volumevariables.hh 21.2 KB
Newer Older
1
2
3
4
5
6
7
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
 *   See the file COPYING for full copying permissions.                      *
 *                                                                           *
 *   This program is free software: you can redistribute it and/or modify    *
 *   it under the terms of the GNU General Public License as published by    *
8
 *   the Free Software Foundation, either version 3 of the License, or       *
9
10
11
12
13
14
15
16
17
18
19
20
 *   (at your option) any later version.                                     *
 *                                                                           *
 *   This program is distributed in the hope that it will be useful,         *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of          *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the            *
 *   GNU General Public License for more details.                            *
 *                                                                           *
 *   You should have received a copy of the GNU General Public License       *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.   *
 *****************************************************************************/
/*!
 * \file
21
 * \ingroup CO2Model
22
23
24
 * \brief Contains the quantities which are constant within a
 *        finite volume in the CO2 model.
 */
25

26
27
28
#ifndef DUMUX_CO2_VOLUME_VARIABLES_HH
#define DUMUX_CO2_VOLUME_VARIABLES_HH

Bernd Flemisch's avatar
Bernd Flemisch committed
29
30
#include <array>

31
32
33
#include <dune/common/exceptions.hh>

#include <dumux/porousmediumflow/volumevariables.hh>
34
#include <dumux/porousmediumflow/2p/formulation.hh>
Bernd Flemisch's avatar
Bernd Flemisch committed
35
#include <dumux/porousmediumflow/nonisothermal/volumevariables.hh>
Timo Koch's avatar
Timo Koch committed
36
#include <dumux/material/solidstates/updatesolidvolumefractions.hh>
37

38
39
#include "primaryvariableswitch.hh"

40
41
namespace Dumux {

42
/*!
43
 * \ingroup CO2Model
44
45
46
 * \brief Contains the quantities which are are constant within a
 *        finite volume in the CO2 model.
 */
47
48
template <class Traits>
class TwoPTwoCCO2VolumeVariables
49
: public PorousMediumFlowVolumeVariables<Traits>
Katharina Heck's avatar
Katharina Heck committed
50
, public EnergyVolumeVariables<Traits, TwoPTwoCCO2VolumeVariables<Traits> >
51
{
52
53
    using ParentType = PorousMediumFlowVolumeVariables< Traits>;
    using EnergyVolVars = EnergyVolumeVariables<Traits, TwoPTwoCCO2VolumeVariables<Traits> >;
54
55
56

    using Scalar = typename Traits::PrimaryVariables::value_type;
    using ModelTraits = typename Traits::ModelTraits;
57
    static constexpr int numFluidComps = ParentType::numFluidComponents();
58

59
60
61
    // component indices
    enum
    {
62
63
64
65
        comp0Idx = Traits::FluidSystem::comp0Idx,
        comp1Idx = Traits::FluidSystem::comp1Idx,
        phase0Idx = Traits::FluidSystem::phase0Idx,
        phase1Idx = Traits::FluidSystem::phase1Idx
66
67
    };

68
69
70
    // phase presence indices
    enum
    {
71
72
        firstPhaseOnly = ModelTraits::Indices::firstPhaseOnly,
        secondPhaseOnly = ModelTraits::Indices::secondPhaseOnly,
73
        bothPhases = ModelTraits::Indices::bothPhases
74
75
76
    };

    // primary variable indices
77
78
79
80
    enum
    {
        switchIdx = ModelTraits::Indices::switchIdx,
        pressureIdx = ModelTraits::Indices::pressureIdx
81
82
    };

83
    // formulation
84
    static constexpr auto formulation = ModelTraits::priVarFormulation();
85

86
    // type used for the permeability
87
    using PermeabilityType = typename Traits::PermeabilityType;
88
89
90

    // type used for the diffusion coefficients
    using EffDiffModel = typename Traits::EffectiveDiffusivityModel;
91
    using DiffusionCoefficients = typename Traits::DiffusionType::DiffusionCoefficientsContainer;
92

93
94
public:
    //! The type of the object returned by the fluidState() method
95
96
97
    using FluidState = typename Traits::FluidState;
    //! The fluid system used here
    using FluidSystem = typename Traits::FluidSystem;
98
    //! Export type of solid state
99
    using SolidState = typename Traits::SolidState;
100
    //! Export type of solid system
101
    using SolidSystem = typename Traits::SolidSystem;
102
    //! Export the type of the primary variable switch
103
    using PrimaryVariableSwitch = TwoPTwoCCO2PrimaryVariableSwitch;
104

105

106
    //! Return whether moles or masses are balanced
107
    static constexpr bool useMoles() { return ModelTraits::useMoles(); }
108
    //! Return the two-phase formulation used here
109
110
111
    static constexpr TwoPFormulation priVarFormulation() { return formulation; }

    // check for permissive combinations
112
113
    static_assert(ModelTraits::numFluidPhases() == 2, "NumPhases set in the model is not two!");
    static_assert(ModelTraits::numFluidComponents() == 2, "NumComponents set in the model is not two!");
114
    static_assert((formulation == TwoPFormulation::p0s1 || formulation == TwoPFormulation::p1s0), "Chosen TwoPFormulation not supported!");
115
116

    /*!
117
     * \brief Updates all quantities for a given control volume.
118
119
120
121
122
123
124
125
126
127
128
     *
     * \param elemSol A vector containing all primary variables connected to the element
     * \param problem The object specifying the problem which ought to
     *                be simulated
     * \param element An element which contains part of the control volume
     * \param scv The sub control volume
    */
    template<class ElemSol, class Problem, class Element, class Scv>
    void update(const ElemSol& elemSol, const Problem& problem, const Element& element, const Scv& scv)
    {
        ParentType::update(elemSol, problem, element, scv);
129
        completeFluidState(elemSol, problem, element, scv, fluidState_, solidState_);
Timo Koch's avatar
Timo Koch committed
130

131
132
133
134
135
136
137
        // Second instance of a parameter cache. Could be avoided if
        // diffusion coefficients also became part of the fluid state.
        typename FluidSystem::ParameterCache paramCache;
        paramCache.updateAll(fluidState_);

        using MaterialLaw = typename Problem::SpatialParams::MaterialLaw;
        const auto& matParams = problem.spatialParams().materialLawParams(element, scv, elemSol);
138

139
        const int nPhaseIdx = 1 - wPhaseIdx_;
140
141

        // relative permeabilities -> require wetting phase saturation as parameter!
142
143
        relativePermeability_[wPhaseIdx_] = MaterialLaw::krw(matParams, saturation(wPhaseIdx_));
        relativePermeability_[nPhaseIdx] = MaterialLaw::krn(matParams, saturation(wPhaseIdx_));
144
145

        // porosity & permeabilty
Katharina Heck's avatar
Katharina Heck committed
146
        updateSolidVolumeFractions(elemSol, problem, element, scv, solidState_, numFluidComps);
147
        EnergyVolVars::updateSolidEnergyParams(elemSol, problem, element, scv, solidState_);
148
        permeability_ = problem.spatialParams().permeability(element, scv, elemSol);
149

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
        // update the binary diffusion and effective diffusion coefficients
        auto getDiffusionCoefficient = [&](int phaseIdx, int compIIdx, int compJIdx)
        {
            return FluidSystem::binaryDiffusionCoefficient(this->fluidState_,
                                                            paramCache,
                                                            phaseIdx,
                                                            compIIdx,
                                                            compJIdx);
        };

        auto getEffectiveDiffusionCoefficient = [&](int phaseIdx, int compIIdx, int compJIdx)
        {
            return EffDiffModel::effectiveDiffusionCoefficient(*this, phaseIdx, compIIdx, compJIdx);
        };

        diffCoeff_.update(getDiffusionCoefficient);
        effectiveDiffCoeff_.update(getEffectiveDiffusionCoefficient);
167

168
        EnergyVolVars::updateEffectiveThermalConductivity();
169
170
171
    }

    /*!
172
     * \brief Completes the fluid state.
173
     *
174
175
176
     * \note TODO: This is a lot of copy paste from the 2p2c: factor out code!
     *
     * \param elemSol A vector containing all primary variables connected to the element
177
178
179
180
181
     * \param problem The object specifying the problem which ought to be simulated
     * \param element An element which contains part of the control volume
     * \param scv The sub-control volume
     * \param fluidState A container with the current (physical) state of the fluid
     * \param solidState A container with the current (physical) state of the solid
182
183
184
185
     *
     * Set temperature, saturations, capillary pressures, viscosities, densities and enthalpies.
     */
    template<class ElemSol, class Problem, class Element, class Scv>
186
187
188
189
    void completeFluidState(const ElemSol& elemSol,
                            const Problem& problem,
                            const Element& element,
                            const Scv& scv,
190
191
                            FluidState& fluidState,
                            SolidState& solidState)
192
    {
193
        EnergyVolVars::updateTemperature(elemSol, problem, element, scv, fluidState, solidState);
Timo Koch's avatar
Timo Koch committed
194

195
        const auto& priVars = elemSol[scv.localDofIndex()];
Timo Koch's avatar
Timo Koch committed
196
197
        const auto phasePresence = priVars.state();

198
199
        using MaterialLaw = typename Problem::SpatialParams::MaterialLaw;
        const auto& materialParams = problem.spatialParams().materialLawParams(element, scv, elemSol);
200
201
        wPhaseIdx_ = problem.spatialParams().template wettingPhase<FluidSystem>(element, scv, elemSol);
        fluidState.setWettingPhase(wPhaseIdx_);
202

Timo Koch's avatar
Timo Koch committed
203
        // set the saturations
204
205
206
207
208
209
210
211
212
213
        if (phasePresence == secondPhaseOnly)
        {
            fluidState.setSaturation(phase0Idx, 0.0);
            fluidState.setSaturation(phase1Idx, 1.0);
        }
        else if (phasePresence == firstPhaseOnly)
        {
            fluidState.setSaturation(phase0Idx, 1.0);
            fluidState.setSaturation(phase1Idx, 0.0);
        }
214
215
        else if (phasePresence == bothPhases)
        {
216
217
218
219
220
            if (formulation == TwoPFormulation::p0s1)
            {
                fluidState.setSaturation(phase1Idx, priVars[switchIdx]);
                fluidState.setSaturation(phase0Idx, 1 - priVars[switchIdx]);
            }
221
            else
222
223
224
225
            {
                fluidState.setSaturation(phase0Idx, priVars[switchIdx]);
                fluidState.setSaturation(phase1Idx, 1 - priVars[switchIdx]);
            }
Timo Koch's avatar
Timo Koch committed
226
        }
227
228
        else
            DUNE_THROW(Dune::InvalidStateException, "Invalid phase presence.");
Timo Koch's avatar
Timo Koch committed
229

230
        // set pressures of the fluid phases
231
        pc_ = MaterialLaw::pc(materialParams, fluidState.saturation(wPhaseIdx_));
232
233
234
        if (formulation == TwoPFormulation::p0s1)
        {
            fluidState.setPressure(phase0Idx, priVars[pressureIdx]);
235
            fluidState.setPressure(phase1Idx, (wPhaseIdx_ == phase0Idx) ? priVars[pressureIdx] + pc_
236
                                                                       : priVars[pressureIdx] - pc_);
Timo Koch's avatar
Timo Koch committed
237
        }
238
239
240
        else
        {
            fluidState.setPressure(phase1Idx, priVars[pressureIdx]);
241
            fluidState.setPressure(phase0Idx, (wPhaseIdx_ == phase0Idx) ? priVars[pressureIdx] - pc_
242
                                                                       : priVars[pressureIdx] + pc_);
Timo Koch's avatar
Timo Koch committed
243
244
245
246
247
248
249
250
251
252
        }

        // calculate the phase compositions
        typename FluidSystem::ParameterCache paramCache;
        // both phases are present
        if (phasePresence == bothPhases)
        {
            //Get the equilibrium mole fractions from the FluidSystem and set them in the fluidState
            //xCO2 = equilibrium mole fraction of CO2 in the liquid phase
            //yH2O = equilibrium mole fraction of H2O in the gas phase
253
254
            const auto xwCO2 = FluidSystem::equilibriumMoleFraction(fluidState, paramCache, phase0Idx);
            const auto xgH2O = FluidSystem::equilibriumMoleFraction(fluidState, paramCache, phase1Idx);
Timo Koch's avatar
Timo Koch committed
255
256
            const auto xwH2O = 1 - xwCO2;
            const auto xgCO2 = 1 - xgH2O;
257
258
259
260
            fluidState.setMoleFraction(phase0Idx, comp0Idx, xwH2O);
            fluidState.setMoleFraction(phase0Idx, comp1Idx, xwCO2);
            fluidState.setMoleFraction(phase1Idx, comp0Idx, xgH2O);
            fluidState.setMoleFraction(phase1Idx, comp1Idx, xgCO2);
Timo Koch's avatar
Timo Koch committed
261
262
263
264
        }

        // only the nonwetting phase is present, i.e. nonwetting phase
        // composition is stored explicitly.
265
        else if (phasePresence == secondPhaseOnly)
Timo Koch's avatar
Timo Koch committed
266
        {
267
            if( useMoles() ) // mole-fraction formulation
268
269
            {
                // set the fluid state
270
271
                fluidState.setMoleFraction(phase1Idx, comp0Idx, priVars[switchIdx]);
                fluidState.setMoleFraction(phase1Idx, comp1Idx, 1-priVars[switchIdx]);
272
                // TODO give values for non-existing wetting phase
273
                const auto xwCO2 = FluidSystem::equilibriumMoleFraction(fluidState, paramCache, phase0Idx);
Timo Koch's avatar
Timo Koch committed
274
                const auto xwH2O = 1 - xwCO2;
275
276
                fluidState.setMoleFraction(phase0Idx, comp1Idx, xwCO2);
                fluidState.setMoleFraction(phase0Idx, comp0Idx, xwH2O);
277
278
279
280
            }
            else // mass-fraction formulation
            {
                // setMassFraction() has only to be called 1-numComponents times
281
                fluidState.setMassFraction(phase1Idx, comp0Idx, priVars[switchIdx]);
282
                // TODO give values for non-existing wetting phase
283
                const auto xwCO2 = FluidSystem::equilibriumMoleFraction(fluidState, paramCache, phase0Idx);
Timo Koch's avatar
Timo Koch committed
284
                const auto xwH2O = 1 - xwCO2;
285
286
                fluidState.setMoleFraction(phase0Idx, comp1Idx, xwCO2);
                fluidState.setMoleFraction(phase0Idx, comp0Idx, xwH2O);
287
            }
Timo Koch's avatar
Timo Koch committed
288
        }
289

Timo Koch's avatar
Timo Koch committed
290
291
        // only the wetting phase is present, i.e. wetting phase
        // composition is stored explicitly.
292
        else if (phasePresence == firstPhaseOnly)
Timo Koch's avatar
Timo Koch committed
293
        {
294
            if( useMoles() ) // mole-fraction formulation
Timo Koch's avatar
Timo Koch committed
295
296
            {
                // convert mass to mole fractions and set the fluid state
297
298
                fluidState.setMoleFraction(phase0Idx, comp0Idx, 1-priVars[switchIdx]);
                fluidState.setMoleFraction(phase0Idx, comp1Idx, priVars[switchIdx]);
Timo Koch's avatar
Timo Koch committed
299
                //  TODO give values for non-existing nonwetting phase
300
                Scalar xnH2O = FluidSystem::equilibriumMoleFraction(fluidState, paramCache, phase1Idx);
Timo Koch's avatar
Timo Koch committed
301
                Scalar xnCO2 = 1 - xnH2O;
302
303
                fluidState.setMoleFraction(phase1Idx, comp1Idx, xnCO2);
                fluidState.setMoleFraction(phase1Idx, comp0Idx, xnH2O);
Timo Koch's avatar
Timo Koch committed
304
305
306
307
            }
            else // mass-fraction formulation
            {
                // setMassFraction() has only to be called 1-numComponents times
308
                fluidState.setMassFraction(phase0Idx, comp1Idx, priVars[switchIdx]);
Timo Koch's avatar
Timo Koch committed
309
                //  TODO give values for non-existing nonwetting phase
310
                Scalar xnH2O = FluidSystem::equilibriumMoleFraction(fluidState, paramCache, phase1Idx);
Timo Koch's avatar
Timo Koch committed
311
                Scalar xnCO2 = 1 - xnH2O;
312
313
                fluidState.setMoleFraction(phase1Idx, comp1Idx, xnCO2);
                fluidState.setMoleFraction(phase1Idx, comp0Idx, xnH2O);
Timo Koch's avatar
Timo Koch committed
314
315
316
            }
        }

317
        for (int phaseIdx = 0; phaseIdx < ModelTraits::numFluidPhases(); ++phaseIdx)
Timo Koch's avatar
Timo Koch committed
318
319
320
321
322
        {
            // set the viscosity and desity here if constraintsolver is not used
            paramCache.updateComposition(fluidState, phaseIdx);
            const Scalar rho = FluidSystem::density(fluidState, paramCache, phaseIdx);
            fluidState.setDensity(phaseIdx, rho);
323
324
            const Scalar rhoMolar = FluidSystem::molarDensity(fluidState, phaseIdx);
            fluidState.setMolarDensity(phaseIdx, rhoMolar);
Timo Koch's avatar
Timo Koch committed
325
326
327
328
            const Scalar mu = FluidSystem::viscosity(fluidState, paramCache, phaseIdx);
            fluidState.setViscosity(phaseIdx,mu);

            // compute and set the enthalpy
329
            Scalar h = EnergyVolVars::enthalpy(fluidState, paramCache, phaseIdx);
Timo Koch's avatar
Timo Koch committed
330
331
            fluidState.setEnthalpy(phaseIdx, h);
        }
332
    }
333
334
335
336
337
338
339

    /*!
     * \brief Returns the phase state within the control volume.
     */
    const FluidState &fluidState() const
    { return fluidState_; }

340
341
342
343
344
345
    /*!
     * \brief Returns the phase state for the control volume.
     */
    const SolidState &solidState() const
    { return solidState_; }

346
    /*!
Kilian Weishaupt's avatar
Kilian Weishaupt committed
347
     * \brief Returns the average molar mass \f$\mathrm{[kg/mol]}\f$ of the fluid phase.
348
349
350
351
352
     *
     * \param phaseIdx The phase index
     */
    Scalar averageMolarMass(int phaseIdx) const
    { return fluidState_.averageMolarMass(phaseIdx); }
353

354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
    /*!
     * \brief Returns the saturation of a given phase within
     *        the control volume in \f$[-]\f$.
     *
     * \param phaseIdx The phase index
     */
    Scalar saturation(const int phaseIdx) const
    { return fluidState_.saturation(phaseIdx); }

    /*!
     * \brief Returns the mass fraction of a given component in a
     *        given phase within the control volume in \f$[-]\f$.
     *
     * \param phaseIdx The phase index
     * \param compIdx The component index
     */
    Scalar massFraction(const int phaseIdx, const int compIdx) const
    { return fluidState_.massFraction(phaseIdx, compIdx); }

    /*!
     * \brief Returns the mole fraction of a given component in a
     *        given phase within the control volume in \f$[-]\f$.
     *
     * \param phaseIdx The phase index
     * \param compIdx The component index
     */
    Scalar moleFraction(const int phaseIdx, const int compIdx) const
    { return fluidState_.moleFraction(phaseIdx, compIdx); }

    /*!
     * \brief Returns the mass density of a given phase within the
     *        control volume in \f$[kg/m^3]\f$.
     *
     * \param phaseIdx The phase index
     */
    Scalar density(const int phaseIdx) const
    { return fluidState_.density(phaseIdx); }

    /*!
     * \brief Returns the dynamic viscosity of the fluid within the
     *        control volume in \f$\mathrm{[Pa s]}\f$.
     *
     * \param phaseIdx The phase index
     */
    Scalar viscosity(const int phaseIdx) const
    { return fluidState_.viscosity(phaseIdx); }

    /*!
     * \brief Returns the mass density of a given phase within the
     *        control volume in \f$[mol/m^3]\f$.
     *
     * \param phaseIdx The phase index
     */
    Scalar molarDensity(const int phaseIdx) const
408
    { return fluidState_.molarDensity(phaseIdx) ; }
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451

    /*!
     * \brief Returns the effective pressure of a given phase within
     *        the control volume in \f$[kg/(m*s^2)=N/m^2=Pa]\f$.
     *
     * \param phaseIdx The phase index
     */
    Scalar pressure(const int phaseIdx) const
    { return fluidState_.pressure(phaseIdx); }

    /*!
     * \brief Returns temperature within the control volume in \f$[K]\f$.
     *
     * Note that we assume thermodynamic equilibrium, i.e. the
     * temperature of the rock matrix and of all fluid phases are
     * identical.
     */
    Scalar temperature() const
    { return fluidState_.temperature(/*phaseIdx=*/0); }

    /*!
     * \brief Returns the relative permeability of a given phase within
     *        the control volume in \f$[-]\f$.
     *
     * \param phaseIdx The phase index
     */
    Scalar relativePermeability(const int phaseIdx) const
    { return relativePermeability_[phaseIdx]; }

    /*!
     * \brief Returns the effective mobility of a given phase within
     *        the control volume in \f$[s*m/kg]\f$.
     *
     * \param phaseIdx The phase index
     */
    Scalar mobility(const int phaseIdx) const
    { return relativePermeability_[phaseIdx]/fluidState_.viscosity(phaseIdx); }

    /*!
     * \brief Returns the effective capillary pressure within the control volume
     *        in \f$[kg/(m*s^2)=N/m^2=Pa]\f$.
     */
    Scalar capillaryPressure() const
452
    { return fluidState_.pressure(phase1Idx) - fluidState_.pressure(phase0Idx); }
453
454
455
456
457

    /*!
     * \brief Returns the average porosity within the control volume in \f$[-]\f$.
     */
    Scalar porosity() const
458
    { return solidState_.porosity(); }
459
460
461
462
463
464
465
466
467
468

    /*!
     * \brief Returns the average permeability within the control volume in \f$[m^2]\f$.
     */
    const PermeabilityType& permeability() const
    { return permeability_; }

    /*!
     * \brief Returns the binary diffusion coefficients for a phase in \f$[m^2/s]\f$.
     */
469
    [[deprecated("Will be removed after release 3.2. Use diffusionCoefficient(phaseIdx, compIIdx, compJIdx)!")]]
470
471
    Scalar diffusionCoefficient(int phaseIdx, int compIdx) const
    {
472
        if (phaseIdx == compIdx)
473
474
            DUNE_THROW(Dune::InvalidStateException, "Diffusion coefficient called for phaseIdx = compIdx");
        else
475
            return diffCoeff_(phaseIdx, FluidSystem::getMainComponent(phaseIdx), compIdx);
476
477
    }

478
479
480
481
482
483
    /*!
     * \brief Returns the binary diffusion coefficients for a phase in \f$[m^2/s]\f$.
     */
    Scalar diffusionCoefficient(int phaseIdx, int compIIdx, int compJIdx) const
    { return diffCoeff_(phaseIdx, compIIdx, compJIdx); }

484
485
486
    /*!
     * \brief Returns the effective diffusion coefficients for a phase in \f$[m^2/s]\f$.
     */
487
488
489
    Scalar effectiveDiffusionCoefficient(int phaseIdx, int compIIdx, int compJIdx) const
    { return effectiveDiffCoeff_(phaseIdx, compIIdx, compJIdx); }

490
491
492
493

    /*!
     * \brief Returns the wetting phase index
     */
494
    int wettingPhase() const
495
496
    { return wPhaseIdx_; }

497
private:
498
    int wPhaseIdx_;
499
    FluidState fluidState_;
500
    SolidState solidState_;
501
502
    Scalar pc_;                     // The capillary pressure
    PermeabilityType permeability_; // Effective permeability within the control volume
503

504
    // Relative permeability within the control volume
505
    std::array<Scalar, ModelTraits::numFluidPhases()> relativePermeability_;
506

507
508
509
    // Binary diffusion coefficient
    DiffusionCoefficients diffCoeff_;

510
    // Effective diffusion coefficients for the phases
511
    DiffusionCoefficients effectiveDiffCoeff_;
512
513
};

Timo Koch's avatar
Timo Koch committed
514
} // end namespace Dumux
515
516

#endif