heterogeneousproblemni.hh 20.9 KB
Newer Older
1
2
3
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
4
 *   See the file COPYING for full copying permissions.                      *
5
6
7
8
9
10
11
12
 *                                                                           *
 *   This program is free software: you can redistribute it and/or modify    *
 *   it under the terms of the GNU General Public License as published by    *
 *   the Free Software Foundation, either version 2 of the License, or       *
 *   (at your option) any later version.                                     *
 *                                                                           *
 *   This program is distributed in the hope that it will be useful,         *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of          *
13
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the            *
14
15
16
17
18
19
20
21
 *   GNU General Public License for more details.                            *
 *                                                                           *
 *   You should have received a copy of the GNU General Public License       *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.   *
 *****************************************************************************/
/*!
 * \file
 *
22
 * \brief Definition of a problem, where CO2 is injected in a reservoir.
23
 */
24
25
#ifndef DUMUX_HETEROGENEOUS_PROBLEM_NI_HH
#define DUMUX_HETEROGENEOUS_PROBLEM_NI_HH
26
27
28

#if HAVE_ALUGRID
#include <dune/grid/alugrid/2d/alugrid.hh>
29
30
#elif HAVE_DUNE_ALUGRID
#include <dune/alugrid/grid.hh>
31
#else
Christoph Grueninger's avatar
[co2ni]    
Christoph Grueninger committed
32
#warning ALUGrid is necessary for this test.
33
#include <dune/grid/io/file/dgfparser/dgfyasp.hh>
34
35
#endif

36
#include <dumux/implicit/co2/co2volumevariables.hh>
37
#include <dumux/implicit/co2/co2model.hh>
38
#include <dumux/material/fluidsystems/brineco2fluidsystem.hh>
39
#include <dumux/implicit/common/implicitporousmediaproblem.hh>
40
#include <dumux/implicit/box/intersectiontovertexbc.hh>
41

42
#include "heterogeneousspatialparameters.hh"
43
44
45
46
47
48
#include "heterogeneousco2tables.hh"

namespace Dumux
{

template <class TypeTag>
49
class HeterogeneousNIProblem;
50
51
52

namespace Properties
{
53
54
55
NEW_TYPE_TAG(HeterogeneousNIProblem, INHERITS_FROM(TwoPTwoCNI, HeterogeneousSpatialParams));
NEW_TYPE_TAG(HeterogeneousNIBoxProblem, INHERITS_FROM(BoxModel, HeterogeneousNIProblem));
NEW_TYPE_TAG(HeterogeneousNICCProblem, INHERITS_FROM(CCModel, HeterogeneousNIProblem));
56
57
58


// Set the grid type
59
#if HAVE_ALUGRID || HAVE_DUNE_ALUGRID
60
SET_TYPE_PROP(HeterogeneousNIProblem, Grid, Dune::ALUGrid<2, 2, Dune::cube, Dune::nonconforming>);
61
#else
62
SET_TYPE_PROP(HeterogeneousNIProblem, Grid, Dune::YaspGrid<2>);
63
64
65
#endif

// Set the problem property
66
SET_TYPE_PROP(HeterogeneousNIProblem, Problem, Dumux::HeterogeneousNIProblem<TypeTag>);
67
68

// Set fluid configuration
69
SET_TYPE_PROP(HeterogeneousNIProblem, FluidSystem, Dumux::BrineCO2FluidSystem<TypeTag>);
70
71

// Set the CO2 table to be used; in this case not the the default table
72
SET_TYPE_PROP(HeterogeneousNIProblem, CO2Table, Dumux::HeterogeneousCO2Tables::CO2Tables);
73

74
// Set the salinity mass fraction of the brine in the reservoir
75
SET_SCALAR_PROP(HeterogeneousNIProblem, ProblemSalinity, 1e-1);
76
77

//! the CO2 Model and VolumeVariables properties
78
SET_TYPE_PROP(HeterogeneousNIProblem, IsothermalVolumeVariables, CO2VolumeVariables<TypeTag>);
79
SET_TYPE_PROP(HeterogeneousNIProblem, IsothermalModel, CO2Model<TypeTag>);
80

81
// Use Moles
82
SET_BOOL_PROP(HeterogeneousNIProblem, UseMoles, false);
83
84
85
86
87
}


/*!
 * \ingroup CO2NIModel
88
 * \ingroup ImplicitTestProblems
89
 * \brief Definition of a problem, where CO2 is injected in a reservoir.
90
91
92
93
94
95
96
97
98
99
100
101
102
 *
 * The domain is sized 200m times 100m and consists of four layers, a
 * permeable reservoir layer at the bottom, a barrier rock layer with reduced permeability followed by another reservoir layer
 * and at the top a barrier rock layer with a very low permeablility.
 *
 * CO2 is injected at the permeable bottom layer
 * from the left side. The domain is initially filled with brine.
 *
 * The grid is unstructered and permeability and porosity for the elements are read in from the grid file. The grid file
 * also contains so-called boundary ids which can be used assigned during the grid creation in order to differentiate
 * between different parts of the boundary.
 * These boundary ids can be imported into the problem where the boundary conditions can then be assigned accordingly.
 *
103
104
105
 * The model is able to use either mole or mass fractions. The property useMoles can be set to either true or false in the
 * problem file. Make sure that the according units are used in the problem setup. The default setting for useMoles is false.
 *
106
107
 * To run the simulation execute the following line in shell (works with the box and cell centered spatial discretization method):
 * <tt>./test_ccco2ni </tt> or <tt>./test_boxco2ni </tt>
108
 */
109
template <class TypeTag >
110
class HeterogeneousNIProblem : public ImplicitPorousMediaProblem<TypeTag>
111
{
112
    typedef ImplicitPorousMediaProblem<TypeTag> ParentType;
113
114
115
116
117
118
119
120

    typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
    typedef typename GET_PROP_TYPE(TypeTag, Grid) Grid;
    typedef Dune::GridPtr<Grid> GridPointer;
    typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
    typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
    typedef typename GET_PROP_TYPE(TypeTag, VolumeVariables) VolumeVariables;

121
122
    static const bool useMoles = GET_PROP_VALUE(TypeTag, UseMoles);

123
124
125
126
127
128
129
    enum {
        // Grid and world dimension
        dim = GridView::dimension,
        dimWorld = GridView::dimensionworld
    };

    // copy some indices for convenience
130
    typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
131
132
133
134
135
136
137
138
139
140
141
    enum {
        lPhaseIdx = Indices::wPhaseIdx,
        gPhaseIdx = Indices::nPhaseIdx,


        BrineIdx = FluidSystem::BrineIdx,
        CO2Idx = FluidSystem::CO2Idx,

        conti0EqIdx = Indices::conti0EqIdx,
        contiCO2EqIdx = conti0EqIdx + CO2Idx,
#if !ISOTHERMAL
142
143
        temperatureIdx = Indices::temperatureIdx,
        energyEqIdx = Indices::energyEqIdx,
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
#endif

    };


    typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
    typedef typename GET_PROP_TYPE(TypeTag, BoundaryTypes) BoundaryTypes;
    typedef typename GET_PROP_TYPE(TypeTag, TimeManager) TimeManager;

    typedef typename GridView::template Codim<0>::Entity Element;
    typedef typename GridView::template Codim<0>::Iterator ElementIterator;
    typedef typename GridView::template Codim<dim>::Entity Vertex;
    typedef typename GridView::Intersection Intersection;

    typedef typename GET_PROP_TYPE(TypeTag, FVElementGeometry) FVElementGeometry;
    typedef typename GET_PROP_TYPE(TypeTag, GridCreator) GridCreator;

    typedef Dune::FieldVector<Scalar, dimWorld> GlobalPosition;
    typedef typename GET_PROP_TYPE(TypeTag, PTAG(CO2Table)) CO2Table;
    typedef Dumux::CO2<Scalar, CO2Table> CO2;
164
165
    enum { isBox = GET_PROP_VALUE(TypeTag, ImplicitIsBox) };
    enum { dofCodim = isBox ? dim : 0 };
166
167
168
169
170
171
172
173

public:
    /*!
     * \brief The constructor
     *
     * \param timeManager The time manager
     * \param gridView The grid view
     */
174
    HeterogeneousNIProblem(TimeManager &timeManager,
175
                     const GridView &gridView)
176
        : ParentType(timeManager, GridCreator::grid().leafGridView()),
177
          //Boundary Id Setup:
178
          injectionTop_(1),
179
180
181
182
          injectionBottom_(2),
          dirichletBoundary_(3),
          noFlowBoundary_(4),
          intersectionToVertexBC_(*this)
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
    {
        try
        {
            nTemperature_       = GET_RUNTIME_PARAM(TypeTag, int, FluidSystem.NTemperature);
            nPressure_          = GET_RUNTIME_PARAM(TypeTag, int, FluidSystem.NPressure);
            pressureLow_        = GET_RUNTIME_PARAM(TypeTag, Scalar, FluidSystem.PressureLow);
            pressureHigh_       = GET_RUNTIME_PARAM(TypeTag, Scalar, FluidSystem.PressureHigh);
            temperatureLow_     = GET_RUNTIME_PARAM(TypeTag, Scalar, FluidSystem.TemperatureLow);
            temperatureHigh_    = GET_RUNTIME_PARAM(TypeTag, Scalar, FluidSystem.TemperatureHigh);
            depthBOR_           = GET_RUNTIME_PARAM(TypeTag, Scalar, Problem.DepthBOR);
            name_               = GET_RUNTIME_PARAM(TypeTag, std::string, Problem.Name);
            injectionRate_      = GET_RUNTIME_PARAM(TypeTag, Scalar, Problem.InjectionRate);
            injectionPressure_ = GET_RUNTIME_PARAM(TypeTag, Scalar, Problem.InjectionPressure);
            injectionTemperature_ = GET_RUNTIME_PARAM(TypeTag, Scalar, Problem.InjectionTemperature);
        }
        catch (Dumux::ParameterException &e) {
            std::cerr << e << ". Abort!\n";
            exit(1) ;
        }
        catch (...) {
            std::cerr << "Unknown exception thrown!\n";
            exit(1);
        }

        /* Alternative syntax:
         * typedef typename GET_PROP(TypeTag, ParameterTree) ParameterTree;
         * const Dune::ParameterTree &tree = ParameterTree::tree();
         * nTemperature_       = tree.template get<int>("FluidSystem.nTemperature");
         *
         * + We see what we do
         * - Reporting whether it was used does not work
         * - Overwriting on command line not possible
        */

        GridPointer *gridPtr = &GridCreator::gridPtr();
        this->spatialParams().setParams(gridPtr);



        eps_ = 1e-6;

        // initialize the tables of the fluid system
        FluidSystem::init(/*Tmin=*/temperatureLow_,
                          /*Tmax=*/temperatureHigh_,
                          /*nT=*/nTemperature_,
                          /*pmin=*/pressureLow_,
                          /*pmax=*/pressureHigh_,
                          /*np=*/nPressure_);
231
232
233
234
235
236
237
238
239
240

        //stateing in the console whether mole or mass fractions are used
        if(!useMoles)
        {
        	std::cout<<"problem uses mass-fractions"<<std::endl;
        }
        else
        {
        	std::cout<<"problem uses mole-fractions"<<std::endl;
        }
241
242
243
    }

    /*!
244
245
246
     * \brief User defined output after the time integration
     *
     * Will be called diretly after the time integration.
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
     */
    void postTimeStep()
    {
        // Calculate storage terms
        PrimaryVariables storageL, storageG;
        this->model().globalPhaseStorage(storageL, lPhaseIdx);
        this->model().globalPhaseStorage(storageG, gPhaseIdx);

        // Write mass balance information for rank 0
        if (this->gridView().comm().rank() == 0) {
            std::cout<<"Storage: liquid=[" << storageL << "]"
                     << " gas=[" << storageG << "]\n";
        }
    }

262
    /*!
263
264
265
     * \brief Append all quantities of interest which can be derived
     *        from the solution of the current time step to the VTK
     *        writer.
266
     */
267
268
269
    void addOutputVtkFields()
        {
            typedef Dune::BlockVector<Dune::FieldVector<double, 1> > ScalarField;
270
271
272
273

            // get the number of degrees of freedom
            unsigned numDofs = this->model().numDofs();
            unsigned numElements = this->gridView().size(0);
274
275

            //create required scalar fields
276
277
278
279
280
            ScalarField *Kxx = this->resultWriter().allocateManagedBuffer(numElements);
            ScalarField *cellPorosity = this->resultWriter().allocateManagedBuffer(numElements);
            ScalarField *boxVolume = this->resultWriter().allocateManagedBuffer(numDofs);
            ScalarField *enthalpyW = this->resultWriter().allocateManagedBuffer(numDofs);
            ScalarField *enthalpyN = this->resultWriter().allocateManagedBuffer(numDofs);
281
282
283
            (*boxVolume) = 0;

            //Fill the scalar fields with values
284

285
286
            ScalarField *rank = this->resultWriter().allocateManagedBuffer(numElements);

287
            FVElementGeometry fvGeometry;
288
289
            VolumeVariables volVars;

290
291
292
            ElementIterator eIt = this->gridView().template begin<0>();
            ElementIterator eEndIt = this->gridView().template end<0>();
            for (; eIt != eEndIt; ++eIt)
293
            {
294
295
                int eIdx = this->elementMapper().map(*eIt);
                (*rank)[eIdx] = this->gridView().comm().rank();
296
                fvGeometry.update(this->gridView(), *eIt);
297
298


299
                for (int scvIdx = 0; scvIdx < fvGeometry.numScv; ++scvIdx)
300
                {
301
302
                    int dofIdxGlobal = this->model().dofMapper().map(*eIt, scvIdx, dofCodim);
                    volVars.update(this->model().curSol()[dofIdxGlobal],
303
                                   *this,
304
                                   *eIt,
305
306
                                   fvGeometry,
                                   scvIdx,
307
                                   false);
308
309
310
                    (*boxVolume)[dofIdxGlobal] += fvGeometry.subContVol[scvIdx].volume;
                    (*enthalpyW)[dofIdxGlobal] = volVars.enthalpy(lPhaseIdx);
                    (*enthalpyN)[dofIdxGlobal] = volVars.enthalpy(gPhaseIdx);
311
                }
312
313
                (*Kxx)[eIdx] = this->spatialParams().intrinsicPermeability(*eIt, fvGeometry, /*element data*/ 0);
                (*cellPorosity)[eIdx] = this->spatialParams().porosity(*eIt, fvGeometry, /*element data*/ 0);
314
315
316
            }

            //pass the scalar fields to the vtkwriter
317
318
319
320
321
            this->resultWriter().attachDofData(*boxVolume, "boxVolume", isBox);
            this->resultWriter().attachDofData(*Kxx, "Kxx", false); //element data
            this->resultWriter().attachDofData(*cellPorosity, "cellwisePorosity", false); //element data
            this->resultWriter().attachDofData(*enthalpyW, "enthalpyW", isBox);
            this->resultWriter().attachDofData(*enthalpyN, "enthalpyN", isBox);
322
323
324
325
326
327
328
329
330
331
332

        }

    /*!
     * \brief The problem name.
     *
     * This is used as a prefix for files generated by the simulation.
     */
    const std::string name() const
    { return name_; }

333
#if ISOTHERMAL
334
335
336
    /*!
     * \brief Returns the temperature within the domain.
     *
337
338
339
340
     * \param globalPos The position
     *
     * This problem assumes a geothermal gradient with 
     * a surface temperature of 10 degrees Celsius.
341
     */
342
    Scalar temperatureAtPos(const GlobalPosition &globalPos) const
343
344
    {
        return temperature_(globalPos);
345
    }
346
#endif
347

348
    /*!
349
     * \brief Returns the source term
350
     *
351
352
     * \param values Stores the source values for the conservation equations in
     *               \f$ [ \textnormal{unit of primary variable} / (m^\textrm{dim} \cdot s )] \f$
353
     * \param globalPos The global position
354
355
356
357
358
359
     *
     * Depending on whether useMoles is set on true or false, the flux has to be given either in
     * kg/(m^3*s) or mole/(m^3*s) in the input file!!
     *
     * Note that the energy balance is always calculated in terms of specific enthalpies [J/kg]
     * and that the Neumann fluxes have to be specified accordingly.
360
     */
361
362
363
364
365
366
367
368
369
    void sourceAtPos(PrimaryVariables &values,
                const GlobalPosition &globalPos) const
    {
        values = 0;
    }

    /*!
     * \name Boundary conditions
     */
370

371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
    /*!
     * \brief Specifies which kind of boundary condition should be
     *        used for which equation on a given boundary segment.
     *
     * \param values The boundary types for the conservation equations
     * \param vertex The vertex for which the boundary type is set
     */

    void boundaryTypes(BoundaryTypes &values, const Vertex &vertex) const
    {
        intersectionToVertexBC_.boundaryTypes(values, vertex);
    }

    /*!
     * \brief Specifies which kind of boundary condition should be
     *        used for which equation on a given boundary segment.
     *
     * \param values The boundary types for the conservation equations
389
     * \param intersection specifies the intersection at which boundary
390
     *           condition is to set
391
     */
392
    void boundaryTypes(BoundaryTypes &values, const Intersection &intersection) const
393
    {
394
        int boundaryId = intersection.boundaryId();
395
396
397
398
399
400
401
402
403
404
405
        if (boundaryId < 1 || boundaryId > 4)
        {
            std::cout<<"invalid boundaryId: "<<boundaryId<<std::endl;
            DUNE_THROW(Dune::InvalidStateException, "Invalid " << boundaryId);
        }
        if (boundaryId == dirichletBoundary_)
            values.setAllDirichlet();
        else
            values.setAllNeumann();
    }

406
    /*!
407
408
     * \brief Evaluates the boundary conditions for a Dirichlet
     *        boundary segment
409
     *
410
411
     * \param values Stores the Dirichlet values for the conservation equations in
     *               \f$ [ \textnormal{unit of primary variable} ] \f$
412
413
414
415
416
417
     * \param globalPos The global position
     */
    void dirichletAtPos(PrimaryVariables &values, const GlobalPosition &globalPos) const
    {
        initial_(values, globalPos);
    }
418

419
    /*!
420
     * \brief Evaluate the boundary conditions for a Neumann
421
422
     *        boundary segment.
     *
423
424
      * \param values Stores the Neumann values for the conservation equations in
     *               \f$ [ \textnormal{unit of conserved quantity} / (m^(dim-1) \cdot s )] \f$
425
     * \param element The finite element
426
     * \param fvGeometry The finite volume geometry of the element
427
     * \param intersection The intersection between element and boundary
428
     * \param scvIdx The local index of the sub-control volume
429
430
     * \param boundaryFaceIdx The index of the boundary face
     *
431
432
     * The \a values store the mass flux of each phase normal to the boundary.
     * Negative values indicate an inflow.
433
434
     *
     * Depending on whether useMoles is set on true or false, the flux has to be given either in
435
     * kg/(m^2*s) or mole/(m^2*s) in the input file!! Convert dividing by molar mass from the fluid system FluidSystem::molarMass(CO2Idx)
436
437
438
     */
    void neumann(PrimaryVariables &values,
                 const Element &element,
439
                 const FVElementGeometry &fvGeometry,
440
                 const Intersection &intersection,
441
442
443
                 int scvIdx,
                 int boundaryFaceIdx) const
    {
444
        int boundaryId = intersection.boundaryId();
445
446
447
448

        values = 0;
        if (boundaryId == injectionBottom_)
        {
449
            values[contiCO2EqIdx] = -injectionRate_; // see above comment: kg/(s*m^2) or mole/(m^2*s) depending on useMoles!!
450
#if !ISOTHERMAL
451
452
            values[energyEqIdx] = -injectionRate_/*kg/(m^2 s)*/*CO2::gasEnthalpy(
                                    injectionTemperature_, injectionPressure_)/*J/kg*/; // W/(m^2)
453
454
455
456
457
458
459
460
461
462
463
464
#endif
        }
    }

    // \}

    /*!
     * \name Volume terms
     */
    // \{

    /*!
465
     * \brief Evaluates the initial values for a control volume
466
     *
467
468
469
     * \param values Stores the initial values for the conservation equations in
     *               \f$ [ \textnormal{unit of primary variables} ] \f$
     * \param globalPos The global position
470
     */
471
472
    void initialAtPos(PrimaryVariables &values,
                      const GlobalPosition &globalPos) const
473
474
475
476
477
    {
        initial_(values, globalPos);
    }

    /*!
478
     * \brief Returns the initial phase state for a control volume.
479
     *
480
     * \param vertex The vertex
481
     * \param vIdxGlobal The global index of the vertex
482
483
     * \param globalPos The global position
     */
484
    int initialPhasePresence(const Vertex &vertex,
485
                             int &vIdxGlobal,
486
                             const GlobalPosition &globalPos) const
487
    { return Indices::wPhaseOnly; }
488
489
490
491

    // \}

private:
492
493
494
495
496
497
498
499
500
    /*!
     * \brief Evaluates the initial values for a control volume
     *
     * The internal method for the initial condition
     *
     * \param values Stores the initial values for the conservation equations in
     *               \f$ [ \textnormal{unit of primary variables} ] \f$
     * \param globalPos The global position
     */
501
502
503
504
505
506
    void initial_(PrimaryVariables &values,
                  const GlobalPosition &globalPos) const
    {
        Scalar temp = temperature_(globalPos);
        Scalar densityW = FluidSystem::Brine::liquidDensity(temp, 1e7);

507
        Scalar pl =  1e5 - densityW*this->gravity()[dim-1]*(depthBOR_ - globalPos[dim-1]);
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
        Scalar moleFracLiquidCO2 = 0.00;
        Scalar moleFracLiquidBrine = 1.0 - moleFracLiquidCO2;

        Scalar meanM =
            FluidSystem::molarMass(BrineIdx)*moleFracLiquidBrine +
            FluidSystem::molarMass(CO2Idx)*moleFracLiquidCO2;

        Scalar massFracLiquidCO2 = moleFracLiquidCO2*FluidSystem::molarMass(CO2Idx)/meanM;

        values[Indices::pressureIdx] = pl;
        values[Indices::switchIdx] = massFracLiquidCO2;
#if !ISOTHERMAL
            values[temperatureIdx] = temperature_(globalPos); //K
#endif


    }

    Scalar temperature_(const GlobalPosition globalPos) const
    {
528
        Scalar T = 283.0 + (depthBOR_ - globalPos[dim-1])*0.03; 
529
        return T;
530
    }
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555

    Scalar depthBOR_;
    Scalar injectionRate_;
    Scalar injectionPressure_;
    Scalar injectionTemperature_;
    Scalar eps_;

    int nTemperature_;
    int nPressure_;

    std::string name_ ;

    Scalar pressureLow_, pressureHigh_;
    Scalar temperatureLow_, temperatureHigh_;

    int injectionTop_;
    int injectionBottom_;
    int dirichletBoundary_;
    int noFlowBoundary_;

    const IntersectionToVertexBC<TypeTag> intersectionToVertexBC_;
};
} //end namespace

#endif