heterogeneousproblemni.hh 21 KB
Newer Older
1
2
3
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
4
 *   See the file COPYING for full copying permissions.                      *
5
6
7
8
9
10
11
12
 *                                                                           *
 *   This program is free software: you can redistribute it and/or modify    *
 *   it under the terms of the GNU General Public License as published by    *
 *   the Free Software Foundation, either version 2 of the License, or       *
 *   (at your option) any later version.                                     *
 *                                                                           *
 *   This program is distributed in the hope that it will be useful,         *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of          *
13
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the            *
14
15
16
17
18
19
20
21
 *   GNU General Public License for more details.                            *
 *                                                                           *
 *   You should have received a copy of the GNU General Public License       *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.   *
 *****************************************************************************/
/*!
 * \file
 *
22
 * \brief Definition of a problem, where CO2 is injected in a reservoir.
23
24
25
26
27
28
 */
#ifndef DUMUX_HETEROGENEOUS_NI_PROBLEM_NI_HH
#define DUMUX_HETEROGENEOUS_NI_PROBLEM_NI_HH

#if HAVE_ALUGRID
#include <dune/grid/alugrid/2d/alugrid.hh>
29
30
#elif HAVE_DUNE_ALUGRID
#include <dune/alugrid/grid.hh>
31
#else
Christoph Grueninger's avatar
[co2ni]    
Christoph Grueninger committed
32
#warning ALUGrid is necessary for this test.
33
#include <dune/grid/io/file/dgfparser/dgfyasp.hh>
34
35
#endif

36
37
#include <dumux/implicit/2p2c/2p2cmodel.hh>
#include <dumux/implicit/co2/co2volumevariables.hh>
38
#include <dumux/implicit/co2/co2model.hh>
39
#include <dumux/material/fluidsystems/brineco2fluidsystem.hh>
40
#include <dumux/implicit/common/implicitporousmediaproblem.hh>
41
#include <dumux/implicit/box/intersectiontovertexbc.hh>
42
#include <test/implicit/co2/heterogeneousspatialparameters.hh>
43
44
45
46
47
48
49
50
51

#include "heterogeneousco2tables.hh"

#define ISOTHERMAL 0

namespace Dumux
{

template <class TypeTag>
52
class HeterogeneousNIProblem;
53
54
55

namespace Properties
{
56
57
58
NEW_TYPE_TAG(HeterogeneousNIProblem, INHERITS_FROM(TwoPTwoCNI, HeterogeneousSpatialParams));
NEW_TYPE_TAG(HeterogeneousNIBoxProblem, INHERITS_FROM(BoxModel, HeterogeneousNIProblem));
NEW_TYPE_TAG(HeterogeneousNICCProblem, INHERITS_FROM(CCModel, HeterogeneousNIProblem));
59
60
61


// Set the grid type
62
#if HAVE_ALUGRID || HAVE_DUNE_ALUGRID
63
SET_TYPE_PROP(HeterogeneousNIProblem, Grid, Dune::ALUGrid<2, 2, Dune::cube, Dune::nonconforming>);
64
#else
65
SET_TYPE_PROP(HeterogeneousNIProblem, Grid, Dune::YaspGrid<2>);
66
67
68
#endif

// Set the problem property
69
SET_TYPE_PROP(HeterogeneousNIProblem, Problem, Dumux::HeterogeneousNIProblem<TypeTag>);
70
71

// Set fluid configuration
72
SET_TYPE_PROP(HeterogeneousNIProblem, FluidSystem, Dumux::BrineCO2FluidSystem<TypeTag>);
73
74

// Set the CO2 table to be used; in this case not the the default table
75
SET_TYPE_PROP(HeterogeneousNIProblem, CO2Table, Dumux::Heterogeneous::CO2Tables);
76

77
// Set the salinity mass fraction of the brine in the reservoir
78
SET_SCALAR_PROP(HeterogeneousNIProblem, ProblemSalinity, 1e-1);
79
80

//! the CO2 Model and VolumeVariables properties
81
SET_TYPE_PROP(HeterogeneousNIProblem, IsothermalVolumeVariables, CO2VolumeVariables<TypeTag>);
82
SET_TYPE_PROP(HeterogeneousNIProblem, IsothermalModel, CO2Model<TypeTag>);
83

84
// Use Moles
85
SET_BOOL_PROP(HeterogeneousNIProblem, UseMoles, false);
86
87
88
89
90
}


/*!
 * \ingroup CO2NIModel
91
 * \ingroup ImplicitTestProblems
92
 * \brief Definition of a problem, where CO2 is injected in a reservoir.
93
94
95
96
97
98
99
100
101
102
103
104
105
 *
 * The domain is sized 200m times 100m and consists of four layers, a
 * permeable reservoir layer at the bottom, a barrier rock layer with reduced permeability followed by another reservoir layer
 * and at the top a barrier rock layer with a very low permeablility.
 *
 * CO2 is injected at the permeable bottom layer
 * from the left side. The domain is initially filled with brine.
 *
 * The grid is unstructered and permeability and porosity for the elements are read in from the grid file. The grid file
 * also contains so-called boundary ids which can be used assigned during the grid creation in order to differentiate
 * between different parts of the boundary.
 * These boundary ids can be imported into the problem where the boundary conditions can then be assigned accordingly.
 *
106
107
108
 * The model is able to use either mole or mass fractions. The property useMoles can be set to either true or false in the
 * problem file. Make sure that the according units are used in the problem setup. The default setting for useMoles is false.
 *
109
110
 * To run the simulation execute the following line in shell (works with the box and cell centered spatial discretization method):
 * <tt>./test_ccco2ni </tt> or <tt>./test_boxco2ni </tt>
111
 */
112
template <class TypeTag >
113
class HeterogeneousNIProblem : public ImplicitPorousMediaProblem<TypeTag>
114
{
115
    typedef ImplicitPorousMediaProblem<TypeTag> ParentType;
116
117
118
119
120
121
122
123

    typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
    typedef typename GET_PROP_TYPE(TypeTag, Grid) Grid;
    typedef Dune::GridPtr<Grid> GridPointer;
    typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
    typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
    typedef typename GET_PROP_TYPE(TypeTag, VolumeVariables) VolumeVariables;

124
125
    static const bool useMoles = GET_PROP_VALUE(TypeTag, UseMoles);

126
127
128
129
130
131
132
    enum {
        // Grid and world dimension
        dim = GridView::dimension,
        dimWorld = GridView::dimensionworld
    };

    // copy some indices for convenience
133
    typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
    enum {
        lPhaseIdx = Indices::wPhaseIdx,
        gPhaseIdx = Indices::nPhaseIdx,


        BrineIdx = FluidSystem::BrineIdx,
        CO2Idx = FluidSystem::CO2Idx,

        conti0EqIdx = Indices::conti0EqIdx,
        contiCO2EqIdx = conti0EqIdx + CO2Idx,
#if !ISOTHERMAL
        temperatureIdx = CO2Idx +1,
        energyEqIdx = contiCO2EqIdx +1,
#endif

    };


    typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
    typedef typename GET_PROP_TYPE(TypeTag, BoundaryTypes) BoundaryTypes;
    typedef typename GET_PROP_TYPE(TypeTag, TimeManager) TimeManager;

    typedef typename GridView::template Codim<0>::Entity Element;
    typedef typename GridView::template Codim<0>::Iterator ElementIterator;
    typedef typename GridView::template Codim<dim>::Entity Vertex;
    typedef typename GridView::Intersection Intersection;

    typedef typename GET_PROP_TYPE(TypeTag, FVElementGeometry) FVElementGeometry;
    typedef typename GET_PROP_TYPE(TypeTag, GridCreator) GridCreator;

    typedef Dune::FieldVector<Scalar, dimWorld> GlobalPosition;
    typedef typename GET_PROP_TYPE(TypeTag, PTAG(CO2Table)) CO2Table;
    typedef Dumux::CO2<Scalar, CO2Table> CO2;
167
168
    enum { isBox = GET_PROP_VALUE(TypeTag, ImplicitIsBox) };
    enum { dofCodim = isBox ? dim : 0 };
169
170
171
172
173
174
175
176

public:
    /*!
     * \brief The constructor
     *
     * \param timeManager The time manager
     * \param gridView The grid view
     */
177
    HeterogeneousNIProblem(TimeManager &timeManager,
178
                     const GridView &gridView)
179
        : ParentType(timeManager, GridCreator::grid().leafGridView()),
180
181
182
183
184
185
          //Boundary Id Setup:
          injectionTop_ (1),
          injectionBottom_(2),
          dirichletBoundary_(3),
          noFlowBoundary_(4),
          intersectionToVertexBC_(*this)
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
    {
        try
        {
            nTemperature_       = GET_RUNTIME_PARAM(TypeTag, int, FluidSystem.NTemperature);
            nPressure_          = GET_RUNTIME_PARAM(TypeTag, int, FluidSystem.NPressure);
            pressureLow_        = GET_RUNTIME_PARAM(TypeTag, Scalar, FluidSystem.PressureLow);
            pressureHigh_       = GET_RUNTIME_PARAM(TypeTag, Scalar, FluidSystem.PressureHigh);
            temperatureLow_     = GET_RUNTIME_PARAM(TypeTag, Scalar, FluidSystem.TemperatureLow);
            temperatureHigh_    = GET_RUNTIME_PARAM(TypeTag, Scalar, FluidSystem.TemperatureHigh);
            depthBOR_           = GET_RUNTIME_PARAM(TypeTag, Scalar, Problem.DepthBOR);
            name_               = GET_RUNTIME_PARAM(TypeTag, std::string, Problem.Name);
            injectionRate_      = GET_RUNTIME_PARAM(TypeTag, Scalar, Problem.InjectionRate);
            injectionPressure_ = GET_RUNTIME_PARAM(TypeTag, Scalar, Problem.InjectionPressure);
            injectionTemperature_ = GET_RUNTIME_PARAM(TypeTag, Scalar, Problem.InjectionTemperature);
        }
        catch (Dumux::ParameterException &e) {
            std::cerr << e << ". Abort!\n";
            exit(1) ;
        }
        catch (...) {
            std::cerr << "Unknown exception thrown!\n";
            exit(1);
        }

        /* Alternative syntax:
         * typedef typename GET_PROP(TypeTag, ParameterTree) ParameterTree;
         * const Dune::ParameterTree &tree = ParameterTree::tree();
         * nTemperature_       = tree.template get<int>("FluidSystem.nTemperature");
         *
         * + We see what we do
         * - Reporting whether it was used does not work
         * - Overwriting on command line not possible
        */

        GridPointer *gridPtr = &GridCreator::gridPtr();
        this->spatialParams().setParams(gridPtr);



        eps_ = 1e-6;

        // initialize the tables of the fluid system
        FluidSystem::init(/*Tmin=*/temperatureLow_,
                          /*Tmax=*/temperatureHigh_,
                          /*nT=*/nTemperature_,
                          /*pmin=*/pressureLow_,
                          /*pmax=*/pressureHigh_,
                          /*np=*/nPressure_);
234
235
236
237
238
239
240
241
242
243

        //stateing in the console whether mole or mass fractions are used
        if(!useMoles)
        {
        	std::cout<<"problem uses mass-fractions"<<std::endl;
        }
        else
        {
        	std::cout<<"problem uses mole-fractions"<<std::endl;
        }
244
245
246
    }

    /*!
247
248
249
     * \brief User defined output after the time integration
     *
     * Will be called diretly after the time integration.
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
     */
    void postTimeStep()
    {
        // Calculate storage terms
        PrimaryVariables storageL, storageG;
        this->model().globalPhaseStorage(storageL, lPhaseIdx);
        this->model().globalPhaseStorage(storageG, gPhaseIdx);

        // Write mass balance information for rank 0
        if (this->gridView().comm().rank() == 0) {
            std::cout<<"Storage: liquid=[" << storageL << "]"
                     << " gas=[" << storageG << "]\n";
        }
    }

265
    /*!
266
267
268
     * \brief Append all quantities of interest which can be derived
     *        from the solution of the current time step to the VTK
     *        writer.
269
     */
270
271
272
    void addOutputVtkFields()
        {
            typedef Dune::BlockVector<Dune::FieldVector<double, 1> > ScalarField;
273
274
275
276

            // get the number of degrees of freedom
            unsigned numDofs = this->model().numDofs();
            unsigned numElements = this->gridView().size(0);
277
278

            //create required scalar fields
279
280
281
282
283
            ScalarField *Kxx = this->resultWriter().allocateManagedBuffer(numElements);
            ScalarField *cellPorosity = this->resultWriter().allocateManagedBuffer(numElements);
            ScalarField *boxVolume = this->resultWriter().allocateManagedBuffer(numDofs);
            ScalarField *enthalpyW = this->resultWriter().allocateManagedBuffer(numDofs);
            ScalarField *enthalpyN = this->resultWriter().allocateManagedBuffer(numDofs);
284
285
286
            (*boxVolume) = 0;

            //Fill the scalar fields with values
287

288
289
            ScalarField *rank = this->resultWriter().allocateManagedBuffer(numElements);

290
            FVElementGeometry fvGeometry;
291
292
            VolumeVariables volVars;

293
294
295
            ElementIterator eIt = this->gridView().template begin<0>();
            ElementIterator eEndIt = this->gridView().template end<0>();
            for (; eIt != eEndIt; ++eIt)
296
            {
297
298
                int eIdx = this->elementMapper().map(*eIt);
                (*rank)[eIdx] = this->gridView().comm().rank();
299
                fvGeometry.update(this->gridView(), *eIt);
300
301


302
                for (int scvIdx = 0; scvIdx < fvGeometry.numScv; ++scvIdx)
303
                {
304
305
                    int dofIdxGlobal = this->model().dofMapper().map(*eIt, scvIdx, dofCodim);
                    volVars.update(this->model().curSol()[dofIdxGlobal],
306
                                   *this,
307
                                   *eIt,
308
309
                                   fvGeometry,
                                   scvIdx,
310
                                   false);
311
312
313
                    (*boxVolume)[dofIdxGlobal] += fvGeometry.subContVol[scvIdx].volume;
                    (*enthalpyW)[dofIdxGlobal] = volVars.enthalpy(lPhaseIdx);
                    (*enthalpyN)[dofIdxGlobal] = volVars.enthalpy(gPhaseIdx);
314
                }
315
316
                (*Kxx)[eIdx] = this->spatialParams().intrinsicPermeability(*eIt, fvGeometry, /*element data*/ 0);
                (*cellPorosity)[eIdx] = this->spatialParams().porosity(*eIt, fvGeometry, /*element data*/ 0);
317
318
319
            }

            //pass the scalar fields to the vtkwriter
320
321
322
323
324
            this->resultWriter().attachDofData(*boxVolume, "boxVolume", isBox);
            this->resultWriter().attachDofData(*Kxx, "Kxx", false); //element data
            this->resultWriter().attachDofData(*cellPorosity, "cellwisePorosity", false); //element data
            this->resultWriter().attachDofData(*enthalpyW, "enthalpyW", isBox);
            this->resultWriter().attachDofData(*enthalpyN, "enthalpyN", isBox);
325
326
327
328
329
330
331
332
333
334
335

        }

    /*!
     * \brief The problem name.
     *
     * This is used as a prefix for files generated by the simulation.
     */
    const std::string name() const
    { return name_; }

336
#if ISOTHERMAL
337
338
339
    /*!
     * \brief Returns the temperature within the domain.
     *
340
341
342
343
     * \param globalPos The position
     *
     * This problem assumes a geothermal gradient with 
     * a surface temperature of 10 degrees Celsius.
344
     */
345
    Scalar temperatureAtPos(const GlobalPosition &globalPos) const
346
347
    {
        return temperature_(globalPos);
348
    }
349
#endif
350

351
    /*!
352
     * \brief Returns the source term
353
     *
354
355
     * \param values Stores the source values for the conservation equations in
     *               \f$ [ \textnormal{unit of primary variable} / (m^\textrm{dim} \cdot s )] \f$
356
     * \param globalPos The global position
357
358
359
360
361
362
     *
     * Depending on whether useMoles is set on true or false, the flux has to be given either in
     * kg/(m^3*s) or mole/(m^3*s) in the input file!!
     *
     * Note that the energy balance is always calculated in terms of specific enthalpies [J/kg]
     * and that the Neumann fluxes have to be specified accordingly.
363
     */
364
365
366
367
368
369
370
371
372
    void sourceAtPos(PrimaryVariables &values,
                const GlobalPosition &globalPos) const
    {
        values = 0;
    }

    /*!
     * \name Boundary conditions
     */
373

374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
    /*!
     * \brief Specifies which kind of boundary condition should be
     *        used for which equation on a given boundary segment.
     *
     * \param values The boundary types for the conservation equations
     * \param vertex The vertex for which the boundary type is set
     */

    void boundaryTypes(BoundaryTypes &values, const Vertex &vertex) const
    {
        intersectionToVertexBC_.boundaryTypes(values, vertex);
    }

    /*!
     * \brief Specifies which kind of boundary condition should be
     *        used for which equation on a given boundary segment.
     *
     * \param values The boundary types for the conservation equations
392
     * \param intersection specifies the intersection at which boundary
393
     *           condition is to set
394
     */
395
    void boundaryTypes(BoundaryTypes &values, const Intersection &intersection) const
396
    {
397
        int boundaryId = intersection.boundaryId();
398
399
400
401
402
403
404
405
406
407
408
        if (boundaryId < 1 || boundaryId > 4)
        {
            std::cout<<"invalid boundaryId: "<<boundaryId<<std::endl;
            DUNE_THROW(Dune::InvalidStateException, "Invalid " << boundaryId);
        }
        if (boundaryId == dirichletBoundary_)
            values.setAllDirichlet();
        else
            values.setAllNeumann();
    }

409
    /*!
410
411
     * \brief Evaluates the boundary conditions for a Dirichlet
     *        boundary segment
412
     *
413
414
     * \param values Stores the Dirichlet values for the conservation equations in
     *               \f$ [ \textnormal{unit of primary variable} ] \f$
415
416
417
418
419
420
     * \param globalPos The global position
     */
    void dirichletAtPos(PrimaryVariables &values, const GlobalPosition &globalPos) const
    {
        initial_(values, globalPos);
    }
421

422
    /*!
423
     * \brief Evaluate the boundary conditions for a Neumann
424
425
     *        boundary segment.
     *
426
427
      * \param values Stores the Neumann values for the conservation equations in
     *               \f$ [ \textnormal{unit of conserved quantity} / (m^(dim-1) \cdot s )] \f$
428
     * \param element The finite element
429
     * \param fvGeometry The finite volume geometry of the element
430
     * \param intersection The intersection between element and boundary
431
     * \param scvIdx The local index of the sub-control volume
432
433
     * \param boundaryFaceIdx The index of the boundary face
     *
434
435
     * The \a values store the mass flux of each phase normal to the boundary.
     * Negative values indicate an inflow.
436
437
     *
     * Depending on whether useMoles is set on true or false, the flux has to be given either in
438
     * kg/(m^2*s) or mole/(m^2*s) in the input file!! Convert dividing by molar mass from the fluid system FluidSystem::molarMass(CO2Idx)
439
440
441
     */
    void neumann(PrimaryVariables &values,
                 const Element &element,
442
                 const FVElementGeometry &fvGeometry,
443
                 const Intersection &intersection,
444
445
446
                 int scvIdx,
                 int boundaryFaceIdx) const
    {
447
        int boundaryId = intersection.boundaryId();
448
449
450
451

        values = 0;
        if (boundaryId == injectionBottom_)
        {
452
            values[contiCO2EqIdx] = -injectionRate_; // see above comment: kg/(s*m^2) or mole/(m^2*s) depending on useMoles!!
453
#if !ISOTHERMAL
454
455
            values[energyEqIdx] = -injectionRate_/*kg/(m^2 s)*/*CO2::gasEnthalpy(
                                    injectionTemperature_, injectionPressure_)/*J/kg*/; // W/(m^2)
456
457
458
459
460
461
462
463
464
465
466
467
#endif
        }
    }

    // \}

    /*!
     * \name Volume terms
     */
    // \{

    /*!
468
     * \brief Evaluates the initial values for a control volume
469
     *
470
471
472
     * \param values Stores the initial values for the conservation equations in
     *               \f$ [ \textnormal{unit of primary variables} ] \f$
     * \param globalPos The global position
473
     */
474
475
    void initialAtPos(PrimaryVariables &values,
                      const GlobalPosition &globalPos) const
476
477
478
479
480
    {
        initial_(values, globalPos);
    }

    /*!
481
     * \brief Returns the initial phase state for a control volume.
482
     *
483
     * \param vertex The vertex
484
     * \param vIdxGlobal The global index of the vertex
485
486
     * \param globalPos The global position
     */
487
    int initialPhasePresence(const Vertex &vertex,
488
                             int &vIdxGlobal,
489
                             const GlobalPosition &globalPos) const
490
    { return Indices::wPhaseOnly; }
491
492
493
494

    // \}

private:
495
496
497
498
499
500
501
502
503
    /*!
     * \brief Evaluates the initial values for a control volume
     *
     * The internal method for the initial condition
     *
     * \param values Stores the initial values for the conservation equations in
     *               \f$ [ \textnormal{unit of primary variables} ] \f$
     * \param globalPos The global position
     */
504
505
506
507
508
509
    void initial_(PrimaryVariables &values,
                  const GlobalPosition &globalPos) const
    {
        Scalar temp = temperature_(globalPos);
        Scalar densityW = FluidSystem::Brine::liquidDensity(temp, 1e7);

510
        Scalar pl =  1e5 - densityW*this->gravity()[dimWorld-1]*(depthBOR_ - globalPos[dimWorld-1]);
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
        Scalar moleFracLiquidCO2 = 0.00;
        Scalar moleFracLiquidBrine = 1.0 - moleFracLiquidCO2;

        Scalar meanM =
            FluidSystem::molarMass(BrineIdx)*moleFracLiquidBrine +
            FluidSystem::molarMass(CO2Idx)*moleFracLiquidCO2;

        Scalar massFracLiquidCO2 = moleFracLiquidCO2*FluidSystem::molarMass(CO2Idx)/meanM;

        values[Indices::pressureIdx] = pl;
        values[Indices::switchIdx] = massFracLiquidCO2;
#if !ISOTHERMAL
            values[temperatureIdx] = temperature_(globalPos); //K
#endif


    }

    Scalar temperature_(const GlobalPosition globalPos) const
    {
531
        Scalar T = 283.0 + (depthBOR_ - globalPos[dimWorld-1])*0.03; 
532
        return T;
533
    }
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558

    Scalar depthBOR_;
    Scalar injectionRate_;
    Scalar injectionPressure_;
    Scalar injectionTemperature_;
    Scalar eps_;

    int nTemperature_;
    int nPressure_;

    std::string name_ ;

    Scalar pressureLow_, pressureHigh_;
    Scalar temperatureLow_, temperatureHigh_;

    int injectionTop_;
    int injectionBottom_;
    int dirichletBoundary_;
    int noFlowBoundary_;

    const IntersectionToVertexBC<TypeTag> intersectionToVertexBC_;
};
} //end namespace

#endif