boundarytypes.hh 12.7 KB
Newer Older
1
2
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
3
/*****************************************************************************
4
 *   See the file COPYING for full copying permissions.                      *
5
 *                                                                           *
6
 *   This program is free software: you can redistribute it and/or modify    *
7
 *   it under the terms of the GNU General Public License as published by    *
8
9
 *   the Free Software Foundation, either version 2 of the License, or       *
 *   (at your option) any later version.                                     *
10
 *                                                                           *
11
12
 *   This program is distributed in the hope that it will be useful,         *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of          *
13
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the            *
14
15
16
17
 *   GNU General Public License for more details.                            *
 *                                                                           *
 *   You should have received a copy of the GNU General Public License       *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.   *
18
19
20
21
22
23
24
25
26
27
28
29
30
 *****************************************************************************/
/*!
 * \file
 * \brief Class to specify the type of a boundary.
 */
#ifndef BOUNDARY_TYPES_HH
#define BOUNDARY_TYPES_HH

#include <dumux/common/valgrind.hh>

namespace Dumux
{

31
/*!
32
 * \ingroup BC
33
34
 * \brief Class to specify the type of a boundary.
 */
35
36
37
38
39
40
41
42
template <int numEq>
class BoundaryTypes
{
public:
    BoundaryTypes()
    { reset(); }

    /*!
43
     * \brief Reset the boundary types for all equations.
44
45
     *
     * After this method no equations will be disabled and neither
46
     * Neumann nor Dirichlet conditions will be evaluated. This
47
     * corresponds to a Neumann zero boundary.
48
49
50
     */
    void reset()
    {
51
52
53
        for (int eqIdx=0; eqIdx < numEq; ++eqIdx)
        {
            resetEq(eqIdx);
54
        }
55
56
    }

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
    /*!
     * \brief Reset the boundary types for one equation.
     */
    void resetEq(int eqIdx)
    {
          boundaryInfo_[eqIdx].visited = 0;

          boundaryInfo_[eqIdx].isDirichlet = 0;
          boundaryInfo_[eqIdx].isNeumann = 0;
          boundaryInfo_[eqIdx].isOutflow = 0;
          boundaryInfo_[eqIdx].isCouplingDirichlet = 0;
          boundaryInfo_[eqIdx].isCouplingNeumann = 0;
          boundaryInfo_[eqIdx].isCouplingMortar = 0;

          eq2pvIdx_[eqIdx] = eqIdx;
          pv2eqIdx_[eqIdx] = eqIdx;
    }

75
    /*!
76
77
78
79
     * \brief Returns true if the boundary types for a given equation
     *        has been specified.
     *
     * \param eqIdx The index of the equation
80
81
     */
    bool isSet(int eqIdx) const
82
    { return boundaryInfo_[eqIdx].visited; }
83
84
85
86

    /*!
     * \brief Make sure the boundary conditions are well-posed.
     *
87
     * If they are not, an assertion fails and the program aborts!
88
     * (if the NDEBUG macro is not defined)
89
90
91
     */
    void checkWellPosed() const
    {
92
93
#ifndef NDEBUG
        for (int i=0; i < numEq; ++i)
94
95
            // if this fails, at least one condition is missing.
            assert(boundaryInfo_[i].visited);
96
#endif
97
    }
98
99

    /*!
100
     * \brief Set all boundary conditions to Neumann.
101
102
103
     */
    void setAllNeumann()
    {
104
105
106
        for (int eqIdx = 0; eqIdx < numEq; ++eqIdx)
        {
            setNeumann(eqIdx);
107
108
109
110
        }
    }

    /*!
111
     * \brief Set all boundary conditions to Dirichlet.
112
113
114
     */
    void setAllDirichlet()
    {
115
116
117
        for (int eqIdx = 0; eqIdx < numEq; ++ eqIdx)
        {
            setDirichlet(eqIdx);
118
119
120
        }
    }

121
    /*!
122
     * \brief Set all boundary conditions to Neumann.
123
124
125
     */
    void setAllOutflow()
    {
126
127
128
        for (int eqIdx = 0; eqIdx < numEq; ++eqIdx)
        {
            setOutflow(eqIdx);
129
130
131
        }
    }

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
    /*!
     * \brief Set all boundary conditions to Dirichlet-like coupling
     */
    void setAllCouplingDirichlet()
    {
        for (int eqIdx = 0; eqIdx < numEq; ++eqIdx)
        {
            setCouplingDirichlet(eqIdx);
        }
    }

    /*!
     * \brief Set all boundary conditions to Neumann-like coupling.
     */
    void setAllCouplingNeumann()
    {
        for (int eqIdx = 0; eqIdx < numEq; ++eqIdx)
        {
            setCouplingNeumann(eqIdx);
        }
    }
    /*!
     * \brief Set all boundary conditions to mortar coupling.
     */
    void setAllCouplingMortar()
    {
        for (int eqIdx = 0; eqIdx < numEq; ++eqIdx)
        {
            setCouplingDirichlet(eqIdx);
        }
    }

164
    /*!
165
     * \brief Set a Neumann boundary condition for a single a single
166
     *        equation.
167
168
     *
     * \param eqIdx The index of the equation
169
170
171
     */
    void setNeumann(int eqIdx)
    {
172
        resetEq(eqIdx);
173
        boundaryInfo_[eqIdx].visited = 1;
174
        boundaryInfo_[eqIdx].isNeumann = 1;
175
176
177
178
179

        Valgrind::SetDefined(boundaryInfo_[eqIdx]);
    }

    /*!
180
     * \brief Set a Dirichlet boundary condition for a single primary
181
182
     *        variable
     *
183
184
185
186
     * \param pvIdx The index of the primary variable for which the
     *              Dirichlet condition should apply.
     * \param eqIdx The index of the equation which should used to set
     *              the Dirichlet condition
187
     */
188
    void setDirichlet(int pvIdx, int eqIdx)
189
    {
190
        resetEq(eqIdx);
191
192
193
194
195
196
197
198
199
200
        boundaryInfo_[eqIdx].visited = 1;
        boundaryInfo_[eqIdx].isDirichlet = 1;

        // update the equation <-> primary variable mapping
        eq2pvIdx_[eqIdx] = pvIdx;
        pv2eqIdx_[pvIdx] = eqIdx;

        Valgrind::SetDefined(boundaryInfo_[eqIdx]);
    }

201
    /*!
202
     * \brief Set a Neumann boundary condition for a single a single
203
     *        equation.
204
205
206
     *
     * \param eqIdx The index of the equation on which the outflow
     *              condition applies.
207
208
209
     */
    void setOutflow(int eqIdx)
    {
210
        resetEq(eqIdx);
211
212
        boundaryInfo_[eqIdx].visited = 1;
        boundaryInfo_[eqIdx].isOutflow = 1;
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251

        Valgrind::SetDefined(boundaryInfo_[eqIdx]);
    }

    /*!
     * \brief Set a boundary condition for a single equation to
     *        a Dirichlet-like coupling condition.
     */
    void setCouplingDirichlet(int eqIdx)
    {
        resetEq(eqIdx);
        boundaryInfo_[eqIdx].visited = 1;
        boundaryInfo_[eqIdx].isCouplingDirichlet = 1;

        Valgrind::SetDefined(boundaryInfo_[eqIdx]);
    }

    /*!
     * \brief Set a boundary condition for a single equation to
     *        a Neumann-like coupling condition.
     */
    void setCouplingNeumann(int eqIdx)
    {
        resetEq(eqIdx);
        boundaryInfo_[eqIdx].visited = 1;
        boundaryInfo_[eqIdx].isCouplingNeumann = 1;

        Valgrind::SetDefined(boundaryInfo_[eqIdx]);
    }

    /*!
     * \brief Set a boundary condition for a single equation to
     *        a mortar coupling condition.
     */
    void setCouplingMortar(int eqIdx)
    {
        resetEq(eqIdx);
        boundaryInfo_[eqIdx].visited = 1;
        boundaryInfo_[eqIdx].isCouplingMortar = 1;
252
253
254
255

        Valgrind::SetDefined(boundaryInfo_[eqIdx]);
    }

256
    /*!
257
     * \brief Set a Dirichlet boundary condition for a single primary
258
     *        variable.
259
     *
260
261
     * Depending on the discretization, setting the Dirichlet condition
     * will replace the balance equation with index equal to pvIdx.
262
     *
263
264
     * \param pvIdx The index of the primary variable inside a
     *              PrimaryVariables object.
265
     */
266
    void setDirichlet(int pvIdx)
267
    {
268
        setDirichlet(pvIdx, pvIdx);
269
270
271
272
    }

    /*!
     * \brief Returns true if an equation is used to specify a
273
     *        Dirichlet condition.
274
275
     *
     * \param eqIdx The index of the equation
276
277
     */
    bool isDirichlet(unsigned eqIdx) const
Katherina Baber's avatar
Katherina Baber committed
278
    { return boundaryInfo_[eqIdx].isDirichlet; }
279
280
281

    /*!
     * \brief Returns true if some equation is used to specify a
282
     *        Dirichlet condition.
283
284
285
286
287
288
289
     */
    bool hasDirichlet() const
    {
        for (int i = 0; i < numEq; ++i)
            if (boundaryInfo_[i].isDirichlet)
                return true;
        return false;
Katherina Baber's avatar
Katherina Baber committed
290
    }
291
292
293

    /*!
     * \brief Returns true if an equation is used to specify a
294
     *        Neumann condition.
295
296
     *
     * \param eqIdx The index of the equation
297
298
     */
    bool isNeumann(unsigned eqIdx) const
Katherina Baber's avatar
Katherina Baber committed
299
    { return boundaryInfo_[eqIdx].isNeumann; }
300
301
302

    /*!
     * \brief Returns true if some equation is used to specify a
303
     *        Neumann condition.
304
305
306
307
     */
    bool hasNeumann() const
    {
        for (int i = 0; i < numEq; ++i)
Andreas Lauser's avatar
Andreas Lauser committed
308
            if (boundaryInfo_[i].isNeumann)
309
310
                return true;
        return false;
Katherina Baber's avatar
Katherina Baber committed
311
    }
312

313
314
315
    /*!
     * \brief Returns true if an equation is used to specify an
     *        outflow condition.
316
317
     *
     * \param eqIdx The index of the equation
318
319
     */
    bool isOutflow(unsigned eqIdx) const
Katherina Baber's avatar
Katherina Baber committed
320
    { return boundaryInfo_[eqIdx].isOutflow; }
321
322
323
324
325
326
327
328
329
330
331

    /*!
     * \brief Returns true if some equation is used to specify an
     *        outflow condition.
     */
    bool hasOutflow() const
    {
        for (int i = 0; i < numEq; ++i)
            if (boundaryInfo_[i].isOutflow)
                return true;
        return false;
Katherina Baber's avatar
Katherina Baber committed
332
    }
333

334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
    /*!
     * \brief Returns true if an equation is used to specify an
     *        Dirichlet coupling condition.
     *
     * \param eqIdx The index of the equation
     */
    bool isCouplingDirichlet(unsigned eqIdx) const
    { return boundaryInfo_[eqIdx].isCouplingDirichlet; }

    /*!
     * \brief Returns true if some equation is used to specify an
     *        Dirichlet coupling condition.
     */
    bool hasCouplingDirichlet() const
    {
        for (int i = 0; i < numEq; ++i)
            if (boundaryInfo_[i].isCouplingDirichlet)
                return true;
        return false;
    }

    /*!
     * \brief Returns true if an equation is used to specify an
     *        Neumann coupling condition.
     *
     * \param eqIdx The index of the equation
     */
    bool isCouplingNeumann(unsigned eqIdx) const
    { return boundaryInfo_[eqIdx].isCouplingNeumann; }

    /*!
     * \brief Returns true if some equation is used to specify an
     *        Neumann coupling condition.
     */
    bool hasCouplingNeumann() const
    {
        for (int i = 0; i < numEq; ++i)
            if (boundaryInfo_[i].isCouplingNeumann)
                return true;
        return false;
    }

376
377
    /*!
     * \brief Returns true if an equation is used to specify a
378
     *        Mortar coupling condition.
379
380
     *
     * \param eqIdx The index of the equation
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
     */
    bool isCouplingMortar(unsigned eqIdx) const
    {
        return boundaryInfo_[eqIdx].isCouplingMortar;
    }

    /*!
     * \brief Returns true if some equation is used to specify an
     *        Mortar coupling condition.
     */
    bool hasCouplingMortar() const
    {
        for (int i = 0; i < numEq; ++i)
            if (boundaryInfo_[i].isCouplingMortar)
                return true;
        return false;
    }

    /*!
     * \brief Returns true if an equation is used to specify a
     *        coupling condition.
402
     *
403
     * \param eqIdx The index of the equation
404
405
406
     */
    bool isCoupling(unsigned eqIdx) const
    {
407
408
409
        return boundaryInfo_[eqIdx].isCouplingDirichlet
               || boundaryInfo_[eqIdx].isCouplingNeumann
               || boundaryInfo_[eqIdx].isCouplingMortar;
410
411
412
413
414
415
416
417
    }

    /*!
     * \brief Returns true if some equation is used to specify a
     *        coupling condition.
     */
    bool hasCoupling() const
    {
418
419
420
        for (int i = 0; i < numEq; ++i)
            if (isCoupling(i))
                return true;
421
422
423
        return false;
    }

424
425
    /*!
     * \brief Returns the index of the equation which should be used
426
     *        for the Dirichlet condition of the pvIdx's primary
427
     *        variable.
428
429
430
     *
     * \param pvIdx The index of the primary variable which is be set
     *              by the Dirichlet condition.
431
432
     */
    unsigned dirichletToEqIndex(unsigned pvIdx) const
Katherina Baber's avatar
Katherina Baber committed
433
    { return pv2eqIdx_[pvIdx]; }
434
435
436

    /*!
     * \brief Returns the index of the primary variable which should
437
     *        be used for the Dirichlet condition given an equation
438
     *        index.
439
440
441
     *
     * \param eqIdx The index of the equation which is used to set
     *              the Dirichlet condition.
442
443
     */
    unsigned eqToDirichletIndex(unsigned eqIdx) const
Katherina Baber's avatar
Katherina Baber committed
444
    { return eq2pvIdx_[eqIdx]; }
445

446
protected:
447
    // this is a bitfield structure!
448
    struct __attribute__((__packed__)) {
449
450
        unsigned char visited : 1;
        unsigned char isDirichlet : 1;
Andreas Lauser's avatar
Andreas Lauser committed
451
        unsigned char isNeumann : 1;
452
        unsigned char isOutflow : 1;
453
454
455
        unsigned char isCouplingDirichlet : 1;
        unsigned char isCouplingNeumann : 1;
        unsigned char isCouplingMortar : 1;
456
457
458
459
460
461
462
463
464
    } boundaryInfo_[numEq];

    unsigned char eq2pvIdx_[numEq];
    unsigned char pv2eqIdx_[numEq];
};

}

#endif