volumevariables.hh 8.02 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
 *   See the file COPYING for full copying permissions.                      *
 *                                                                           *
 *   This program is free software: you can redistribute it and/or modify    *
 *   it under the terms of the GNU General Public License as published by    *
 *   the Free Software Foundation, either version 2 of the License, or       *
 *   (at your option) any later version.                                     *
 *                                                                           *
 *   This program is distributed in the hope that it will be useful,         *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of          *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the            *
 *   GNU General Public License for more details.                            *
 *                                                                           *
 *   You should have received a copy of the GNU General Public License       *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.   *
 *****************************************************************************/
/*!
 * \file
 *
 * \brief Quantities required by the one-phase fully implicit model defined on a vertex.
 */
#ifndef DUMUX_1P_VOLUME_VARIABLES_HH
#define DUMUX_1P_VOLUME_VARIABLES_HH

#include "properties.hh"
#include <dumux/implicit/volumevariables.hh>

30
#include <dumux/material/fluidstates/immiscible.hh>
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

namespace Dumux
{

/*!
 * \ingroup OnePModel
 * \ingroup ImplicitVolumeVariables
 * \brief Contains the quantities which are constant within a
 *        finite volume in the one-phase model.
 */
template <class TypeTag>
class OnePVolumeVariables : public ImplicitVolumeVariables<TypeTag>
{
    typedef ImplicitVolumeVariables<TypeTag> ParentType;

    typedef typename GET_PROP_TYPE(TypeTag, VolumeVariables) Implementation;
    typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
    typedef typename GET_PROP_TYPE(TypeTag, Problem) Problem;
    typedef typename GET_PROP_TYPE(TypeTag, FVElementGeometry) FVElementGeometry;
    typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
    typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
    typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;

    typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
    typedef typename GridView::template Codim<0>::Entity Element;

public:

    typedef typename GET_PROP_TYPE(TypeTag, FluidState) FluidState;

    /*!
     * \copydoc ImplicitVolumeVariables::update
     */
    void update(const PrimaryVariables &priVars,
                const Problem &problem,
                const Element &element,
                const FVElementGeometry &fvGeometry,
                const int scvIdx,
                const bool isOldSol)
    {
        ParentType::update(priVars, problem, element, fvGeometry, scvIdx, isOldSol);

        completeFluidState(priVars, problem, element, fvGeometry, scvIdx, fluidState_);
        // porosity
        porosity_ = problem.spatialParams().porosity(element,
                                                         fvGeometry,
                                                         scvIdx);

        // energy related quantities not contained in the fluid state
        asImp_().updateEnergy_(priVars, problem, element, fvGeometry, scvIdx, isOldSol);
    };

    /*!
     * \copydoc ImplicitModel::completeFluidState
     */
    static void completeFluidState(const PrimaryVariables& priVars,
                                   const Problem& problem,
                                   const Element& element,
                                   const FVElementGeometry& fvGeometry,
                                   const int scvIdx,
                                   FluidState& fluidState)
    {
        Scalar t = Implementation::temperature_(priVars, problem, element,
                                                fvGeometry, scvIdx);
        fluidState.setTemperature(t);
        fluidState.setSaturation(/*phaseIdx=*/0, 1.);

        fluidState.setPressure(/*phaseIdx=*/0, priVars[Indices::pressureIdx]);

        // saturation in a single phase is always 1 and thus redundant
        // to set. But since we use the fluid state shared by the
        // immiscible multi-phase models, so we have to set it here...
        fluidState.setSaturation(/*phaseIdx=*/0, 1.0);

        typename FluidSystem::ParameterCache paramCache;
        paramCache.updatePhase(fluidState, /*phaseIdx=*/0);

        Scalar value = FluidSystem::density(fluidState, paramCache, /*phaseIdx=*/0);
        fluidState.setDensity(/*phaseIdx=*/0, value);

        value = FluidSystem::viscosity(fluidState, paramCache, /*phaseIdx=*/0);
        fluidState.setViscosity(/*phaseIdx=*/0, value);

        // compute and set the enthalpy
        value = Implementation::enthalpy_(fluidState, paramCache, /*phaseIdx=*/0);
        fluidState.setEnthalpy(/*phaseIdx=*/0, value);
    }

    /*!
     * \brief Return temperature \f$\mathrm{[K]}\f$ inside the sub-control volume.
     *
     * Note that we assume thermodynamic equilibrium, i.e. the
     * temperatures of the rock matrix and of all fluid phases are
     * identical.
     */
    Scalar temperature() const
    { return fluidState_.temperature(); }

    /*!
     * \brief Return the effective pressure \f$\mathrm{[Pa]}\f$ of a given phase within
     *        the control volume.
     */
    Scalar pressure(int phaseIdx = 0) const
    { return fluidState_.pressure(phaseIdx); }

    /*!
     * \brief Return the mass density \f$\mathrm{[kg/m^3]}\f$ of a given phase within the
     *        control volume.
     */
    Scalar density(int phaseIdx = 0) const
    { return fluidState_.density(phaseIdx); }

    /*!
     * \brief Return the dynamic viscosity \f$\mathrm{[Pa s]}\f$ of the fluid within the
     *        control volume.
     */
    Scalar viscosity(int phaseIdx = 0) const
    { return fluidState_.viscosity(phaseIdx); }

    /*!
     * \brief Returns the mobility \f$\mathrm{[1/(Pa s)]}\f$.
     *
     * This function enables the use of ImplicitDarcyFluxVariables
     * with the 1p fully implicit model, ALTHOUGH the term mobility is
     * usually not employed in the one phase context.
     *
     * \param phaseIdx The phase index
     */
    Scalar mobility(int phaseIdx = 0) const
    { return 1.0/fluidState_.viscosity(phaseIdx); }

    /*!
     * \brief Return the average porosity \f$\mathrm{[-]}\f$ within the control volume.
     */
    Scalar porosity() const
    { return porosity_; }

    /*!
     * \brief Return the fluid state of the control volume.
     */
    const FluidState &fluidState() const
    { return fluidState_; }

protected:
    static Scalar temperature_(const PrimaryVariables &priVars,
                            const Problem& problem,
                            const Element &element,
                            const FVElementGeometry &fvGeometry,
                            const int scvIdx)
    {
        return problem.temperatureAtPos(fvGeometry.subContVol[scvIdx].global);
    }

    template<class ParameterCache>
    static Scalar enthalpy_(const FluidState& fluidState,
                            const ParameterCache& paramCache,
                            const int phaseIdx)
    {
        return 0;
    }

    /*!
     * \brief Called by update() to compute the energy related quantities.
     */
    void updateEnergy_(const PrimaryVariables &sol,
                       const Problem &problem,
                       const Element &element,
                       const FVElementGeometry &fvGeometry,
                       const int scvIdx,
                       const bool isOldSol)
    { }

    FluidState fluidState_;
    Scalar porosity_;

private:
    Implementation &asImp_()
    { return *static_cast<Implementation*>(this); }

    const Implementation &asImp_() const
    { return *static_cast<const Implementation*>(this); }
};

}

#endif