model.hh 8.51 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
 *   See the file COPYING for full copying permissions.                      *
 *                                                                           *
 *   This program is free software: you can redistribute it and/or modify    *
 *   it under the terms of the GNU General Public License as published by    *
 *   the Free Software Foundation, either version 2 of the License, or       *
 *   (at your option) any later version.                                     *
 *                                                                           *
 *   This program is distributed in the hope that it will be useful,         *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of          *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the            *
 *   GNU General Public License for more details.                            *
 *                                                                           *
 *   You should have received a copy of the GNU General Public License       *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.   *
 *****************************************************************************/
/*!
 * \file
 * \ingroup OneEqModel
 *
 * \brief A single-phase, isothermal one-equation turbulence model by Spalart-Allmaras
 *
 * \copydoc RANSModel
 *
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
 * This model, published by Spalart and Allmaras 1992 \cite Spalart1992a,
 * uses one additional PDE for a working variable \f$ \tilde{\nu} \f$.
 * This variable has the units of a viscosity and can be converted to the eddy
 * viscosity via a model function~(\f$ f_\text{v1} \f$):
 * \f[
 *  \nu_\text{t} = \tilde{\nu} f_\text{v1}
 * \f]
 *
 * Here, as proposed by Wilcox \cite Wilcox2008a and Versteeg \cite Versteeg2009a, the correction
 * term which account for the transition or trip, is dropped from the original equations,
 * such that the balance equation simplifies to:
 * \f[
 *   \frac{\partial \tilde{\nu}}{\partial t}
 *   + \nabla \cdot \left( \tilde{\nu} \textbf{v} \right)
 *   - c_\text{b1} \tilde{S} \tilde{\nu}
 *   - \frac{1}{\sigma_{\tilde{\nu}}} \nabla \cdot \left( \left[ \nu + \tilde{\nu} \right] \nabla \tilde{\nu} \right)
 *   - \frac{c_\text{b2}}{\sigma_{\tilde{\nu}}} \left| \nabla \tilde{\nu} \right|^2
 *   + c_\text{w1} f_\text{w} \frac{\tilde{\nu}^2}{y^2}
 *   = 0
 * \f]
 *
 * Here, a modified mean effective strain rate (\f$ \tilde{S} \f$) based on
 * the mean rotation rate tensor (\f$ \mathbf{\Omega} \f$) is used:
 * \f[
 *  \tilde{S} = \sqrt{2 \mathbf{\Omega} \cdot \mathbf{\Omega}} + \frac{\tilde{\nu}}{\kappa^2 y^2} f_\text{v2}
 * \f]
 * \f[
 *  \mathbf{\Omega} = \frac{1}{2} \left( \nabla \textbf{v}_\text{g}
 *                                  - \nabla \textbf{v}_\text{g}^\intercal \right)
 * \f]
 *
 * This balance equation is linked to the flow geometry by the distance to the closest wall ($y$).
 * Further, the model uses the following functions and expressions:
 * \f[ \chi = \frac{\tilde{\nu}}{\nu} \f]
 * \f[ f_\text{v1} = \frac{\chi^3}{\chi^3+c_\text{v1}^3} \f]
 * \f[ f_\text{v2} = 1 - \frac{\chi}{1+f_\text{v1}\chi} \f]
 * \f[ f_\text{w} = g_\text{w} \left( \frac{1+c_\text{w3}^6}{g^6_\text{w}+c_\text{w3}^6}
 *                             \right)^\frac{1}{6} \f]
 * \f[ g_\text{w} = r_\text{w} + c_\text{w2} (r_\text{w}^6 - r_\text{w}) \f]
 * \f[ r_\text{w} = \min \left[ \frac{\tilde{\nu}}{\tilde{S}\kappa^2 y^2},10\right] \f]
 * \f[ \sigma_{\tilde{\nu}} = \nicefrac{2}{3} \f]
 * \f[ c_\text{b1} = 0.1355 \f]
 * \f[ c_\text{b2} = 0.622 \f]
 * \f[ c_\text{v1} = 7.1 \f]
 * \f[ c_\text{w1} = \frac{c_\text{b1}}{\kappa^2}
 *                   + \frac{1+c_\text{b2}}{\sigma_{\tilde{\nu}}} \f]
 * \f[ c_\text{w2} = 0.3 \f]
 * \f[ c_\text{w3} = 2 \f]
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
 */

#ifndef DUMUX_ONEEQ_MODEL_HH
#define DUMUX_ONEEQ_MODEL_HH

#include <dumux/common/properties.hh>
#include <dumux/freeflow/properties.hh>
#include <dumux/freeflow/rans/model.hh>

#include "fluxvariables.hh"
#include "indices.hh"
#include "localresidual.hh"
#include "volumevariables.hh"
#include "vtkoutputfields.hh"

namespace Dumux
{
namespace Properties {

/*!
 * \ingroup OneEqModel
 * \brief Traits for the Spalart-Allmaras model
97
98
99
 *
 * \tparam dimension The dimension of the problem
 * \tparam fluidSystemPhaseIdx The the index of the phase used for the fluid system
100
 */
101
102
template<int dimension, int fluidSystemPhaseIdx>
struct OneEqModelTraits : RANSModelTraits<dimension, fluidSystemPhaseIdx>
103
104
105
106
107
108
109
110
111
112
113
114
{
    //! The dimension of the model
    static constexpr int dim() { return dimension; }

    //! There are as many momentum balance equations as dimensions,
    //! one mass balance equation and two turbulent transport equations
    static constexpr int numEq() { return dim()+1+1; }

    //! The number of components
    static constexpr int numComponents() { return 1; }

    //! the indices
115
    using Indices = OneEqIndices<dim(), numComponents(), fluidSystemPhaseIdx>;
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
};

///////////////////////////////////////////////////////////////////////////
// default property values for the isothermal Spalart-Allmaras model
///////////////////////////////////////////////////////////////////////////

//! The type tag for the single-phase, isothermal Spalart-Allmaras model
NEW_TYPE_TAG(OneEq, INHERITS_FROM(RANS));

//!< states some specifics of the isothermal Spalart-Allmaras model
SET_PROP(OneEq, ModelTraits)
{
private:
    using GridView = typename GET_PROP_TYPE(TypeTag, FVGridGeometry)::GridView;
    static constexpr int dim = GridView::dimension;
131
    static constexpr int phaseIdx = GET_PROP_VALUE(TypeTag, PhaseIdx);
132
public:
133
    using type = OneEqModelTraits<dim, phaseIdx>;
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
};

//! The flux variables
SET_PROP(OneEq, FluxVariables)
{
private:
    using BaseFluxVariables = NavierStokesFluxVariables<TypeTag>;
public:
    using type = OneEqFluxVariables<TypeTag, BaseFluxVariables>;
};

//! The local residual
SET_PROP(OneEq, LocalResidual)
{
private:
    using BaseLocalResidual = NavierStokesResidual<TypeTag>;
public:
    using type = OneEqResidual<TypeTag, BaseLocalResidual>;
};

//! Set the volume variables property
SET_PROP(OneEq, VolumeVariables)
{
private:
    using PV = typename GET_PROP_TYPE(TypeTag, PrimaryVariables);
    using FSY = typename GET_PROP_TYPE(TypeTag, FluidSystem);
    using FST = typename GET_PROP_TYPE(TypeTag, FluidState);
    using MT = typename GET_PROP_TYPE(TypeTag, ModelTraits);

    using Traits = NavierStokesVolumeVariablesTraits<PV, FSY, FST, MT>;
    using NSVolVars = NavierStokesVolumeVariables<Traits>;
public:
    using type = OneEqVolumeVariables<Traits, NSVolVars>;
};

//! The specific vtk output fields
SET_PROP(OneEq, VtkOutputFields)
{
private:
    using FVGridGeometry = typename GET_PROP_TYPE(TypeTag, FVGridGeometry);
public:
    using type = OneEqVtkOutputFields<FVGridGeometry>;
};

//////////////////////////////////////////////////////////////////
// default property values for the non-isothermal Spalart-Allmaras model
//////////////////////////////////////////////////////////////////

//! The type tag for the single-phase, isothermal Spalart-Allmaras model
NEW_TYPE_TAG(OneEqNI, INHERITS_FROM(RANSNI));

//! The model traits of the non-isothermal model
SET_PROP(OneEqNI, ModelTraits)
{
private:
    using GridView = typename GET_PROP_TYPE(TypeTag, FVGridGeometry)::GridView;
    static constexpr int dim = GridView::dimension;
191
192
    static constexpr int phaseIdx = GET_PROP_VALUE(TypeTag, PhaseIdx);
    using IsothermalTraits = OneEqModelTraits<dim, phaseIdx>;
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
public:
    using type = FreeflowNIModelTraits<IsothermalTraits>;
};

//! Set the volume variables property
SET_PROP(OneEqNI, VolumeVariables)
{
private:
    using PV = typename GET_PROP_TYPE(TypeTag, PrimaryVariables);
    using FSY = typename GET_PROP_TYPE(TypeTag, FluidSystem);
    using FST = typename GET_PROP_TYPE(TypeTag, FluidState);
    using MT = typename GET_PROP_TYPE(TypeTag, ModelTraits);

    using Traits = NavierStokesVolumeVariablesTraits<PV, FSY, FST, MT>;
    using NSVolVars = NavierStokesVolumeVariables<Traits>;
public:
    using type = OneEqVolumeVariables<Traits, NSVolVars>;
};

//! The specific non-isothermal vtk output fields
SET_PROP(OneEqNI, VtkOutputFields)
{
private:
    using ModelTraits = typename GET_PROP_TYPE(TypeTag, ModelTraits);
    using FVGridGeometry = typename GET_PROP_TYPE(TypeTag, FVGridGeometry);
    using IsothermalFields = OneEqVtkOutputFields<FVGridGeometry>;
public:
    using type = FreeflowNonIsothermalVtkOutputFields<IsothermalFields, ModelTraits>;
};

// \}
}

} // end namespace

#endif