implicitmodel.hh 34.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
 *   See the file COPYING for full copying permissions.                      *
 *                                                                           *
 *   This program is free software: you can redistribute it and/or modify    *
 *   it under the terms of the GNU General Public License as published by    *
 *   the Free Software Foundation, either version 2 of the License, or       *
 *   (at your option) any later version.                                     *
 *                                                                           *
 *   This program is distributed in the hope that it will be useful,         *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of          *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the            *
 *   GNU General Public License for more details.                            *
 *                                                                           *
 *   You should have received a copy of the GNU General Public License       *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.   *
 *****************************************************************************/
/*!
 * \file
21
 * \brief Base class for fully-implicit models
22
 */
23
24
#ifndef DUMUX_IMPLICIT_MODEL_HH
#define DUMUX_IMPLICIT_MODEL_HH
25

26
#include <dune/common/version.hh>
27
#include <dune/geometry/type.hh>
28
#include <dune/istl/bvector.hh>
29

30
31
#include "implicitproperties.hh"
#include <dumux/common/valgrind.hh>
32
33
34
35
36
37
#include <dumux/parallel/vertexhandles.hh>

namespace Dumux
{

/*!
38
 * \ingroup ImplicitModel
39
40
41
42
 * \brief The base class for the vertex centered finite volume
 *        discretization scheme.
 */
template<class TypeTag>
43
class ImplicitModel
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
{
    typedef typename GET_PROP_TYPE(TypeTag, Model) Implementation;
    typedef typename GET_PROP_TYPE(TypeTag, Problem) Problem;
    typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
    typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
    typedef typename GET_PROP_TYPE(TypeTag, ElementMapper) ElementMapper;
    typedef typename GET_PROP_TYPE(TypeTag, VertexMapper) VertexMapper;
    typedef typename GET_PROP_TYPE(TypeTag, SolutionVector) SolutionVector;
    typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
    typedef typename GET_PROP_TYPE(TypeTag, JacobianAssembler) JacobianAssembler;
    typedef typename GET_PROP_TYPE(TypeTag, ElementVolumeVariables) ElementVolumeVariables;
    typedef typename GET_PROP_TYPE(TypeTag, VolumeVariables) VolumeVariables;

    enum {
        numEq = GET_PROP_VALUE(TypeTag, NumEq),
        dim = GridView::dimension
    };

    typedef typename GET_PROP_TYPE(TypeTag, FVElementGeometry) FVElementGeometry;
    typedef typename GET_PROP_TYPE(TypeTag, LocalJacobian) LocalJacobian;
    typedef typename GET_PROP_TYPE(TypeTag, LocalResidual) LocalResidual;
    typedef typename GET_PROP_TYPE(TypeTag, NewtonMethod) NewtonMethod;
    typedef typename GET_PROP_TYPE(TypeTag, NewtonController) NewtonController;

    typedef typename GridView::ctype CoordScalar;
    typedef typename GridView::template Codim<0>::Entity Element;
    typedef typename GridView::template Codim<0>::Iterator ElementIterator;
    typedef typename GridView::IntersectionIterator IntersectionIterator;

73
74
    typedef typename Dune::ReferenceElements<CoordScalar, dim> ReferenceElements;
    typedef typename Dune::ReferenceElement<CoordScalar, dim> ReferenceElement;
75

76
    enum { isBox = GET_PROP_VALUE(TypeTag, ImplicitIsBox) };
77
    enum { dofCodim = isBox ? dim : 0 };
78

79
    // copying a model is not a good idea
80
    ImplicitModel(const ImplicitModel &);
81
82
83
84
85

public:
    /*!
     * \brief The constructor.
     */
86
    ImplicitModel()
87
    : problemPtr_(0)
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
    {
        enableHints_ = GET_PARAM_FROM_GROUP(TypeTag, bool, Implicit, EnableHints);
    }

    /*!
     * \brief Apply the initial conditions to the model.
     *
     * \param problem The object representing the problem which needs to
     *             be simulated.
     */
    void init(Problem &problem)
    {
        problemPtr_ = &problem;

        updateBoundaryIndices_();

104
105
106
        int numDofs = asImp_().numDofs();
        uCur_.resize(numDofs);
        uPrev_.resize(numDofs);
107
        if (isBox)
108
            boxVolume_.resize(numDofs);
109
110

        localJacobian_.init(problem_());
111
        jacAsm_ = Dune::make_shared<JacobianAssembler>();
112
113
114
115
116
        jacAsm_->init(problem_());

        asImp_().applyInitialSolution_();

        // resize the hint vectors
117
        if (isBox && enableHints_) {
118
119
120
121
            int numVertices = gridView_().size(dim);
            curHints_.resize(numVertices);
            prevHints_.resize(numVertices);
            hintsUsable_.resize(numVertices);
122
123
124
125
126
127
128
129
130
131
132
133
134
135
            std::fill(hintsUsable_.begin(),
                      hintsUsable_.end(),
                      false);
        }

        // also set the solution of the "previous" time step to the
        // initial solution.
        uPrev_ = uCur_;
    }

    void setHints(const Element &element,
                  ElementVolumeVariables &prevVolVars,
                  ElementVolumeVariables &curVolVars) const
    {
136
        if (!isBox || !enableHints_)
137
138
            return;

139
140
141
#if DUNE_VERSION_NEWER(DUNE_COMMON, 2, 4)
        int n = element.subEntities(dim);
#else
142
        int n = element.template count<dim>();
143
#endif
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
        prevVolVars.resize(n);
        curVolVars.resize(n);
        for (int i = 0; i < n; ++i) {
            int globalIdx = vertexMapper().map(element, i, dim);

            if (!hintsUsable_[globalIdx]) {
                curVolVars[i].setHint(NULL);
                prevVolVars[i].setHint(NULL);
            }
            else {
                curVolVars[i].setHint(&curHints_[globalIdx]);
                prevVolVars[i].setHint(&prevHints_[globalIdx]);
            }
        }
    }

    void setHints(const Element &element,
                  ElementVolumeVariables &curVolVars) const
    {
163
        if (!isBox || !enableHints_)
164
165
            return;

166
167
168
#if DUNE_VERSION_NEWER(DUNE_COMMON, 2, 4)
        int n = element.subEntities(dim);
#else
169
        int n = element.template count<dim>();
170
#endif
171
172
173
174
175
176
177
178
179
180
181
182
183
        curVolVars.resize(n);
        for (int i = 0; i < n; ++i) {
            int globalIdx = vertexMapper().map(element, i, dim);

            if (!hintsUsable_[globalIdx])
                curVolVars[i].setHint(NULL);
            else
                curVolVars[i].setHint(&curHints_[globalIdx]);
        }
    }

    void updatePrevHints()
    {
184
        if (!isBox || !enableHints_)
185
186
187
188
189
190
191
192
            return;

        prevHints_ = curHints_;
    }

    void updateCurHints(const Element &element,
                        const ElementVolumeVariables &elemVolVars) const
    {
193
        if (!isBox || !enableHints_)
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
            return;

        for (unsigned int i = 0; i < elemVolVars.size(); ++i) {
            int globalIdx = vertexMapper().map(element, i, dim);
            curHints_[globalIdx] = elemVolVars[i];
            if (!hintsUsable_[globalIdx])
                prevHints_[globalIdx] = elemVolVars[i];
            hintsUsable_[globalIdx] = true;
        }
    }


    /*!
     * \brief Compute the global residual for an arbitrary solution
     *        vector.
     *
     * \param residual Stores the result
     * \param u The solution for which the residual ought to be calculated
     */
    Scalar globalResidual(SolutionVector &residual,
                          const SolutionVector &u)
    {
        SolutionVector tmp(curSol());
        curSol() = u;
        Scalar res = globalResidual(residual);
        curSol() = tmp;
        return res;
    }

    /*!
     * \brief Compute the global residual for the current solution
     *        vector.
     *
     * \param residual Stores the result
     */
    Scalar globalResidual(SolutionVector &residual)
    {
        residual = 0;

233
234
235
236
        ElementIterator eIt = gridView_().template begin<0>();
        const ElementIterator eEndIt = gridView_().template end<0>();
        for (; eIt != eEndIt; ++eIt) {
            localResidual().eval(*eIt);
237

238
239
            if (isBox)
            {
240
241
242
#if DUNE_VERSION_NEWER(DUNE_COMMON, 2, 4)
                for (int i = 0; i < eIt->subEntities(dim); ++i) {
#else
243
                for (int i = 0; i < eIt->template count<dim>(); ++i) {
244
#endif
245
                    int globalI = vertexMapper().map(*eIt, i, dim);
246
247
248
249
250
                    residual[globalI] += localResidual().residual(i);
                }
            }
            else
            {
251
                int globalI = elementMapper().map(*eIt);
252
                residual[globalI] = localResidual().residual(0);
253
254
255
256
257
258
259
260
261
            }
        }

        // calculate the square norm of the residual
        Scalar result2 = residual.two_norm2();
        if (gridView_().comm().size() > 1)
            result2 = gridView_().comm().sum(result2);

        // add up the residuals on the process borders
262
        if (isBox && gridView_().comm().size() > 1) {
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
            VertexHandleSum<PrimaryVariables, SolutionVector, VertexMapper>
                sumHandle(residual, vertexMapper());
            gridView_().communicate(sumHandle,
                                    Dune::InteriorBorder_InteriorBorder_Interface,
                                    Dune::ForwardCommunication);
        }

        return std::sqrt(result2);
    }

    /*!
     * \brief Compute the integral over the domain of the storage
     *        terms of all conservation quantities.
     *
     * \param storage Stores the result
     */
    void globalStorage(PrimaryVariables &storage)
    {
        storage = 0;

283
284
        ElementIterator eIt = gridView_().template begin<0>();
        const ElementIterator eEndIt = gridView_().template end<0>();
285
286
287
        for (; eIt != eEndIt; ++eIt)
        {
            if(eIt->partitionType() == Dune::InteriorEntity)
288
            {
289
290
291
292
                localResidual().evalStorage(*eIt);

                if (isBox)
                {
293
294
295
#if DUNE_VERSION_NEWER(DUNE_COMMON, 2, 4)
                    for (int i = 0; i < eIt->subEntities(dim); ++i)
#else
296
                    for (int i = 0; i < eIt->template count<dim>(); ++i)
297
298
#endif
                    {
299
                        storage += localResidual().storageTerm()[i];
300
                    }
301
302
303
304
305
                }
                else
                {
                    storage += localResidual().storageTerm()[0];
                }
306
            }
307
308
309
310
311
312
313
314
315
316
317
318
319
        }

        if (gridView_().comm().size() > 1)
            storage = gridView_().comm().sum(storage);
    }

    /*!
     * \brief Returns the volume \f$\mathrm{[m^3]}\f$ of a given control volume.
     *
     * \param globalIdx The global index of the control volume's
     *                  associated vertex
     */
    Scalar boxVolume(const int globalIdx) const
320
321
322
323
324
325
326
    {
        if (isBox)
        {
            return boxVolume_[globalIdx][0];
        }
        else
        {
327
            DUNE_THROW(Dune::InvalidStateException,
328
329
330
                       "requested box volume for cell-centered model");
        }
    }
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399

    /*!
     * \brief Reference to the current solution as a block vector.
     */
    const SolutionVector &curSol() const
    { return uCur_; }

    /*!
     * \brief Reference to the current solution as a block vector.
     */
    SolutionVector &curSol()
    { return uCur_; }

    /*!
     * \brief Reference to the previous solution as a block vector.
     */
    const SolutionVector &prevSol() const
    { return uPrev_; }

    /*!
     * \brief Reference to the previous solution as a block vector.
     */
    SolutionVector &prevSol()
    { return uPrev_; }

    /*!
     * \brief Returns the operator assembler for the global jacobian of
     *        the problem.
     */
    JacobianAssembler &jacobianAssembler()
    { return *jacAsm_; }

    /*!
     * \copydoc jacobianAssembler()
     */
    const JacobianAssembler &jacobianAssembler() const
    { return *jacAsm_; }

    /*!
     * \brief Returns the local jacobian which calculates the local
     *        stiffness matrix for an arbitrary element.
     *
     * The local stiffness matrices of the element are used by
     * the jacobian assembler to produce a global linerization of the
     * problem.
     */
    LocalJacobian &localJacobian()
    { return localJacobian_; }
    /*!
     * \copydoc localJacobian()
     */
    const LocalJacobian &localJacobian() const
    { return localJacobian_; }

    /*!
     * \brief Returns the local residual function.
     */
    LocalResidual &localResidual()
    { return localJacobian().localResidual(); }
    /*!
     * \copydoc localResidual()
     */
    const LocalResidual &localResidual() const
    { return localJacobian().localResidual(); }

    /*!
     * \brief Returns the relative error between two vectors of
     *        primary variables.
     *
400
401
     * \param dofIdxGlobal The global index of the control volume's
     *                     associated degree of freedom
402
403
404
     * \param priVars1 The first vector of primary variables
     * \param priVars2 The second vector of primary variables
     */
405
    Scalar relativeErrorDof(const int dofIdxGlobal,
406
407
                            const PrimaryVariables &priVars1,
                            const PrimaryVariables &priVars2)
408
409
410
411
412
    {
        Scalar result = 0.0;
        for (int j = 0; j < numEq; ++j) {
            Scalar eqErr = std::abs(priVars1[j] - priVars2[j]);
            eqErr /= std::max<Scalar>(1.0, std::abs(priVars1[j] + priVars2[j])/2);
413
            
414
415
416
417
            result = std::max(result, eqErr);
        }
        return result;
    }
418
    
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
    /*!
     * \brief Try to progress the model to the next timestep.
     *
     * \param solver The non-linear solver
     * \param controller The controller which specifies the behaviour
     *                   of the non-linear solver
     */
    bool update(NewtonMethod &solver,
                NewtonController &controller)
    {
#if HAVE_VALGRIND
        for (size_t i = 0; i < curSol().size(); ++i)
            Valgrind::CheckDefined(curSol()[i]);
#endif // HAVE_VALGRIND

        asImp_().updateBegin();

        bool converged = solver.execute(controller);
        if (converged) {
            asImp_().updateSuccessful();
        }
        else
            asImp_().updateFailed();

#if HAVE_VALGRIND
        for (size_t i = 0; i < curSol().size(); ++i) {
            Valgrind::CheckDefined(curSol()[i]);
        }
#endif // HAVE_VALGRIND

        return converged;
    }

452
453
454
455
456
457
458
459
460
461
    /*!
     * \brief Check the plausibility of the current solution
     *
     *        This has to be done by the actual model, it knows
     *        best, what (ranges of) variables to check.
     *        This is primarily a hook
     *        which the actual model can overload.
     */
    void checkPlausibility() const
    { }
462
463
464

    /*!
     * \brief Called by the update() method before it tries to
465
     *        apply the newton method. This is primarily a hook
466
467
468
469
470
471
472
473
     *        which the actual model can overload.
     */
    void updateBegin()
    { }


    /*!
     * \brief Called by the update() method if it was
474
     *        successful. This is primarily a hook which the actual
475
476
477
478
479
480
481
     *        model can overload.
     */
    void updateSuccessful()
    { }

    /*!
     * \brief Called by the update() method if it was
482
     *        unsuccessful. This is primarily a hook which the actual
483
484
485
486
487
488
489
490
     *        model can overload.
     */
    void updateFailed()
    {
        // Reset the current solution to the one of the
        // previous time step so that we can start the next
        // update at a physically meaningful solution.
        uCur_ = uPrev_;
491
492
        if (isBox)
            curHints_ = prevHints_;
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507

        jacAsm_->reassembleAll();
    }

    /*!
     * \brief Called by the problem if a time integration was
     *        successful, post processing of the solution is done and
     *        the result has been written to disk.
     *
     * This should prepare the model for the next time integration.
     */
    void advanceTimeLevel()
    {
        // make the current solution the previous one.
        uPrev_ = uCur_;
508
509
        if (isBox)
            prevHints_ = curHints_;
510
511
512
513
514
515
516
517
518
519
520
521
522

        updatePrevHints();
    }

    /*!
     * \brief Serializes the current state of the model.
     *
     * \tparam Restarter The type of the serializer class
     *
     * \param res The serializer object
     */
    template <class Restarter>
    void serialize(Restarter &res)
523
524
525
526
527
528
    {
        if (isBox)
            res.template serializeEntities<dim>(asImp_(), this->gridView_()); 
        else
            res.template serializeEntities<0>(asImp_(), this->gridView_());
    }
529
530
531
532
533
534
535
536
537
538
539

    /*!
     * \brief Deserializes the state of the model.
     *
     * \tparam Restarter The type of the serializer class
     *
     * \param res The serializer object
     */
    template <class Restarter>
    void deserialize(Restarter &res)
    {
540
541
542
543
544
        if (isBox)
            res.template deserializeEntities<dim>(asImp_(), this->gridView_());
        else
            res.template deserializeEntities<0>(asImp_(), this->gridView_());
        
545
546
547
548
549
550
551
552
553
        prevSol() = curSol();
    }

    /*!
     * \brief Write the current solution for a vertex to a restart
     *        file.
     *
     * \param outstream The stream into which the vertex data should
     *                  be serialized to
554
555
556
     * \param entity The entity which's data should be
     *               serialized, i.e. a vertex for the box method
     *               and an element for the cell-centered method
557
     */
558
    template <class Entity>
559
    void serializeEntity(std::ostream &outstream,
560
                         const Entity &entity)
561
    {
562
        int dofIdxGlobal = dofMapper().map(entity);
563
        
564
565
566
567
        // write phase state
        if (!outstream.good()) {
            DUNE_THROW(Dune::IOError,
                       "Could not serialize vertex "
568
                       << dofIdxGlobal);
569
570
571
        }

        for (int eqIdx = 0; eqIdx < numEq; ++eqIdx) {
572
            outstream << curSol()[dofIdxGlobal][eqIdx] << " ";
573
574
575
576
577
578
579
580
581
        }
    }

    /*!
     * \brief Reads the current solution variables for a vertex from a
     *        restart file.
     *
     * \param instream The stream from which the vertex data should
     *                  be deserialized from
582
583
584
     * \param entity The entity which's data should be
     *               serialized, i.e. a vertex for the box method
     *               and an element for the cell-centered method
585
     */
586
    template <class Entity>
587
    void deserializeEntity(std::istream &instream,
588
                           const Entity &entity)
589
    {
590
        int dofIdxGlobal = dofMapper().map(entity);
591

592
593
594
595
        for (int eqIdx = 0; eqIdx < numEq; ++eqIdx) {
            if (!instream.good())
                DUNE_THROW(Dune::IOError,
                           "Could not deserialize vertex "
596
597
                           << dofIdxGlobal);
            instream >> curSol()[dofIdxGlobal][eqIdx];
598
599
600
601
602
603
604
        }
    }

    /*!
     * \brief Returns the number of global degrees of freedoms (DOFs)
     */
    size_t numDofs() const
605
606
607
608
    {
        if (isBox)
            return gridView_().size(dim); 
        else
609
            return gridView_().size(0); 
610
    }
611
612
613
614
615

    /*!
     * \brief Mapper for the entities where degrees of freedoms are
     *        defined to indices.
     *
616
617
618
     * Is the box method is used, this means a mapper 
     * for vertices, if the cell centered method is used,
     * this means a mapper for elements.
619
     */
620
621
    template <class T = TypeTag>
    const typename std::enable_if<GET_PROP_VALUE(T, ImplicitIsBox), VertexMapper>::type &dofMapper() const
622
    {
623
624
625
626
627
628
        return problem_().vertexMapper();
    }
    template <class T = TypeTag>
    const typename std::enable_if<!GET_PROP_VALUE(T, ImplicitIsBox), ElementMapper>::type &dofMapper() const
    {
        return problem_().elementMapper();
629
    }
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648

    /*!
     * \brief Mapper for vertices to indices.
     */
    const VertexMapper &vertexMapper() const
    { return problem_().vertexMapper(); }

    /*!
     * \brief Mapper for elements to indices.
     */
    const ElementMapper &elementMapper() const
    { return problem_().elementMapper(); }

    /*!
     * \brief Resets the Jacobian matrix assembler, so that the
     *        boundary types can be altered.
     */
    void resetJacobianAssembler ()
    {
649
650
        jacAsm_.template reset<JacobianAssembler>(0);
        jacAsm_ = Dune::make_shared<JacobianAssembler>();
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
        jacAsm_->init(problem_());
    }

    /*!
     * \brief Update the weights of all primary variables within an
     *        element given the complete set of volume variables
     *
     * \param element The DUNE codim 0 entity
     * \param volVars All volume variables for the element
     */
    void updatePVWeights(const Element &element,
                         const ElementVolumeVariables &volVars) const
    { }

    /*!
     * \brief Add the vector fields for analysing the convergence of
     *        the newton method to the a VTK multi writer.
     *
     * \tparam MultiWriter The type of the VTK multi writer
     *
     * \param writer  The VTK multi writer object on which the fields should be added.
     * \param u       The solution function
     * \param deltaU  The delta of the solution function before and after the Newton update
     */
    template <class MultiWriter>
    void addConvergenceVtkFields(MultiWriter &writer,
                                 const SolutionVector &u,
                                 const SolutionVector &deltaU)
    {
        typedef Dune::BlockVector<Dune::FieldVector<double, 1> > ScalarField;

        SolutionVector residual(u);
        asImp_().globalResidual(residual, u);

        // create the required scalar fields
686
        unsigned numDofs = asImp_().numDofs();
687
688
689
690
691
692

        // global defect of the two auxiliary equations
        ScalarField* def[numEq];
        ScalarField* delta[numEq];
        ScalarField* x[numEq];
        for (int eqIdx = 0; eqIdx < numEq; ++eqIdx) {
693
694
695
            x[eqIdx] = writer.allocateManagedBuffer(numDofs);
            delta[eqIdx] = writer.allocateManagedBuffer(numDofs);
            def[eqIdx] = writer.allocateManagedBuffer(numDofs);
696
697
        }

698
        for (unsigned int globalIdx = 0; globalIdx < u.size(); globalIdx++)
699
        {
700
701
            for (int eqIdx = 0; eqIdx < numEq; ++eqIdx) 
            {
702
703
704
705
706
                (*x[eqIdx])[globalIdx] = u[globalIdx][eqIdx];
                (*delta[eqIdx])[globalIdx] = - deltaU[globalIdx][eqIdx];
                (*def[eqIdx])[globalIdx] = residual[globalIdx][eqIdx];
            }
        }
707
        
708
709
710
        for (int eqIdx = 0; eqIdx < numEq; ++eqIdx) {
            std::ostringstream oss;
            oss.str(""); oss << "x_" << eqIdx;
711
712
713
714
            if (isBox)
                writer.attachVertexData(*x[eqIdx], oss.str());
            else
                writer.attachCellData(*x[eqIdx], oss.str());
715
            oss.str(""); oss << "delta_" << eqIdx;
716
717
718
719
            if (isBox)
                writer.attachVertexData(*delta[eqIdx], oss.str());
            else
                writer.attachCellData(*delta[eqIdx], oss.str());
720
            oss.str(""); oss << "defect_" << eqIdx;
721
722
723
724
            if (isBox)
                writer.attachVertexData(*def[eqIdx], oss.str());
            else
                writer.attachCellData(*def[eqIdx], oss.str());
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
        }

        asImp_().addOutputVtkFields(u, writer);
    }

    /*!
     * \brief Add the quantities of a time step which ought to be written to disk.
     *
     * This should be overwritten by the actual model if any secondary
     * variables should be written out. Read: This should _always_ be
     * overwritten by well behaved models!
     *
     * \tparam MultiWriter The type of the VTK multi writer
     *
     * \param sol The global vector of primary variable values.
     * \param writer The VTK multi writer where the fields should be added.
     */
    template <class MultiWriter>
    void addOutputVtkFields(const SolutionVector &sol,
                            MultiWriter &writer)
    {
        typedef Dune::BlockVector<Dune::FieldVector<Scalar, 1> > ScalarField;

        // create the required scalar fields
749
        unsigned numDofs = asImp_().numDofs();
750
751
752
753

        // global defect of the two auxiliary equations
        ScalarField* x[numEq];
        for (int eqIdx = 0; eqIdx < numEq; ++eqIdx) {
754
            x[eqIdx] = writer.allocateManagedBuffer(numDofs);
755
756
        }

757
        for (int globalIdx = 0; globalIdx < sol.size(); globalIdx++)
758
759
760
761
762
763
764
765
766
        {
            for (int eqIdx = 0; eqIdx < numEq; ++eqIdx) {
                (*x[eqIdx])[globalIdx] = sol[globalIdx][eqIdx];
            }
        }

        for (int eqIdx = 0; eqIdx < numEq; ++eqIdx) {
            std::ostringstream oss;
            oss << "primaryVar_" << eqIdx;
767
768
769
770
            if (isBox)
                writer.attachVertexData(*x[eqIdx], oss.str());
            else
                writer.attachCellData(*x[eqIdx], oss.str());
771
772
773
774
775
776
777
778
779
780
        }
    }

    /*!
     * \brief Reference to the grid view of the spatial domain.
     */
    const GridView &gridView() const
    { return problem_().gridView(); }

    /*!
781
782
     * \brief Returns true if the entity indicated by 'globalIdx' 
     * is located on / touches the grid's boundary.
783
     *
784
     * \param globalIdx The global index of the entity
785
     */
786
787
    bool onBoundary(const int globalIdx) const
    { return boundaryIndices_[globalIdx]; }
788
789
790
791
792
793
794

    /*!
     * \brief Returns true if a vertex is located on the grid's
     *        boundary.
     *
     * \param element A DUNE Codim<0> entity which contains the control
     *             volume's associated vertex.
795
     * \param vIdx The local vertex index inside element
796
     */
797
    bool onBoundary(const Element &element, const int vIdx) const
798
799
    {
        if (isBox)
800
            return onBoundary(vertexMapper().map(element, vIdx, dim));
801
        else
802
            DUNE_THROW(Dune::InvalidStateException,
803
804
                       "requested for cell-centered model");            
    }
805

806
807
808
809
810
    
    /*!
     * \brief Returns true if the control volume touches
     *        the grid's boundary.
     *
811
     * \param element A DUNE Codim<0> entity coinciding with the control
812
813
     *             volume.
     */
814
    bool onBoundary(const Element &element) const
815
816
    {
        if (!isBox)
817
            return onBoundary(elementMapper().map(element));
818
        else
819
            DUNE_THROW(Dune::InvalidStateException,
820
821
822
                       "requested for box model");
    }
    
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
    /*!
     * \brief Fill the fluid state according to the primary variables. 
     * 
     * Taking the information from the primary variables, 
     * the fluid state is filled with every information that is 
     * necessary to evaluate the model's local residual. 
     * 
     * \param priVars The primary variables of the model.
     * \param problem The problem at hand. 
     * \param element The current element. 
     * \param fvGeometry The finite volume element geometry.
     * \param scvIdx The index of the subcontrol volume. 
     * \param fluidState The fluid state to fill. 
     */
    template <class FluidState>
    static void completeFluidState(const PrimaryVariables& priVars,
                                   const Problem& problem,
                                   const Element& element,
                                   const FVElementGeometry& fvGeometry,
                                   const int scvIdx,
                                   FluidState& fluidState)
    {
        VolumeVariables::completeFluidState(priVars, problem, element,
                                            fvGeometry, scvIdx, fluidState);
    }
protected:
    /*!
     * \brief A reference to the problem on which the model is applied.
     */
    Problem &problem_()
    { return *problemPtr_; }
    /*!
     * \copydoc problem_()
     */
    const Problem &problem_() const
    { return *problemPtr_; }

    /*!
     * \brief Reference to the grid view of the spatial domain.
     */
    const GridView &gridView_() const
    { return problem_().gridView(); }

    /*!
     * \brief Reference to the local residal object
     */
    LocalResidual &localResidual_()
    { return localJacobian_.localResidual(); }

    /*!
     * \brief Applies the initial solution for all vertices of the grid.
     */
    void applyInitialSolution_()
    {
        // first set the whole domain to zero
        uCur_ = Scalar(0.0);
        boxVolume_ = Scalar(0.0);

        FVElementGeometry fvGeometry;

        // iterate through leaf grid and evaluate initial
        // condition at the center of each sub control volume
        //
        // TODO: the initial condition needs to be unique for
        // each vertex. we should think about the API...
        ElementIterator eIt = gridView_().template begin<0>();
        const ElementIterator &eEndIt = gridView_().template end<0>();
        for (; eIt != eEndIt; ++eIt) {
            // deal with the current element
            fvGeometry.update(gridView_(), *eIt);

            // loop over all element vertices, i.e. sub control volumes
895
            for (int scvIdx = 0; scvIdx < fvGeometry.numScv; scvIdx++)
896
            {
897
898
                // get the global index of the degree of freedom
                int globalIdx = dofMapper().map(*eIt, scvIdx, dofCodim);
899
900
901
902
903
904
905
906
907
908
909

                // let the problem do the dirty work of nailing down
                // the initial solution.
                PrimaryVariables initPriVars;
                Valgrind::SetUndefined(initPriVars);
                problem_().initial(initPriVars,
                                   *eIt,
                                   fvGeometry,
                                   scvIdx);
                Valgrind::CheckDefined(initPriVars);

910
911
912
913
914
915
916
917
918
919
                if (isBox)
                {
                    // add up the initial values of all sub-control
                    // volumes. If the initial values disagree for
                    // different sub control volumes, the initial value
                    // will be the arithmetic mean.
                    initPriVars *= fvGeometry.subContVol[scvIdx].volume;
                    boxVolume_[globalIdx] += fvGeometry.subContVol[scvIdx].volume;
                }
                
920
921
922
923
924
925
926
                uCur_[globalIdx] += initPriVars;
                Valgrind::CheckDefined(uCur_[globalIdx]);
            }
        }

        // add up the primary variables and the volumes of the boxes
        // which cross process borders
927
        if (isBox && gridView_().comm().size() > 1) {
928
929
930
931
932
933
934
935
936
937
938
939
940
941
            VertexHandleSum<Dune::FieldVector<Scalar, 1>,
                Dune::BlockVector<Dune::FieldVector<Scalar, 1> >,
                VertexMapper> sumVolumeHandle(boxVolume_, vertexMapper());
            gridView_().communicate(sumVolumeHandle,
                                    Dune::InteriorBorder_InteriorBorder_Interface,
                                    Dune::ForwardCommunication);

            VertexHandleSum<PrimaryVariables, SolutionVector, VertexMapper>
                sumPVHandle(uCur_, vertexMapper());
            gridView_().communicate(sumPVHandle,
                                    Dune::InteriorBorder_InteriorBorder_Interface,
                                    Dune::ForwardCommunication);
        }

942
943
944
        if (isBox)
        {
            // divide all primary variables by the volume of their boxes
945
            for (unsigned int i = 0; i < uCur_.size(); ++i) {
946
947
                uCur_[i] /= boxVolume(i);
            }
948
949
950
951
        }
    }

    /*!
952
     * \brief Find all indices of boundary vertices (box) / elements (cell centered).
953
954
955
956
957
958
959
960
961
     */
    void updateBoundaryIndices_()
    {
        boundaryIndices_.resize(numDofs());
        std::fill(boundaryIndices_.begin(), boundaryIndices_.end(), false);

        ElementIterator eIt = gridView_().template begin<0>();
        ElementIterator eEndIt = gridView_().template end<0>();
        for (; eIt != eEndIt; ++eIt) {
962
963
            Dune::GeometryType geomType = eIt->geometry().type();
            const ReferenceElement &refElement = ReferenceElements::general(geomType);
964
965
966
967
968

            IntersectionIterator isIt = gridView_().ibegin(*eIt);
            IntersectionIterator isEndIt = gridView_().iend(*eIt);
            for (; isIt != isEndIt; ++isIt) {
                if (isIt->boundary()) {
969
                    if (isBox)
970
                    {
971
972
973
974
975
976
977
978
979
980
981
982
                        // add all vertices on the intersection to the set of
                        // boundary vertices
                        int faceIdx = isIt->indexInInside();
                        int numFaceVerts = refElement.size(faceIdx, 1, dim);
                        for (int faceVertIdx = 0;
                             faceVertIdx < numFaceVerts;
                             ++faceVertIdx)
                        {
                            int elemVertIdx = refElement.subEntity(faceIdx,
                                                                   1,
                                                                   faceVertIdx,
                                                                   dim);
983
984
                            int vIdxGlobal = vertexMapper().map(*eIt, elemVertIdx, dim);
                            boundaryIndices_[vIdxGlobal] = true;
985
986
987
988
989
990
                        }
                    }
                    else 
                    {
                        int globalIdx = elementMapper().map(*eIt);
                        boundaryIndices_[globalIdx] = true;
991
992
993
994
995
996
997
998
999
1000
                    }
                }
            }
        }
    }

    // the hint cache for the previous and the current volume
    // variables
    mutable std::vector<bool> hintsUsable_;
    mutable std::vector<VolumeVariables> curHints_;