implicitmodel.hh 33.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
 *   See the file COPYING for full copying permissions.                      *
 *                                                                           *
 *   This program is free software: you can redistribute it and/or modify    *
 *   it under the terms of the GNU General Public License as published by    *
 *   the Free Software Foundation, either version 2 of the License, or       *
 *   (at your option) any later version.                                     *
 *                                                                           *
 *   This program is distributed in the hope that it will be useful,         *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of          *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the            *
 *   GNU General Public License for more details.                            *
 *                                                                           *
 *   You should have received a copy of the GNU General Public License       *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.   *
 *****************************************************************************/
/*!
 * \file
21
 * \brief Base class for fully-implicit models
22
 */
23
24
#ifndef DUMUX_IMPLICIT_MODEL_HH
#define DUMUX_IMPLICIT_MODEL_HH
25

26
27
#include <dune/grid/common/geometry.hh>
#include <dune/istl/bvector.hh>
28

29
30
#include "implicitproperties.hh"
#include <dumux/common/valgrind.hh>
31
32
33
34
35
36
#include <dumux/parallel/vertexhandles.hh>

namespace Dumux
{

/*!
37
 * \ingroup ImplicitModel
38
39
40
41
 * \brief The base class for the vertex centered finite volume
 *        discretization scheme.
 */
template<class TypeTag>
42
class ImplicitModel
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
{
    typedef typename GET_PROP_TYPE(TypeTag, Model) Implementation;
    typedef typename GET_PROP_TYPE(TypeTag, Problem) Problem;
    typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
    typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
    typedef typename GET_PROP_TYPE(TypeTag, ElementMapper) ElementMapper;
    typedef typename GET_PROP_TYPE(TypeTag, VertexMapper) VertexMapper;
    typedef typename GET_PROP_TYPE(TypeTag, DofMapper) DofMapper;
    typedef typename GET_PROP_TYPE(TypeTag, SolutionVector) SolutionVector;
    typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
    typedef typename GET_PROP_TYPE(TypeTag, JacobianAssembler) JacobianAssembler;
    typedef typename GET_PROP_TYPE(TypeTag, ElementVolumeVariables) ElementVolumeVariables;
    typedef typename GET_PROP_TYPE(TypeTag, VolumeVariables) VolumeVariables;

    enum {
        numEq = GET_PROP_VALUE(TypeTag, NumEq),
        dim = GridView::dimension
    };

    typedef typename GET_PROP_TYPE(TypeTag, FVElementGeometry) FVElementGeometry;
    typedef typename GET_PROP_TYPE(TypeTag, LocalJacobian) LocalJacobian;
    typedef typename GET_PROP_TYPE(TypeTag, LocalResidual) LocalResidual;
    typedef typename GET_PROP_TYPE(TypeTag, NewtonMethod) NewtonMethod;
    typedef typename GET_PROP_TYPE(TypeTag, NewtonController) NewtonController;

    typedef typename GridView::ctype CoordScalar;
    typedef typename GridView::template Codim<0>::Entity Element;
    typedef typename GridView::template Codim<0>::Iterator ElementIterator;
    typedef typename GridView::template Codim<dim>::Entity Vertex;
    typedef typename GridView::template Codim<dim>::Iterator VertexIterator;
    typedef typename GridView::IntersectionIterator IntersectionIterator;

    typedef typename Dune::GenericReferenceElements<CoordScalar, dim> ReferenceElements;
    typedef typename Dune::GenericReferenceElement<CoordScalar, dim> ReferenceElement;

78
    enum { isBox = GET_PROP_VALUE(TypeTag, ImplicitIsBox) };
79
    enum { dofCodim = isBox ? dim : 0 };
80
    
81
    // copying a model is not a good idea
82
    ImplicitModel(const ImplicitModel &);
83
84
85
86
87

public:
    /*!
     * \brief The constructor.
     */
88
    ImplicitModel()
89
    : problemPtr_(0)
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
    {
        enableHints_ = GET_PARAM_FROM_GROUP(TypeTag, bool, Implicit, EnableHints);
    }

    /*!
     * \brief Apply the initial conditions to the model.
     *
     * \param problem The object representing the problem which needs to
     *             be simulated.
     */
    void init(Problem &problem)
    {
        problemPtr_ = &problem;

        updateBoundaryIndices_();

        int nDofs = asImp_().numDofs();
        uCur_.resize(nDofs);
        uPrev_.resize(nDofs);
109
110
        if (isBox)
            boxVolume_.resize(nDofs);
111
112

        localJacobian_.init(problem_());
113
        jacAsm_ = Dune::make_shared<JacobianAssembler>();
114
115
116
117
118
        jacAsm_->init(problem_());

        asImp_().applyInitialSolution_();

        // resize the hint vectors
119
        if (isBox && enableHints_) {
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
            int nVerts = gridView_().size(dim);
            curHints_.resize(nVerts);
            prevHints_.resize(nVerts);
            hintsUsable_.resize(nVerts);
            std::fill(hintsUsable_.begin(),
                      hintsUsable_.end(),
                      false);
        }

        // also set the solution of the "previous" time step to the
        // initial solution.
        uPrev_ = uCur_;
    }

    void setHints(const Element &element,
                  ElementVolumeVariables &prevVolVars,
                  ElementVolumeVariables &curVolVars) const
    {
138
        if (!isBox || !enableHints_)
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
            return;

        int n = element.template count<dim>();
        prevVolVars.resize(n);
        curVolVars.resize(n);
        for (int i = 0; i < n; ++i) {
            int globalIdx = vertexMapper().map(element, i, dim);

            if (!hintsUsable_[globalIdx]) {
                curVolVars[i].setHint(NULL);
                prevVolVars[i].setHint(NULL);
            }
            else {
                curVolVars[i].setHint(&curHints_[globalIdx]);
                prevVolVars[i].setHint(&prevHints_[globalIdx]);
            }
        }
    }

    void setHints(const Element &element,
                  ElementVolumeVariables &curVolVars) const
    {
161
        if (!isBox || !enableHints_)
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
            return;

        int n = element.template count<dim>();
        curVolVars.resize(n);
        for (int i = 0; i < n; ++i) {
            int globalIdx = vertexMapper().map(element, i, dim);

            if (!hintsUsable_[globalIdx])
                curVolVars[i].setHint(NULL);
            else
                curVolVars[i].setHint(&curHints_[globalIdx]);
        }
    }

    void updatePrevHints()
    {
178
        if (!isBox || !enableHints_)
179
180
181
182
183
184
185
186
            return;

        prevHints_ = curHints_;
    }

    void updateCurHints(const Element &element,
                        const ElementVolumeVariables &elemVolVars) const
    {
187
        if (!isBox || !enableHints_)
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
            return;

        for (unsigned int i = 0; i < elemVolVars.size(); ++i) {
            int globalIdx = vertexMapper().map(element, i, dim);
            curHints_[globalIdx] = elemVolVars[i];
            if (!hintsUsable_[globalIdx])
                prevHints_[globalIdx] = elemVolVars[i];
            hintsUsable_[globalIdx] = true;
        }
    }


    /*!
     * \brief Compute the global residual for an arbitrary solution
     *        vector.
     *
     * \param residual Stores the result
     * \param u The solution for which the residual ought to be calculated
     */
    Scalar globalResidual(SolutionVector &residual,
                          const SolutionVector &u)
    {
        SolutionVector tmp(curSol());
        curSol() = u;
        Scalar res = globalResidual(residual);
        curSol() = tmp;
        return res;
    }

    /*!
     * \brief Compute the global residual for the current solution
     *        vector.
     *
     * \param residual Stores the result
     */
    Scalar globalResidual(SolutionVector &residual)
    {
        residual = 0;

227
228
229
230
        ElementIterator eIt = gridView_().template begin<0>();
        const ElementIterator eEndIt = gridView_().template end<0>();
        for (; eIt != eEndIt; ++eIt) {
            localResidual().eval(*eIt);
231

232
233
            if (isBox)
            {
234
235
                for (int i = 0; i < eIt->template count<dim>(); ++i) {
                    int globalI = vertexMapper().map(*eIt, i, dim);
236
237
238
239
240
                    residual[globalI] += localResidual().residual(i);
                }
            }
            else
            {
241
                int globalI = elementMapper().map(*eIt);
242
                residual[globalI] = localResidual().residual(0);
243
244
245
246
247
248
249
250
251
            }
        }

        // calculate the square norm of the residual
        Scalar result2 = residual.two_norm2();
        if (gridView_().comm().size() > 1)
            result2 = gridView_().comm().sum(result2);

        // add up the residuals on the process borders
252
        if (isBox && gridView_().comm().size() > 1) {
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
            VertexHandleSum<PrimaryVariables, SolutionVector, VertexMapper>
                sumHandle(residual, vertexMapper());
            gridView_().communicate(sumHandle,
                                    Dune::InteriorBorder_InteriorBorder_Interface,
                                    Dune::ForwardCommunication);
        }

        return std::sqrt(result2);
    }

    /*!
     * \brief Compute the integral over the domain of the storage
     *        terms of all conservation quantities.
     *
     * \param storage Stores the result
     */
    void globalStorage(PrimaryVariables &storage)
    {
        storage = 0;

273
274
275
276
        ElementIterator eIt = gridView_().template begin<0>();
        const ElementIterator eEndIt = gridView_().template end<0>();
        for (; eIt != eEndIt; ++eIt) {
    	   if(eIt->partitionType() == Dune::InteriorEntity)
277
278
	   {
 
279
           localResidual().evalStorage(*eIt);
280

281
282
            if (isBox)
            {
283
                for (int i = 0; i < eIt->template count<dim>(); ++i)
284
285
286
287
288
289
                    storage += localResidual().storageTerm()[i];
            }
            else
            {
                storage += localResidual().storageTerm()[0];
            }
290
	  }	
291
292
293
294
295
296
297
298
299
300
301
302
303
        }

        if (gridView_().comm().size() > 1)
            storage = gridView_().comm().sum(storage);
    }

    /*!
     * \brief Returns the volume \f$\mathrm{[m^3]}\f$ of a given control volume.
     *
     * \param globalIdx The global index of the control volume's
     *                  associated vertex
     */
    Scalar boxVolume(const int globalIdx) const
304
305
306
307
308
309
310
    {
        if (isBox)
        {
            return boxVolume_[globalIdx][0];
        }
        else
        {
311
            DUNE_THROW(Dune::InvalidStateException,
312
313
314
                       "requested box volume for cell-centered model");
        }
    }
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383

    /*!
     * \brief Reference to the current solution as a block vector.
     */
    const SolutionVector &curSol() const
    { return uCur_; }

    /*!
     * \brief Reference to the current solution as a block vector.
     */
    SolutionVector &curSol()
    { return uCur_; }

    /*!
     * \brief Reference to the previous solution as a block vector.
     */
    const SolutionVector &prevSol() const
    { return uPrev_; }

    /*!
     * \brief Reference to the previous solution as a block vector.
     */
    SolutionVector &prevSol()
    { return uPrev_; }

    /*!
     * \brief Returns the operator assembler for the global jacobian of
     *        the problem.
     */
    JacobianAssembler &jacobianAssembler()
    { return *jacAsm_; }

    /*!
     * \copydoc jacobianAssembler()
     */
    const JacobianAssembler &jacobianAssembler() const
    { return *jacAsm_; }

    /*!
     * \brief Returns the local jacobian which calculates the local
     *        stiffness matrix for an arbitrary element.
     *
     * The local stiffness matrices of the element are used by
     * the jacobian assembler to produce a global linerization of the
     * problem.
     */
    LocalJacobian &localJacobian()
    { return localJacobian_; }
    /*!
     * \copydoc localJacobian()
     */
    const LocalJacobian &localJacobian() const
    { return localJacobian_; }

    /*!
     * \brief Returns the local residual function.
     */
    LocalResidual &localResidual()
    { return localJacobian().localResidual(); }
    /*!
     * \copydoc localResidual()
     */
    const LocalResidual &localResidual() const
    { return localJacobian().localResidual(); }

    /*!
     * \brief Returns the relative error between two vectors of
     *        primary variables.
     *
384
385
     * \param dofIdx The global index of the control volume's
     *               associated degree of freedom
386
387
388
     * \param priVars1 The first vector of primary variables
     * \param priVars2 The second vector of primary variables
     */
389
390
391
    Scalar relativeErrorDof(const int dofIdx,
                            const PrimaryVariables &priVars1,
                            const PrimaryVariables &priVars2)
392
393
394
395
396
    {
        Scalar result = 0.0;
        for (int j = 0; j < numEq; ++j) {
            Scalar eqErr = std::abs(priVars1[j] - priVars2[j]);
            eqErr /= std::max<Scalar>(1.0, std::abs(priVars1[j] + priVars2[j])/2);
397
            
398
399
400
401
            result = std::max(result, eqErr);
        }
        return result;
    }
402
    
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
    /*!
     * \brief Try to progress the model to the next timestep.
     *
     * \param solver The non-linear solver
     * \param controller The controller which specifies the behaviour
     *                   of the non-linear solver
     */
    bool update(NewtonMethod &solver,
                NewtonController &controller)
    {
#if HAVE_VALGRIND
        for (size_t i = 0; i < curSol().size(); ++i)
            Valgrind::CheckDefined(curSol()[i]);
#endif // HAVE_VALGRIND

        asImp_().updateBegin();

        bool converged = solver.execute(controller);
        if (converged) {
            asImp_().updateSuccessful();
        }
        else
            asImp_().updateFailed();

#if HAVE_VALGRIND
        for (size_t i = 0; i < curSol().size(); ++i) {
            Valgrind::CheckDefined(curSol()[i]);
        }
#endif // HAVE_VALGRIND

        return converged;
    }


    /*!
     * \brief Called by the update() method before it tries to
     *        apply the newton method. This is primary a hook
     *        which the actual model can overload.
     */
    void updateBegin()
    { }


    /*!
     * \brief Called by the update() method if it was
     *        successful. This is primary a hook which the actual
     *        model can overload.
     */
    void updateSuccessful()
    { }

    /*!
     * \brief Called by the update() method if it was
     *        unsuccessful. This is primary a hook which the actual
     *        model can overload.
     */
    void updateFailed()
    {
        // Reset the current solution to the one of the
        // previous time step so that we can start the next
        // update at a physically meaningful solution.
        uCur_ = uPrev_;
465
466
        if (isBox)
            curHints_ = prevHints_;
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481

        jacAsm_->reassembleAll();
    }

    /*!
     * \brief Called by the problem if a time integration was
     *        successful, post processing of the solution is done and
     *        the result has been written to disk.
     *
     * This should prepare the model for the next time integration.
     */
    void advanceTimeLevel()
    {
        // make the current solution the previous one.
        uPrev_ = uCur_;
482
483
        if (isBox)
            prevHints_ = curHints_;
484
485
486
487
488
489
490
491
492
493
494
495
496

        updatePrevHints();
    }

    /*!
     * \brief Serializes the current state of the model.
     *
     * \tparam Restarter The type of the serializer class
     *
     * \param res The serializer object
     */
    template <class Restarter>
    void serialize(Restarter &res)
497
498
499
500
501
502
    {
        if (isBox)
            res.template serializeEntities<dim>(asImp_(), this->gridView_()); 
        else
            res.template serializeEntities<0>(asImp_(), this->gridView_());
    }
503
504
505
506
507
508
509
510
511
512
513

    /*!
     * \brief Deserializes the state of the model.
     *
     * \tparam Restarter The type of the serializer class
     *
     * \param res The serializer object
     */
    template <class Restarter>
    void deserialize(Restarter &res)
    {
514
515
516
517
518
        if (isBox)
            res.template deserializeEntities<dim>(asImp_(), this->gridView_());
        else
            res.template deserializeEntities<0>(asImp_(), this->gridView_());
        
519
520
521
522
523
524
525
526
527
        prevSol() = curSol();
    }

    /*!
     * \brief Write the current solution for a vertex to a restart
     *        file.
     *
     * \param outstream The stream into which the vertex data should
     *                  be serialized to
528
529
530
     * \param entity The entity which's data should be
     *               serialized, i.e. a vertex for the box method
     *               and an element for the cell-centered method
531
     */
532
    template <class Entity>
533
    void serializeEntity(std::ostream &outstream,
534
                         const Entity &entity)
535
    {
536
        int dofIdx = dofMapper().map(entity);
537
        
538
539
540
541
        // write phase state
        if (!outstream.good()) {
            DUNE_THROW(Dune::IOError,
                       "Could not serialize vertex "
542
                       << dofIdx);
543
544
545
        }

        for (int eqIdx = 0; eqIdx < numEq; ++eqIdx) {
546
            outstream << curSol()[dofIdx][eqIdx] << " ";
547
548
549
550
551
552
553
554
555
        }
    }

    /*!
     * \brief Reads the current solution variables for a vertex from a
     *        restart file.
     *
     * \param instream The stream from which the vertex data should
     *                  be deserialized from
556
557
558
     * \param entity The entity which's data should be
     *               serialized, i.e. a vertex for the box method
     *               and an element for the cell-centered method
559
     */
560
    template <class Entity>
561
    void deserializeEntity(std::istream &instream,
562
                           const Entity &entity)
563
    {
564
        int dofIdx = dofMapper().map(entity);
565

566
567
568
569
        for (int eqIdx = 0; eqIdx < numEq; ++eqIdx) {
            if (!instream.good())
                DUNE_THROW(Dune::IOError,
                           "Could not deserialize vertex "
570
571
                           << dofIdx);
            instream >> curSol()[dofIdx][eqIdx];
572
573
574
575
576
577
578
        }
    }

    /*!
     * \brief Returns the number of global degrees of freedoms (DOFs)
     */
    size_t numDofs() const
579
580
581
582
    {
        if (isBox)
            return gridView_().size(dim); 
        else
583
            return gridView_().size(0); 
584
    }
585
586
587
588
589

    /*!
     * \brief Mapper for the entities where degrees of freedoms are
     *        defined to indices.
     *
590
591
592
     * Is the box method is used, this means a mapper 
     * for vertices, if the cell centered method is used,
     * this means a mapper for elements.
593
     */
594
595
    template <class T = TypeTag>
    const typename std::enable_if<GET_PROP_VALUE(T, ImplicitIsBox), VertexMapper>::type &dofMapper() const
596
    {
597
598
599
600
601
602
        return problem_().vertexMapper();
    }
    template <class T = TypeTag>
    const typename std::enable_if<!GET_PROP_VALUE(T, ImplicitIsBox), ElementMapper>::type &dofMapper() const
    {
        return problem_().elementMapper();
603
    }
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622

    /*!
     * \brief Mapper for vertices to indices.
     */
    const VertexMapper &vertexMapper() const
    { return problem_().vertexMapper(); }

    /*!
     * \brief Mapper for elements to indices.
     */
    const ElementMapper &elementMapper() const
    { return problem_().elementMapper(); }

    /*!
     * \brief Resets the Jacobian matrix assembler, so that the
     *        boundary types can be altered.
     */
    void resetJacobianAssembler ()
    {
623
624
        jacAsm_.template reset<JacobianAssembler>(0);
        jacAsm_ = Dune::make_shared<JacobianAssembler>();
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
        jacAsm_->init(problem_());
    }

    /*!
     * \brief Update the weights of all primary variables within an
     *        element given the complete set of volume variables
     *
     * \param element The DUNE codim 0 entity
     * \param volVars All volume variables for the element
     */
    void updatePVWeights(const Element &element,
                         const ElementVolumeVariables &volVars) const
    { }

    /*!
     * \brief Add the vector fields for analysing the convergence of
     *        the newton method to the a VTK multi writer.
     *
     * \tparam MultiWriter The type of the VTK multi writer
     *
     * \param writer  The VTK multi writer object on which the fields should be added.
     * \param u       The solution function
     * \param deltaU  The delta of the solution function before and after the Newton update
     */
    template <class MultiWriter>
    void addConvergenceVtkFields(MultiWriter &writer,
                                 const SolutionVector &u,
                                 const SolutionVector &deltaU)
    {
        typedef Dune::BlockVector<Dune::FieldVector<double, 1> > ScalarField;

        SolutionVector residual(u);
        asImp_().globalResidual(residual, u);

        // create the required scalar fields
660
        unsigned numDofs = asImp_().numDofs();
661
662
663
664
665
666

        // global defect of the two auxiliary equations
        ScalarField* def[numEq];
        ScalarField* delta[numEq];
        ScalarField* x[numEq];
        for (int eqIdx = 0; eqIdx < numEq; ++eqIdx) {
667
668
669
            x[eqIdx] = writer.allocateManagedBuffer(numDofs);
            delta[eqIdx] = writer.allocateManagedBuffer(numDofs);
            def[eqIdx] = writer.allocateManagedBuffer(numDofs);
670
671
        }

672
        for (unsigned int globalIdx = 0; globalIdx < u.size(); globalIdx++)
673
        {
674
675
            for (int eqIdx = 0; eqIdx < numEq; ++eqIdx) 
            {
676
677
678
679
680
                (*x[eqIdx])[globalIdx] = u[globalIdx][eqIdx];
                (*delta[eqIdx])[globalIdx] = - deltaU[globalIdx][eqIdx];
                (*def[eqIdx])[globalIdx] = residual[globalIdx][eqIdx];
            }
        }
681
        
682
683
684
        for (int eqIdx = 0; eqIdx < numEq; ++eqIdx) {
            std::ostringstream oss;
            oss.str(""); oss << "x_" << eqIdx;
685
686
687
688
            if (isBox)
                writer.attachVertexData(*x[eqIdx], oss.str());
            else
                writer.attachCellData(*x[eqIdx], oss.str());
689
            oss.str(""); oss << "delta_" << eqIdx;
690
691
692
693
            if (isBox)
                writer.attachVertexData(*delta[eqIdx], oss.str());
            else
                writer.attachCellData(*delta[eqIdx], oss.str());
694
            oss.str(""); oss << "defect_" << eqIdx;
695
696
697
698
            if (isBox)
                writer.attachVertexData(*def[eqIdx], oss.str());
            else
                writer.attachCellData(*def[eqIdx], oss.str());
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
        }

        asImp_().addOutputVtkFields(u, writer);
    }

    /*!
     * \brief Add the quantities of a time step which ought to be written to disk.
     *
     * This should be overwritten by the actual model if any secondary
     * variables should be written out. Read: This should _always_ be
     * overwritten by well behaved models!
     *
     * \tparam MultiWriter The type of the VTK multi writer
     *
     * \param sol The global vector of primary variable values.
     * \param writer The VTK multi writer where the fields should be added.
     */
    template <class MultiWriter>
    void addOutputVtkFields(const SolutionVector &sol,
                            MultiWriter &writer)
    {
        typedef Dune::BlockVector<Dune::FieldVector<Scalar, 1> > ScalarField;

        // create the required scalar fields
723
        unsigned numDofs = asImp_().numDofs();
724
725
726
727

        // global defect of the two auxiliary equations
        ScalarField* x[numEq];
        for (int eqIdx = 0; eqIdx < numEq; ++eqIdx) {
728
            x[eqIdx] = writer.allocateManagedBuffer(numDofs);
729
730
        }

731
        for (int globalIdx = 0; globalIdx < sol.size(); globalIdx++)
732
733
734
735
736
737
738
739
740
        {
            for (int eqIdx = 0; eqIdx < numEq; ++eqIdx) {
                (*x[eqIdx])[globalIdx] = sol[globalIdx][eqIdx];
            }
        }

        for (int eqIdx = 0; eqIdx < numEq; ++eqIdx) {
            std::ostringstream oss;
            oss << "primaryVar_" << eqIdx;
741
742
743
744
            if (isBox)
                writer.attachVertexData(*x[eqIdx], oss.str());
            else
                writer.attachCellData(*x[eqIdx], oss.str());
745
746
747
748
749
750
751
752
753
754
        }
    }

    /*!
     * \brief Reference to the grid view of the spatial domain.
     */
    const GridView &gridView() const
    { return problem_().gridView(); }

    /*!
755
756
     * \brief Returns true if the entity indicated by 'globalIdx' 
     * is located on / touches the grid's boundary.
757
     *
758
     * \param globalIdx The global index of the entity
759
     */
760
761
    bool onBoundary(const int globalIdx) const
    { return boundaryIndices_[globalIdx]; }
762
763
764
765
766
767
768

    /*!
     * \brief Returns true if a vertex is located on the grid's
     *        boundary.
     *
     * \param element A DUNE Codim<0> entity which contains the control
     *             volume's associated vertex.
769
     * \param vertIdx The local vertex index inside element
770
     */
771
    bool onBoundary(const Element &element, const int vertIdx) const
772
773
    {
        if (isBox)
774
            return onBoundary(vertexMapper().map(element, vertIdx, dim));
775
        else
776
            DUNE_THROW(Dune::InvalidStateException,
777
778
                       "requested for cell-centered model");            
    }
779

780
781
782
783
784
785
786
787
788
789
790
791
792
    
    /*!
     * \brief Returns true if the control volume touches
     *        the grid's boundary.
     *
     * \param elem A DUNE Codim<0> entity coinciding with the control
     *             volume.
     */
    bool onBoundary(const Element &elem) const
    {
        if (!isBox)
            return onBoundary(elementMapper().map(elem));
        else
793
            DUNE_THROW(Dune::InvalidStateException,
794
795
796
                       "requested for box model");
    }
    
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
    /*!
     * \brief Fill the fluid state according to the primary variables. 
     * 
     * Taking the information from the primary variables, 
     * the fluid state is filled with every information that is 
     * necessary to evaluate the model's local residual. 
     * 
     * \param priVars The primary variables of the model.
     * \param problem The problem at hand. 
     * \param element The current element. 
     * \param fvGeometry The finite volume element geometry.
     * \param scvIdx The index of the subcontrol volume. 
     * \param fluidState The fluid state to fill. 
     */
    template <class FluidState>
    static void completeFluidState(const PrimaryVariables& priVars,
                                   const Problem& problem,
                                   const Element& element,
                                   const FVElementGeometry& fvGeometry,
                                   const int scvIdx,
                                   FluidState& fluidState)
    {
        VolumeVariables::completeFluidState(priVars, problem, element,
                                            fvGeometry, scvIdx, fluidState);
    }
protected:
    /*!
     * \brief A reference to the problem on which the model is applied.
     */
    Problem &problem_()
    { return *problemPtr_; }
    /*!
     * \copydoc problem_()
     */
    const Problem &problem_() const
    { return *problemPtr_; }

    /*!
     * \brief Reference to the grid view of the spatial domain.
     */
    const GridView &gridView_() const
    { return problem_().gridView(); }

    /*!
     * \brief Reference to the local residal object
     */
    LocalResidual &localResidual_()
    { return localJacobian_.localResidual(); }

    /*!
     * \brief Applies the initial solution for all vertices of the grid.
     */
    void applyInitialSolution_()
    {
        // first set the whole domain to zero
        uCur_ = Scalar(0.0);
        boxVolume_ = Scalar(0.0);

        FVElementGeometry fvGeometry;

        // iterate through leaf grid and evaluate initial
        // condition at the center of each sub control volume
        //
        // TODO: the initial condition needs to be unique for
        // each vertex. we should think about the API...
        ElementIterator eIt = gridView_().template begin<0>();
        const ElementIterator &eEndIt = gridView_().template end<0>();
        for (; eIt != eEndIt; ++eIt) {
            // deal with the current element
            fvGeometry.update(gridView_(), *eIt);

            // loop over all element vertices, i.e. sub control volumes
869
            for (int scvIdx = 0; scvIdx < fvGeometry.numScv; scvIdx++)
870
            {
871
872
                // get the global index of the degree of freedom
                int globalIdx = dofMapper().map(*eIt, scvIdx, dofCodim);
873
874
875
876
877
878
879
880
881
882
883

                // let the problem do the dirty work of nailing down
                // the initial solution.
                PrimaryVariables initPriVars;
                Valgrind::SetUndefined(initPriVars);
                problem_().initial(initPriVars,
                                   *eIt,
                                   fvGeometry,
                                   scvIdx);
                Valgrind::CheckDefined(initPriVars);

884
885
886
887
888
889
890
891
892
893
                if (isBox)
                {
                    // add up the initial values of all sub-control
                    // volumes. If the initial values disagree for
                    // different sub control volumes, the initial value
                    // will be the arithmetic mean.
                    initPriVars *= fvGeometry.subContVol[scvIdx].volume;
                    boxVolume_[globalIdx] += fvGeometry.subContVol[scvIdx].volume;
                }
                
894
895
896
897
898
899
900
                uCur_[globalIdx] += initPriVars;
                Valgrind::CheckDefined(uCur_[globalIdx]);
            }
        }

        // add up the primary variables and the volumes of the boxes
        // which cross process borders
901
        if (isBox && gridView_().comm().size() > 1) {
902
903
904
905
906
907
908
909
910
911
912
913
914
915
            VertexHandleSum<Dune::FieldVector<Scalar, 1>,
                Dune::BlockVector<Dune::FieldVector<Scalar, 1> >,
                VertexMapper> sumVolumeHandle(boxVolume_, vertexMapper());
            gridView_().communicate(sumVolumeHandle,
                                    Dune::InteriorBorder_InteriorBorder_Interface,
                                    Dune::ForwardCommunication);

            VertexHandleSum<PrimaryVariables, SolutionVector, VertexMapper>
                sumPVHandle(uCur_, vertexMapper());
            gridView_().communicate(sumPVHandle,
                                    Dune::InteriorBorder_InteriorBorder_Interface,
                                    Dune::ForwardCommunication);
        }

916
917
918
        if (isBox)
        {
            // divide all primary variables by the volume of their boxes
919
            for (unsigned int i = 0; i < uCur_.size(); ++i) {
920
921
                uCur_[i] /= boxVolume(i);
            }
922
923
924
925
        }
    }

    /*!
926
     * \brief Find all indices of boundary vertices (box) / elements (cell centered).
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
     */
    void updateBoundaryIndices_()
    {
        boundaryIndices_.resize(numDofs());
        std::fill(boundaryIndices_.begin(), boundaryIndices_.end(), false);

        ElementIterator eIt = gridView_().template begin<0>();
        ElementIterator eEndIt = gridView_().template end<0>();
        for (; eIt != eEndIt; ++eIt) {
            Dune::GeometryType geoType = eIt->geometry().type();
            const ReferenceElement &refElement = ReferenceElements::general(geoType);

            IntersectionIterator isIt = gridView_().ibegin(*eIt);
            IntersectionIterator isEndIt = gridView_().iend(*eIt);
            for (; isIt != isEndIt; ++isIt) {
                if (isIt->boundary()) {
943
                    if (isBox)
944
                    {
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
                        // add all vertices on the intersection to the set of
                        // boundary vertices
                        int faceIdx = isIt->indexInInside();
                        int numFaceVerts = refElement.size(faceIdx, 1, dim);
                        for (int faceVertIdx = 0;
                             faceVertIdx < numFaceVerts;
                             ++faceVertIdx)
                        {
                            int elemVertIdx = refElement.subEntity(faceIdx,
                                                                   1,
                                                                   faceVertIdx,
                                                                   dim);
                            int globalVertIdx = vertexMapper().map(*eIt, elemVertIdx, dim);
                            boundaryIndices_[globalVertIdx] = true;
                        }
                    }
                    else 
                    {
                        int globalIdx = elementMapper().map(*eIt);
                        boundaryIndices_[globalIdx] = true;
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
                    }
                }
            }
        }
    }

    // the hint cache for the previous and the current volume
    // variables
    mutable std::vector<bool> hintsUsable_;
    mutable std::vector<VolumeVariables> curHints_;
    mutable std::vector<VolumeVariables> prevHints_;

    // the problem we want to solve. defines the constitutive
    // relations, matxerial laws, etc.
    Problem *problemPtr_;

    // calculates the local jacobian matrix for a given element
    LocalJacobian localJacobian_;
    // Linearizes the problem at the current time step using the
    // local jacobian
985
    Dune::shared_ptr<JacobianAssembler> jacAsm_;
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000

    // the set of all indices of vertices on the boundary
    std::vector<bool> boundaryIndices_;

    // cur is the current iterative solution, prev the converged
    // solution of the previous time step
    SolutionVector uCur_;
    SolutionVector uPrev_;

    Dune::BlockVector<Dune::FieldVector<Scalar, 1> > boxVolume_;

private:
    /*!
     * \brief Returns whether messages should be printed
     */