 1> > ScalarField;

        SolutionVector residual(u);
        asImp_().globalResidual(residual, u);

        // create the required scalar fields
667
        unsigned numDofs = asImp_().numDofs();
668
669
670
671
672
673

        // global defect of the two auxiliary equations
        ScalarField* def[numEq];
        ScalarField* delta[numEq];
        ScalarField* x[numEq];
        for (int eqIdx = 0; eqIdx < numEq; ++eqIdx) {
674
675
676
            x[eqIdx] = writer.allocateManagedBuffer(numDofs);
            delta[eqIdx] = writer.allocateManagedBuffer(numDofs);
            def[eqIdx] = writer.allocateManagedBuffer(numDofs);
677
678
        }

679
        for (int globalIdx = 0; globalIdx < u.size(); globalIdx++)
680
        {
681
682
            for (int eqIdx = 0; eqIdx < numEq; ++eqIdx) 
            {
683
684
685
686
687
                (*x[eqIdx])[globalIdx] = u[globalIdx][eqIdx];
                (*delta[eqIdx])[globalIdx] = - deltaU[globalIdx][eqIdx];
                (*def[eqIdx])[globalIdx] = residual[globalIdx][eqIdx];
            }
        }
688
        
689
690
691
        for (int eqIdx = 0; eqIdx < numEq; ++eqIdx) {
            std::ostringstream oss;
            oss.str(""); oss << "x_" << eqIdx;
692
693
694
695
            if (isBox)
                writer.attachVertexData(*x[eqIdx], oss.str());
            else
                writer.attachCellData(*x[eqIdx], oss.str());
696
            oss.str(""); oss << "delta_" << eqIdx;
697
698
699
700
            if (isBox)
                writer.attachVertexData(*delta[eqIdx], oss.str());
            else
                writer.attachCellData(*delta[eqIdx], oss.str());
701
            oss.str(""); oss << "defect_" << eqIdx;
702
703
704
705
            if (isBox)
                writer.attachVertexData(*def[eqIdx], oss.str());
            else
                writer.attachCellData(*def[eqIdx], oss.str());
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
        }

        asImp_().addOutputVtkFields(u, writer);
    }

    /*!
     * \brief Add the quantities of a time step which ought to be written to disk.
     *
     * This should be overwritten by the actual model if any secondary
     * variables should be written out. Read: This should _always_ be
     * overwritten by well behaved models!
     *
     * \tparam MultiWriter The type of the VTK multi writer
     *
     * \param sol The global vector of primary variable values.
     * \param writer The VTK multi writer where the fields should be added.
     */
    template <class MultiWriter>
    void addOutputVtkFields(const SolutionVector &sol,
                            MultiWriter &writer)
    {
        typedef Dune::BlockVector<Dune::FieldVector<Scalar, 1> > ScalarField;

        // create the required scalar fields
730
        unsigned numDofs = asImp_().numDofs();
731
732
733
734

        // global defect of the two auxiliary equations
        ScalarField* x[numEq];
        for (int eqIdx = 0; eqIdx < numEq; ++eqIdx) {
735
            x[eqIdx] = writer.allocateManagedBuffer(numDofs);
736
737
        }

738
        for (int globalIdx = 0; globalIdx < sol.size(); globalIdx++)
739
740
741
742
743
744
745
746
747
        {
            for (int eqIdx = 0; eqIdx < numEq; ++eqIdx) {
                (*x[eqIdx])[globalIdx] = sol[globalIdx][eqIdx];
            }
        }

        for (int eqIdx = 0; eqIdx < numEq; ++eqIdx) {
            std::ostringstream oss;
            oss << "primaryVar_" << eqIdx;
748
749
750
751
            if (isBox)
                writer.attachVertexData(*x[eqIdx], oss.str());
            else
                writer.attachCellData(*x[eqIdx], oss.str());
752
753
754
755
756
757
758
759
760
761
        }
    }

    /*!
     * \brief Reference to the grid view of the spatial domain.
     */
    const GridView &gridView() const
    { return problem_().gridView(); }

    /*!
762
763
     * \brief Returns true if the entity indicated by 'globalIdx' 
     * is located on / touches the grid's boundary.
764
     *
765
     * \param globalIdx The global index of the entity
766
     */
767
768
    bool onBoundary(const int globalIdx) const
    { return boundaryIndices_[globalIdx]; }
769
770
771
772
773
774
775
776
777
778

    /*!
     * \brief Returns true if a vertex is located on the grid's
     *        boundary.
     *
     * \param element A DUNE Codim<0> entity which contains the control
     *             volume's associated vertex.
     * \param vIdx The local vertex index inside element
     */
    bool onBoundary(const Element &element, const int vIdx) const
779
780
781
782
783
784
785
    {
        if (isBox)
            return onBoundary(vertexMapper().map(element, vIdx, dim));
        else
            DUNE_THROW(Dune::InvalidStateError,
                       "requested for cell-centered model");            
    }
786

787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
    
    /*!
     * \brief Returns true if the control volume touches
     *        the grid's boundary.
     *
     * \param elem A DUNE Codim<0> entity coinciding with the control
     *             volume.
     */
    bool onBoundary(const Element &elem) const
    {
        if (!isBox)
            return onBoundary(elementMapper().map(elem));
        else
            DUNE_THROW(Dune::InvalidStateError,
                       "requested for box model");
    }
    
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
    /*!
     * \brief Fill the fluid state according to the primary variables. 
     * 
     * Taking the information from the primary variables, 
     * the fluid state is filled with every information that is 
     * necessary to evaluate the model's local residual. 
     * 
     * \param priVars The primary variables of the model.
     * \param problem The problem at hand. 
     * \param element The current element. 
     * \param fvGeometry The finite volume element geometry.
     * \param scvIdx The index of the subcontrol volume. 
     * \param fluidState The fluid state to fill. 
     */
    template <class FluidState>
    static void completeFluidState(const PrimaryVariables& priVars,
                                   const Problem& problem,
                                   const Element& element,
                                   const FVElementGeometry& fvGeometry,
                                   const int scvIdx,
                                   FluidState& fluidState)
    {
        VolumeVariables::completeFluidState(priVars, problem, element,
                                            fvGeometry, scvIdx, fluidState);
    }
protected:
    /*!
     * \brief A reference to the problem on which the model is applied.
     */
    Problem &problem_()
    { return *problemPtr_; }
    /*!
     * \copydoc problem_()
     */
    const Problem &problem_() const
    { return *problemPtr_; }

    /*!
     * \brief Reference to the grid view of the spatial domain.
     */
    const GridView &gridView_() const
    { return problem_().gridView(); }

    /*!
     * \brief Reference to the local residal object
     */
    LocalResidual &localResidual_()
    { return localJacobian_.localResidual(); }

    /*!
     * \brief Applies the initial solution for all vertices of the grid.
     */
    void applyInitialSolution_()
    {
        // first set the whole domain to zero
        uCur_ = Scalar(0.0);
        boxVolume_ = Scalar(0.0);

        FVElementGeometry fvGeometry;

        // iterate through leaf grid and evaluate initial
        // condition at the center of each sub control volume
        //
        // TODO: the initial condition needs to be unique for
        // each vertex. we should think about the API...
        ElementIterator eIt = gridView_().template begin<0>();
        const ElementIterator &eEndIt = gridView_().template end<0>();
        for (; eIt != eEndIt; ++eIt) {
            // deal with the current element
            fvGeometry.update(gridView_(), *eIt);

            // loop over all element vertices, i.e. sub control volumes
            for (int scvIdx = 0; scvIdx < fvGeometry.numVertices; scvIdx++)
            {
                // map the local vertex index to the global one
                int globalIdx = vertexMapper().map(*eIt,
                                                   scvIdx,
                                                   dim);

                // let the problem do the dirty work of nailing down
                // the initial solution.
                PrimaryVariables initPriVars;
                Valgrind::SetUndefined(initPriVars);
                problem_().initial(initPriVars,
                                   *eIt,
                                   fvGeometry,
                                   scvIdx);
                Valgrind::CheckDefined(initPriVars);

                // add up the initial values of all sub-control
                // volumes. If the initial values disagree for
                // different sub control volumes, the initial value
                // will be the arithmetic mean.
                initPriVars *= fvGeometry.subContVol[scvIdx].volume;
                boxVolume_[globalIdx] += fvGeometry.subContVol[scvIdx].volume;
                uCur_[globalIdx] += initPriVars;
                Valgrind::CheckDefined(uCur_[globalIdx]);
            }
        }

        // add up the primary variables and the volumes of the boxes
        // which cross process borders
        if (gridView_().comm().size() > 1) {
            VertexHandleSum<Dune::FieldVector<Scalar, 1>,
                Dune::BlockVector<Dune::FieldVector<Scalar, 1> >,
                VertexMapper> sumVolumeHandle(boxVolume_, vertexMapper());
            gridView_().communicate(sumVolumeHandle,
                                    Dune::InteriorBorder_InteriorBorder_Interface,
                                    Dune::ForwardCommunication);

            VertexHandleSum<PrimaryVariables, SolutionVector, VertexMapper>
                sumPVHandle(uCur_, vertexMapper());
            gridView_().communicate(sumPVHandle,
                                    Dune::InteriorBorder_InteriorBorder_Interface,
                                    Dune::ForwardCommunication);
        }

        // divide all primary variables by the volume of their boxes
        int n = gridView_().size(dim);
        for (int i = 0; i < n; ++i) {
            uCur_[i] /= boxVolume(i);
        }
    }

    /*!
     * \brief Find all indices of boundary vertices.
     *
     * For this we need to loop over all intersections (which is slow
     * in general). If the DUNE grid interface would provide a
     * onBoundary() method for entities this could be done in a much
     * nicer way (actually this would not be necessary)
     */
    void updateBoundaryIndices_()
    {
        boundaryIndices_.resize(numDofs());
        std::fill(boundaryIndices_.begin(), boundaryIndices_.end(), false);

        ElementIterator eIt = gridView_().template begin<0>();
        ElementIterator eEndIt = gridView_().template end<0>();
        for (; eIt != eEndIt; ++eIt) {
            Dune::GeometryType geoType = eIt->geometry().type();
            const ReferenceElement &refElement = ReferenceElements::general(geoType);

            IntersectionIterator isIt = gridView_().ibegin(*eIt);
            IntersectionIterator isEndIt = gridView_().iend(*eIt);
            for (; isIt != isEndIt; ++isIt) {
                if (isIt->boundary()) {
                    // add all vertices on the intersection to the set of
                    // boundary vertices
                    int faceIdx = isIt->indexInInside();
                    int numFaceVerts = refElement.size(faceIdx, 1, dim);
                    for (int faceVertIdx = 0;
                        faceVertIdx < numFaceVerts;
                        ++faceVertIdx)
                    {
                        int elemVertIdx = refElement.subEntity(faceIdx,
                                                            1,
                                                            faceVertIdx,
                                                            dim);
                        int globalVertIdx = vertexMapper().map(*eIt, elemVertIdx, dim);
                        boundaryIndices_[globalVertIdx] = true;
                    }
                }
            }
        }
    }

    // the hint cache for the previous and the current volume
    // variables
    mutable std::vector<bool> hintsUsable_;
    mutable std::vector<VolumeVariables> curHints_;
    mutable std::vector<VolumeVariables> prevHints_;

    // the problem we want to solve. defines the constitutive
    // relations, matxerial laws, etc.
    Problem *problemPtr_;

    // calculates the local jacobian matrix for a given element
    LocalJacobian localJacobian_;
    // Linearizes the problem at the current time step using the
    // local jacobian
    JacobianAssembler *jacAsm_;

    // the set of all indices of vertices on the boundary
    std::vector<bool> boundaryIndices_;

    // cur is the current iterative solution, prev the converged
    // solution of the previous time step
    SolutionVector uCur_;
    SolutionVector uPrev_;

    Dune::BlockVector<Dune::FieldVector<Scalar, 1> > boxVolume_;

private:
    /*!
     * \brief Returns whether messages should be printed
     */