diff --git a/test/porousmediumflow/3p/implicit/3pniconductionproblem.hh b/test/porousmediumflow/3p/implicit/3pniconductionproblem.hh
index 2ebb373e23d5834c65bb62e03375e6463a54fa44..b51ff47c851d628b45ed07565bb13bfe600f84c1 100644
--- a/test/porousmediumflow/3p/implicit/3pniconductionproblem.hh
+++ b/test/porousmediumflow/3p/implicit/3pniconductionproblem.hh
@@ -29,7 +29,6 @@
 #include <dumux/porousmediumflow/3p/implicit/model.hh>
 #include <dumux/implicit/cellcentered/tpfa/properties.hh>
 #include <dumux/implicit/cellcentered/mpfa/properties.hh>
-#include <dumux/porousmediumflow/implicit/problem.hh>
 
 #include <dumux/material/fluidsystems/h2oairmesitylene.hh>
 #include <dumux/material/components/h2o.hh>
@@ -94,9 +93,9 @@ SET_TYPE_PROP(ThreePNIConductionProblem,
  * <tt>./test_cc3pniconduction -ParameterFile ./test_cc3pniconduction.input</tt>
  */
 template <class TypeTag>
-class ThreePNIConductionProblem : public ImplicitPorousMediaProblem<TypeTag>
+class ThreePNIConductionProblem : public PorousMediumFlowProblem<TypeTag>
 {
-    using ParentType = ImplicitPorousMediaProblem<TypeTag>;
+    using ParentType = PorousMediumFlowProblem<TypeTag>
 
     using GridView = typename GET_PROP_TYPE(TypeTag, GridView);
     using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar);
@@ -136,8 +135,8 @@ class ThreePNIConductionProblem : public ImplicitPorousMediaProblem<TypeTag>
     using GlobalPosition = Dune::FieldVector<Scalar, dimWorld>;
 
 public:
-    ThreePNIConductionProblem(TimeManager &timeManager, const GridView &gridView)
-        : ParentType(timeManager, gridView)
+    ThreePNIConductionProblem(std::shared_ptr<const FVGridGeometry> fvGridGeometry)
+        : ParentType(fvGridGeometry)
     {
         //initialize fluid system
         FluidSystem::init();
diff --git a/test/porousmediumflow/3p/implicit/3pniconvectionproblem.hh b/test/porousmediumflow/3p/implicit/3pniconvectionproblem.hh
index a88a062336ec26032fd1099d331964d341191be9..1851c8c12cdf15993061c7185c969f7f4c0975ed 100644
--- a/test/porousmediumflow/3p/implicit/3pniconvectionproblem.hh
+++ b/test/porousmediumflow/3p/implicit/3pniconvectionproblem.hh
@@ -29,7 +29,6 @@
 #include <dumux/porousmediumflow/3p/implicit/model.hh>
 #include <dumux/implicit/cellcentered/tpfa/properties.hh>
 #include <dumux/implicit/cellcentered/mpfa/properties.hh>
-#include <dumux/porousmediumflow/implicit/problem.hh>
 
 #include <dumux/material/fluidsystems/h2oairmesitylene.hh>
 #include <dumux/material/components/h2o.hh>
@@ -94,9 +93,9 @@ SET_TYPE_PROP(ThreePNIConvectionProblem,
  * <tt>./test_cc3pcniconvection -ParameterFile ./test_cc3pniconvection.input</tt>
  */
 template <class TypeTag>
-class ThreePNIConvectionProblem : public ImplicitPorousMediaProblem<TypeTag>
+class ThreePNIConvectionProblem : public PorousMediumFlowProblem<TypeTag>
 {
-    using ParentType = ImplicitPorousMediaProblem<TypeTag>;
+    using ParentType = PorousMediumFlowProblem<TypeTag>;
 
     using GridView = typename GET_PROP_TYPE(TypeTag, GridView);
     using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar);
@@ -113,7 +112,7 @@ class ThreePNIConvectionProblem : public ImplicitPorousMediaProblem<TypeTag>
     using VtkOutputModule = typename GET_PROP_TYPE(TypeTag, VtkOutputModule);
 
     // copy some indices for convenience
-    typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
+    using Indices = typename GET_PROP_TYPE(TypeTag, Indices);
     enum {
         // world dimension
         dimWorld = GridView::dimensionworld
@@ -134,15 +133,15 @@ class ThreePNIConvectionProblem : public ImplicitPorousMediaProblem<TypeTag>
     };
 
 
-    typedef typename GridView::template Codim<0>::Entity Element;
-    typedef typename GridView::Intersection Intersection;
+    using Element = typename GridView::template Codim<0>::Entity;
+    using Intersection = typename GridView::Intersection Intersection;
 
-    typedef Dune::FieldVector<Scalar, dimWorld> GlobalPosition;
+    using GlobalPosition = Dune::FieldVector<Scalar, dimWorld>;
 
 
 public:
-    ThreePNIConvectionProblem(TimeManager &timeManager, const GridView &gridView)
-        : ParentType(timeManager, gridView)
+    ThreePNIConvectionProblem(std::shared_ptr<const FVGridGeometry> fvGridGeometry)
+        : ParentType(fvGridGeometry)
     {
         //initialize fluid system
         FluidSystem::init();
diff --git a/test/porousmediumflow/3p/implicit/3pnispatialparams.hh b/test/porousmediumflow/3p/implicit/3pnispatialparams.hh
index 6fdd140d43ea3268e4537f0db0943b48dc9e8486..4df8700a9ecd7d48cbce1fcf3761ecd955a4aa93 100644
--- a/test/porousmediumflow/3p/implicit/3pnispatialparams.hh
+++ b/test/porousmediumflow/3p/implicit/3pnispatialparams.hh
@@ -58,11 +58,11 @@ SET_PROP(ThreePNISpatialParams, MaterialLaw)
  private:
     // define the material law which is parameterized by effective
     // saturations
-    typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
-    typedef RegularizedParkerVanGen3P<Scalar> EffectiveLaw;
+    using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar);
+    using EffectiveLaw = RegularizedParkerVanGen3P<Scalar>;
  public:
     // define the material law parameterized by absolute saturations
-    typedef EffToAbsLaw<EffectiveLaw> type;
+    using type = EffToAbsLaw<EffectiveLaw>;
 };
 }
 
diff --git a/test/porousmediumflow/3p/implicit/infiltration3pproblem.hh b/test/porousmediumflow/3p/implicit/infiltration3pproblem.hh
index 89a8f9c264f76c8907931a760f52080b2eaea98f..6e106c41cc1e0130ffef935724f29a7ed078f3f4 100644
--- a/test/porousmediumflow/3p/implicit/infiltration3pproblem.hh
+++ b/test/porousmediumflow/3p/implicit/infiltration3pproblem.hh
@@ -25,9 +25,9 @@
 #ifndef DUMUX_INFILTRATION_THREEP_PROBLEM_HH
 #define DUMUX_INFILTRATION_THREEP_PROBLEM_HH
 
+#include <dumux/porousmediumflow/problem.hh>
 #include <dumux/porousmediumflow/3p/implicit/model.hh>
 #include <dumux/implicit/cellcentered/tpfa/properties.hh>
-#include <dumux/porousmediumflow/implicit/problem.hh>
 
 #include <dumux/material/fluidsystems/h2oairmesitylene.hh>
 
@@ -91,18 +91,18 @@ SET_SCALAR_PROP(InfiltrationThreePProblem, NewtonMaxRelativeShift, 1e-4);
  * <tt>./naplinfiltrationexercise -parameterFile naplinfiltrationexercise.input</tt>
  *  */
 template <class TypeTag >
-class InfiltrationThreePProblem : public ImplicitPorousMediaProblem<TypeTag>
+class InfiltrationThreePProblem : public PorousMediumFlowProblem<TypeTag>
 {
-    typedef ImplicitPorousMediaProblem<TypeTag> ParentType;
+    using ParentType = PorousMediumFlowProblem<TypeTag>;
 
-    typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
-    typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
+    using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar);
+    using GridView = typename GET_PROP_TYPE(TypeTag, GridView);
 
-    typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
-    typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams;
+    using MaterialLaw = typename GET_PROP_TYPE(TypeTag, MaterialLaw);
+    using MaterialLawParams = typename MaterialLaw::Params;
 
     // copy some indices for convenience
-    typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
+    using Indices = typename GET_PROP_TYPE(TypeTag, Indices);
     enum {
         pressureIdx = Indices::pressureIdx,
         swIdx = Indices::swIdx,
@@ -114,21 +114,18 @@ class InfiltrationThreePProblem : public ImplicitPorousMediaProblem<TypeTag>
     };
 
 
-    typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
-    typedef typename GET_PROP_TYPE(TypeTag, BoundaryTypes) BoundaryTypes;
-    typedef typename GET_PROP_TYPE(TypeTag, TimeManager) TimeManager;
+    using PrimaryVariables = typename GET_PROP_TYPE(TypeTag, PrimaryVariables);
+    using NeumannFluxes = typename GET_PROP_TYPE(TypeTag, NumEqVector);
+    using BoundaryTypes = typename GET_PROP_TYPE(TypeTag, BoundaryTypes);
 
-    typedef typename GridView::template Codim<0>::Entity Element;
-    typedef typename GridView::template Codim<dim>::Entity Vertex;
-    typedef typename GridView::Intersection Intersection;
+    using Element = typename GridView::template Codim<0>::Entity;
+    using FVElementGeometry = typename GET_PROP_TYPE(TypeTag, FVElementGeometry);
+    using SubControlVolume = typename GET_PROP_TYPE(TypeTag, SubControlVolume);
+    using SubControlVolumeFace = typename GET_PROP_TYPE(TypeTag, SubControlVolumeFace);
+    using FluidSystem = typename GET_PROP_TYPE(TypeTag, FluidSystem);
+    using FVGridGeometry = typename GET_PROP_TYPE(TypeTag, FVGridGeometry);
 
-    typedef typename GET_PROP_TYPE(TypeTag, FVElementGeometry) FVElementGeometry;
-    typedef typename GET_PROP_TYPE(TypeTag, ElementVolumeVariables) ElementVolumeVariables;
-    typedef typename GET_PROP_TYPE(TypeTag, SubControlVolume) SubControlVolume;
-    typedef typename GET_PROP_TYPE(TypeTag, SubControlVolumeFace) SubControlVolumeFace;
-    typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
-
-    typedef Dune::FieldVector<Scalar, dimWorld> GlobalPosition;
+    using GlobalPosition = Dune::FieldVector<Scalar, dimWorld>;
 
     enum { isBox = GET_PROP_VALUE(TypeTag, ImplicitIsBox) };
 
@@ -139,13 +136,13 @@ public:
      * \param timeManager The time manager
      * \param gridView The grid view
      */
-    InfiltrationThreePProblem(TimeManager &timeManager, const GridView &gridView)
-        : ParentType(timeManager, gridView)
+    InfiltrationThreePProblem(std::shared_ptr<const FVGridGeometry> fvGridGeometry)
+        : ParentType(fvGridGeometry)
     {
         temperature_ = 273.15 + 10.0; // -> 10 degrees Celsius
         FluidSystem::init(282.15, 284.15, 3, 8e4, 3e5, 200);
 
-        name_               = GET_RUNTIME_PARAM(TypeTag, std::string, Problem.Name);
+        name_ = getParam<std::string>("Problem.Name");
 
         this->spatialParams().plotMaterialLaw();
     }
@@ -252,33 +249,23 @@ public:
 
         return values;
     }
-
-    /*!
+ /*!
      * \brief Evaluate the boundary conditions for a neumann
      *        boundary segment.
      *
-     * \param values The neumann values for the conservation equations
-     * \param element The finite element
-     * \param fvGeometry The finite-volume geometry in the box scheme
-     * \param intersection The intersection between element and boundary
-     * \param scvIdx The local vertex index
-     * \param boundaryFaceIdx The index of the boundary face
+     * \param values Stores the Neumann values for the conservation equations in
+     *               \f$ [ \textnormal{unit of conserved quantity} / (m^(dim-1) \cdot s )] \f$
+     * \param globalPos The position of the integration point of the boundary segment.
      *
      * For this method, the \a values parameter stores the mass flux
      * in normal direction of each phase. Negative values mean influx.
      */
-    PrimaryVariables neumann(const Element &element,
-                             const FVElementGeometry& fvGeometry,
-                             const ElementVolumeVariables& elemVolVars,
-                             const SubControlVolumeFace& scvf) const
+    NeumannFluxes neumannAtPos(const GlobalPosition &globalPos) const
     {
         PrimaryVariables values(0.0);
 
-        GlobalPosition globalPos = scvf.center();
-        // TODO: BOX??? FACES SHOULD HAVE INTEGRATION POINT
-
         // negative values for injection
-        if (this->timeManager().time()<2592000.)
+        if (time()<2592000.)
         {
             if ((globalPos[0] <= 175.+eps_) && (globalPos[0] >= 155.-eps_) && (globalPos[1] >= 10.-eps_))
             {
diff --git a/test/porousmediumflow/3p/implicit/infiltration3pspatialparams.hh b/test/porousmediumflow/3p/implicit/infiltration3pspatialparams.hh
index 0e06b9ef59b69737e6409aea94255a0eb0aba4e9..b38067c125265f8d77618b7c7e309f5029c8890f 100644
--- a/test/porousmediumflow/3p/implicit/infiltration3pspatialparams.hh
+++ b/test/porousmediumflow/3p/implicit/infiltration3pspatialparams.hh
@@ -52,11 +52,11 @@ SET_PROP(InfiltrationThreePSpatialParams, MaterialLaw)
  private:
     // define the material law which is parameterized by effective
     // saturations
-    typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
-    typedef RegularizedParkerVanGen3P<Scalar> EffectiveLaw;
+    using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar);
+    using EffectiveLaw = RegularizedParkerVanGen3P<Scalar>;
  public:
     // define the material law parameterized by absolute saturations
-    typedef EffToAbsLaw<EffectiveLaw> type;
+    using type = EffToAbsLaw<EffectiveLaw>;
 };
 }
 
@@ -69,32 +69,24 @@ SET_PROP(InfiltrationThreePSpatialParams, MaterialLaw)
 template<class TypeTag>
 class InfiltrationThreePSpatialParams : public ImplicitSpatialParams<TypeTag>
 {
-    typedef ImplicitSpatialParams<TypeTag> ParentType;
+    using ParentType = ImplicitSpatialParams<TypeTag>;
 
-    typedef typename GET_PROP_TYPE(TypeTag, Grid) Grid;
-    typedef typename GET_PROP_TYPE(TypeTag, Problem) Problem;
-    typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
-    typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
-    typedef typename Grid::ctype CoordScalar;
+    using Problem = typename GET_PROP_TYPE(TypeTag, Problem);
+    using GridView = typename GET_PROP_TYPE(TypeTag, GridView);
+    using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar);
     enum {
         dimWorld=GridView::dimensionworld
     };
 
-    typedef Dune::FieldVector<CoordScalar,dimWorld> GlobalPosition;
-
-    typedef typename GET_PROP_TYPE(TypeTag, VolumeVariables) VolumeVariables;
-    typedef typename GET_PROP_TYPE(TypeTag, FVElementGeometry) FVElementGeometry;
-    typedef typename GET_PROP_TYPE(TypeTag, SubControlVolume) SubControlVolume;
-    typedef typename GridView::template Codim<0>::Entity Element;
-
+    using GlobalPosition = Dune::FieldVector<Scalar, GridView::dimension>;
 
 public:
     // export permeability type
     using PermeabilityType = Scalar;
 
     //get the material law from the property system
-    typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
-    typedef typename MaterialLaw::Params MaterialLawParams;
+    using MaterialLaw = typename GET_PROP_TYPE(TypeTag, MaterialLaw);
+    using MaterialLawParams = typename MaterialLaw::Params;
 
     /*!
      * \brief The constructor
diff --git a/test/porousmediumflow/3p/implicit/test_box3p.cc b/test/porousmediumflow/3p/implicit/test_box3p.cc
index 73718b474e2a89983275ddab5e3ddc05194ff41c..5a9d6f3eeed26e7ad82902a50e22df5753eb11dc 100644
--- a/test/porousmediumflow/3p/implicit/test_box3p.cc
+++ b/test/porousmediumflow/3p/implicit/test_box3p.cc
@@ -23,7 +23,32 @@
  */
 #include <config.h>
 #include "infiltration3pproblem.hh"
-#include <dumux/common/start.hh>
+
+#include <ctime>
+#include <iostream>
+
+#include <dune/common/parallel/mpihelper.hh>
+#include <dune/common/timer.hh>
+#include <dune/grid/io/file/dgfparser/dgfexception.hh>
+#include <dune/grid/io/file/vtk.hh>
+#include <dune/istl/io.hh>
+
+#include <dumux/common/propertysystem.hh>
+#include <dumux/common/parameters.hh>
+#include <dumux/common/valgrind.hh>
+#include <dumux/common/dumuxmessage.hh>
+#include <dumux/common/defaultusagemessage.hh>
+
+// #include <dumux/linear/seqsolverbackend.hh>
+#include <dumux/nonlinear/newtonmethod.hh>
+#include <dumux/nonlinear/newtoncontroller.hh>
+
+#include <dumux/assembly/fvassembler.hh>
+#include <dumux/assembly/diffmethod.hh>
+
+#include <dumux/discretization/methods.hh>
+
+#include <dumux/io/vtkoutputmodule.hh>
 
 /*!
  * \brief Provides an interface for customizing error messages associated with
@@ -51,9 +76,176 @@ void usage(const char *progName, const std::string &errorMsg)
     }
 }
 
-int main(int argc, char** argv)
+int main(int argc, char** argv) try
 {
-    typedef TTAG(InfiltrationThreePBoxProblem) ProblemTypeTag;
-    return Dumux::start<ProblemTypeTag>(argc, argv, usage);
-}
 
+    using namespace Dumux;
+
+    // define the type tag for this problem
+    using TypeTag = TTAG(InfiltrationThreePBoxProblem);
+
+    ////////////////////////////////////////////////////////////
+    ////////////////////////////////////////////////////////////
+
+    // initialize MPI, finalize is done automatically on exit
+    const auto& mpiHelper = Dune::MPIHelper::instance(argc, argv);
+
+    // print dumux start message
+    if (mpiHelper.rank() == 0)
+        DumuxMessage::print(/*firstCall=*/true);
+
+    // parse command line arguments and input file
+    Parameters::init(argc, argv, usage);
+
+    // try to create a grid (from the given grid file or the input file)
+    using GridCreator = typename GET_PROP_TYPE(TypeTag, GridCreator);
+    GridCreator::makeGrid(Parameters::getTree());
+    GridCreator::loadBalance();
+
+    ////////////////////////////////////////////////////////////
+    // run instationary non-linear problem on this grid
+    ////////////////////////////////////////////////////////////
+
+    // we compute on the leaf grid view
+    const auto& leafGridView = GridCreator::grid().leafGridView();
+
+    // create the finite volume grid geometry
+    using FVGridGeometry = typename GET_PROP_TYPE(TypeTag, FVGridGeometry);
+    auto fvGridGeometry = std::make_shared<FVGridGeometry>(leafGridView);
+    fvGridGeometry->update();
+
+    // the problem (initial and boundary conditions)
+    using Problem = typename GET_PROP_TYPE(TypeTag, Problem);
+    auto problem = std::make_shared<Problem>(fvGridGeometry);
+
+    // the solution vector
+    using GridView = typename GET_PROP_TYPE(TypeTag, GridView);
+    using SolutionVector = typename GET_PROP_TYPE(TypeTag, SolutionVector);
+    SolutionVector x(leafGridView.size(GridView::dimension));
+    problem->applyInitialSolution(x);
+    auto xOld = x;
+
+    // the grid variables
+    using GridVariables = typename GET_PROP_TYPE(TypeTag, GridVariables);
+    auto gridVariables = std::make_shared<GridVariables>(problem, fvGridGeometry);
+    gridVariables->init(x, xOld);
+
+    // get some time loop parameters
+    using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar);
+    const auto tEnd = getParam<Scalar>("TimeLoop.TEnd");
+    const auto maxDivisions = getParam<int>("TimeLoop.MaxTimeStepDivisions");
+    const auto maxDt = getParam<Scalar>("TimeLoop.MaxTimeStepSize");
+    auto dt = getParam<Scalar>("TimeLoop.DtInitial");
+
+    // check if we are about to restart a previously interrupted simulation
+    Scalar restartTime = 0;
+    if (Parameters::getTree().hasKey("Restart") || Parameters::getTree().hasKey("TimeLoop.Restart"))
+        restartTime = getParam<Scalar>("TimeLoop.Restart");
+
+    // intialize the vtk output module
+    using VtkOutputFields = typename GET_PROP_TYPE(TypeTag, VtkOutputFields);
+    VtkOutputModule<TypeTag> vtkWriter(*problem, *fvGridGeometry, *gridVariables, x, problem->name());
+    VtkOutputFields::init(vtkWriter); //! Add model specific output fields
+    vtkWriter.write(0.0);
+
+    // instantiate time loop
+    auto timeLoop = std::make_shared<TimeLoop<Scalar>>(restartTime, dt, tEnd);
+    timeLoop->setMaxTimeStepSize(maxDt);
+
+    // the assembler with time loop for instationary problem
+    using Assembler = FVAssembler<TypeTag, DiffMethod::numeric>;
+    auto assembler = std::make_shared<Assembler>(problem, fvGridGeometry, gridVariables, timeLoop);
+
+    // the linear solver
+    using LinearSolver = Dumux::AMGBackend<TypeTag>;
+    auto linearSolver = std::make_shared<LinearSolver>(leafGridView, fvGridGeometry->vertexMapper());
+
+    // the non-linear solver
+    using NewtonController = typename GET_PROP_TYPE(TypeTag, NewtonController);
+    using NewtonMethod = Dumux::NewtonMethod<TypeTag, NewtonController, Assembler, LinearSolver>;
+    auto newtonController = std::make_shared<NewtonController>(leafGridView.comm(), timeLoop);
+    NewtonMethod nonLinearSolver(newtonController, assembler, linearSolver);
+
+    // time loop
+    timeLoop->start(); do
+    {
+        // set previous solution for storage evaluations
+        assembler->setPreviousSolution(xOld);
+
+        // try solving the non-linear system
+        for (int i = 0; i < maxDivisions; ++i)
+        {
+            // linearize & solve
+            auto converged = nonLinearSolver.solve(x);
+
+            if (converged)
+                break;
+
+            if (!converged && i == maxDivisions-1)
+                DUNE_THROW(Dune::MathError,
+                            "Newton solver didn't converge after "
+                            << maxDivisions
+                            << " time-step divisions. dt="
+                            << timeLoop->timeStepSize()
+                            << ".\nThe solutions of the current and the previous time steps "
+                            << "have been saved to restart files.");
+        }
+
+        // make the new solution the old solution
+        xOld = x;
+        gridVariables->advanceTimeStep();
+
+        // advance to the time loop to the next step
+        timeLoop->advanceTimeStep();
+
+        // write vtk output
+        vtkWriter.write(timeLoop->time());
+
+        // report statistics of this time step
+        timeLoop->reportTimeStep();
+
+        // set new dt as suggested by newton controller
+        timeLoop->setTimeStepSize(newtonController->suggestTimeStepSize(timeLoop->timeStepSize()));
+
+    } while (!timeLoop->finished());
+
+    timeLoop->finalize(leafGridView.comm());
+
+    ////////////////////////////////////////////////////////////
+    // finalize, print dumux message to say goodbye
+    ////////////////////////////////////////////////////////////
+
+    // print dumux end message
+    if (mpiHelper.rank() == 0)
+    {
+        Parameters::print();
+        DumuxMessage::print(/*firstCall=*/false);
+    }
+
+    return 0;
+
+}
+catch (Dumux::ParameterException &e)
+{
+    std::cerr << std::endl << e << " ---> Abort!" << std::endl;
+    return 1;
+}
+catch (Dune::DGFException & e)
+{
+    std::cerr << "DGF exception thrown (" << e <<
+                 "). Most likely, the DGF file name is wrong "
+                 "or the DGF file is corrupted, "
+                 "e.g. missing hash at end of file or wrong number (dimensions) of entries."
+                 << " ---> Abort!" << std::endl;
+    return 2;
+}
+catch (Dune::Exception &e)
+{
+    std::cerr << "Dune reported error: " << e << " ---> Abort!" << std::endl;
+    return 3;
+}
+catch (...)
+{
+    std::cerr << "Unknown exception thrown! ---> Abort!" << std::endl;
+    return 4;
+}
diff --git a/test/porousmediumflow/3p/implicit/test_box3pniconduction.cc b/test/porousmediumflow/3p/implicit/test_box3pniconduction.cc
index b0bfeb26b0625c47a3ad5e34199774fb30a40e4a..0b29fca2a353b9af40b868ee1e51ce8af034b081 100644
--- a/test/porousmediumflow/3p/implicit/test_box3pniconduction.cc
+++ b/test/porousmediumflow/3p/implicit/test_box3pniconduction.cc
@@ -23,7 +23,32 @@
  */
 #include <config.h>
 #include "3pniconductionproblem.hh"
-#include <dumux/common/start.hh>
+
+#include <ctime>
+#include <iostream>
+
+#include <dune/common/parallel/mpihelper.hh>
+#include <dune/common/timer.hh>
+#include <dune/grid/io/file/dgfparser/dgfexception.hh>
+#include <dune/grid/io/file/vtk.hh>
+#include <dune/istl/io.hh>
+
+#include <dumux/common/propertysystem.hh>
+#include <dumux/common/parameters.hh>
+#include <dumux/common/valgrind.hh>
+#include <dumux/common/dumuxmessage.hh>
+#include <dumux/common/defaultusagemessage.hh>
+
+// #include <dumux/linear/seqsolverbackend.hh>
+#include <dumux/nonlinear/newtonmethod.hh>
+#include <dumux/nonlinear/newtoncontroller.hh>
+
+#include <dumux/assembly/fvassembler.hh>
+#include <dumux/assembly/diffmethod.hh>
+
+#include <dumux/discretization/methods.hh>
+
+#include <dumux/io/vtkoutputmodule.hh>
 
 /*!
  * \brief Provides an interface for customizing error messages associated with
@@ -41,17 +66,186 @@ void usage(const char *progName, const std::string &errorMsg)
                     errorMessageOut += " [options]\n";
                     errorMessageOut += errorMsg;
                     errorMessageOut += "\n\nThe list of mandatory options for this program is:\n"
-                                        "\t-TimeManager.TEnd      End of the simulation [s] \n"
-                                        "\t-TimeManager.DtInitial Initial timestep size [s] \n"
-                                        "\t-Grid.File             Name of the file containing the grid \n"
-                                        "\t                       definition in DGF format\n";
+                                        "\t-TimeManager.TEnd              End of the simulation [s] \n"
+                                        "\t-TimeManager.DtInitial         Initial timestep size [s] \n"
+                                        "\t-Grid.File                     Name of the file containing the grid \n"
+                                        "\t                               definition in DGF format\n";
+
         std::cout << errorMessageOut
                   << "\n";
     }
 }
 
-int main(int argc, char** argv)
+int main(int argc, char** argv) try
+{
+
+    using namespace Dumux;
+
+    // define the type tag for this problem
+    using TypeTag = TTAG(ThreePNIConductionBoxProblem);
+
+    ////////////////////////////////////////////////////////////
+    ////////////////////////////////////////////////////////////
+
+    // initialize MPI, finalize is done automatically on exit
+    const auto& mpiHelper = Dune::MPIHelper::instance(argc, argv, usage);
+
+    // print dumux start message
+    if (mpiHelper.rank() == 0)
+        DumuxMessage::print(/*firstCall=*/true);
+
+    // parse command line arguments and input file
+    Parameters::init(argc, argv, usage);
+
+    // try to create a grid (from the given grid file or the input file)
+    using GridCreator = typename GET_PROP_TYPE(TypeTag, GridCreator);
+    GridCreator::makeGrid(Parameters::getTree());
+    GridCreator::loadBalance();
+
+    ////////////////////////////////////////////////////////////
+    // run instationary non-linear problem on this grid
+    ////////////////////////////////////////////////////////////
+
+    // we compute on the leaf grid view
+    const auto& leafGridView = GridCreator::grid().leafGridView();
+
+    // create the finite volume grid geometry
+    using FVGridGeometry = typename GET_PROP_TYPE(TypeTag, FVGridGeometry);
+    auto fvGridGeometry = std::make_shared<FVGridGeometry>(leafGridView);
+    fvGridGeometry->update();
+
+    // the problem (initial and boundary conditions)
+    using Problem = typename GET_PROP_TYPE(TypeTag, Problem);
+    auto problem = std::make_shared<Problem>(fvGridGeometry);
+
+    // the solution vector
+    using GridView = typename GET_PROP_TYPE(TypeTag, GridView);
+    using SolutionVector = typename GET_PROP_TYPE(TypeTag, SolutionVector);
+    SolutionVector x(leafGridView.size(GridView::dimension));
+    problem->applyInitialSolution(x);
+    auto xOld = x;
+
+    // the grid variables
+    using GridVariables = typename GET_PROP_TYPE(TypeTag, GridVariables);
+    auto gridVariables = std::make_shared<GridVariables>(problem, fvGridGeometry);
+    gridVariables->init(x, xOld);
+
+    // get some time loop parameters
+    using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar);
+    const auto tEnd = getParam<Scalar>("TimeLoop.TEnd");
+    const auto maxDivisions = getParam<int>("TimeLoop.MaxTimeStepDivisions");
+    const auto maxDt = getParam<Scalar>("TimeLoop.MaxTimeStepSize");
+    auto dt = getParam<Scalar>("TimeLoop.DtInitial");
+
+    // check if we are about to restart a previously interrupted simulation
+    Scalar restartTime = 0;
+    if (Parameters::getTree().hasKey("Restart") || Parameters::getTree().hasKey("TimeLoop.Restart"))
+        restartTime = getParam<Scalar>("TimeLoop.Restart");
+
+    // intialize the vtk output module
+    using VtkOutputFields = typename GET_PROP_TYPE(TypeTag, VtkOutputFields);
+    VtkOutputModule<TypeTag> vtkWriter(*problem, *fvGridGeometry, *gridVariables, x, problem->name());
+    VtkOutputFields::init(vtkWriter); //! Add model specific output fields
+    vtkWriter.write(0.0);
+
+    // instantiate time loop
+    auto timeLoop = std::make_shared<TimeLoop<Scalar>>(restartTime, dt, tEnd);
+    timeLoop->setMaxTimeStepSize(maxDt);
+
+    // the assembler with time loop for instationary problem
+    using Assembler = FVAssembler<TypeTag, diffMeth::numeric, isImplicit>;
+    auto assembler = std::make_shared<Assembler>(problem, fvGridGeometry, gridVariables, timeLoop);
+
+    // the linear solver
+    using LinearSolver = Dumux::AMGBackend<TypeTag>;
+    auto linearSolver = std::make_shared<LinearSolver>(leafGridView, fvGridGeometry->vertexMapper());
+
+    // the non-linear solver
+    using NewtonController = typename GET_PROP_TYPE(TypeTag, NewtonController);
+    using NewtonMethod = Dumux::NewtonMethod<TypeTag, NewtonController, Assembler, LinearSolver>;
+    auto newtonController = std::make_shared<NewtonController>(leafGridView.comm(), timeLoop);
+    NewtonMethod nonLinearSolver(newtonController, assembler, linearSolver);
+
+    // time loop
+    timeLoop->start(); do
+    {
+        // set previous solution for storage evaluations
+        assembler->setPreviousSolution(xOld);
+
+        // try solving the non-linear system
+        for (int i = 0; i < maxDivisions; ++i)
+        {
+            // linearize & solve
+            auto converged = nonLinearSolver.solve(x);
+
+            if (converged)
+                break;
+
+            if (!converged && i == maxDivisions-1)
+                DUNE_THROW(Dune::MathError,
+                            "Newton solver didn't converge after "
+                            << maxDivisions
+                            << " time-step divisions. dt="
+                            << timeLoop->timeStepSize()
+                            << ".\nThe solutions of the current and the previous time steps "
+                            << "have been saved to restart files.");
+        }
+
+        // make the new solution the old solution
+        xOld = x;
+        gridVariables->advanceTimeStep();
+
+        // advance to the time loop to the next step
+        timeLoop->advanceTimeStep();
+
+        // write vtk output
+        vtkWriter.write(timeLoop->time());
+
+        // report statistics of this time step
+        timeLoop->reportTimeStep();
+
+        // set new dt as suggested by newton controller
+        timeLoop->setTimeStepSize(newtonController->suggestTimeStepSize(timeLoop->timeStepSize()));
+
+    } while (!timeLoop->finished());
+
+    timeLoop->finalize(leafGridView.comm());
+
+    ////////////////////////////////////////////////////////////
+    // finalize, print dumux message to say goodbye
+    ////////////////////////////////////////////////////////////
+
+    // print dumux end message
+    if (mpiHelper.rank() == 0)
+    {
+        Parameters::print();
+        DumuxMessage::print(/*firstCall=*/false);
+    }
+
+    return 0;
+
+}
+catch (Dumux::ParameterException &e)
+{
+    std::cerr << std::endl << e << " ---> Abort!" << std::endl;
+    return 1;
+}
+catch (Dune::DGFException & e)
+{
+    std::cerr << "DGF exception thrown (" << e <<
+                 "). Most likely, the DGF file name is wrong "
+                 "or the DGF file is corrupted, "
+                 "e.g. missing hash at end of file or wrong number (dimensions) of entries."
+                 << " ---> Abort!" << std::endl;
+    return 2;
+}
+catch (Dune::Exception &e)
+{
+    std::cerr << "Dune reported error: " << e << " ---> Abort!" << std::endl;
+    return 3;
+}
+catch (...)
 {
-    typedef TTAG(ThreePNIConductionBoxProblem) ProblemTypeTag;
-    return Dumux::start<ProblemTypeTag>(argc, argv, usage);
+    std::cerr << "Unknown exception thrown! ---> Abort!" << std::endl;
+    return 4;
 }
diff --git a/test/porousmediumflow/3p/implicit/test_box3pniconvection.cc b/test/porousmediumflow/3p/implicit/test_box3pniconvection.cc
index 4b6f12df0276bd5eb334bbd33662c0ccd3a6d40c..23ff1b6a7926b2c75d8867e146790fe15e4ccf4d 100644
--- a/test/porousmediumflow/3p/implicit/test_box3pniconvection.cc
+++ b/test/porousmediumflow/3p/implicit/test_box3pniconvection.cc
@@ -23,7 +23,32 @@
  */
 #include <config.h>
 #include "3pniconvectionproblem.hh"
-#include <dumux/common/start.hh>
+
+#include <ctime>
+#include <iostream>
+
+#include <dune/common/parallel/mpihelper.hh>
+#include <dune/common/timer.hh>
+#include <dune/grid/io/file/dgfparser/dgfexception.hh>
+#include <dune/grid/io/file/vtk.hh>
+#include <dune/istl/io.hh>
+
+#include <dumux/common/propertysystem.hh>
+#include <dumux/common/parameters.hh>
+#include <dumux/common/valgrind.hh>
+#include <dumux/common/dumuxmessage.hh>
+#include <dumux/common/defaultusagemessage.hh>
+
+// #include <dumux/linear/seqsolverbackend.hh>
+#include <dumux/nonlinear/newtonmethod.hh>
+#include <dumux/nonlinear/newtoncontroller.hh>
+
+#include <dumux/assembly/fvassembler.hh>
+#include <dumux/assembly/diffmethod.hh>
+
+#include <dumux/discretization/methods.hh>
+
+#include <dumux/io/vtkoutputmodule.hh>
 
 /*!
  * \brief Provides an interface for customizing error messages associated with
@@ -41,17 +66,186 @@ void usage(const char *progName, const std::string &errorMsg)
                     errorMessageOut += " [options]\n";
                     errorMessageOut += errorMsg;
                     errorMessageOut += "\n\nThe list of mandatory options for this program is:\n"
-                                        "\t-TimeManager.TEnd      End of the simulation [s] \n"
-                                        "\t-TimeManager.DtInitial Initial timestep size [s] \n"
-                                        "\t-Grid.File             Name of the file containing the grid \n"
-                                        "\t                       definition in DGF format\n";
+                                        "\t-TimeManager.TEnd              End of the simulation [s] \n"
+                                        "\t-TimeManager.DtInitial         Initial timestep size [s] \n"
+                                        "\t-Grid.File                     Name of the file containing the grid \n"
+                                        "\t                               definition in DGF format\n";
+
         std::cout << errorMessageOut
                   << "\n";
     }
 }
 
-int main(int argc, char** argv)
+int main(int argc, char** argv) try
+{
+
+    using namespace Dumux;
+
+    // define the type tag for this problem
+    using TypeTag = TTAG(ThreePNIConvectionBoxProblem);
+
+    ////////////////////////////////////////////////////////////
+    ////////////////////////////////////////////////////////////
+
+    // initialize MPI, finalize is done automatically on exit
+    const auto& mpiHelper = Dune::MPIHelper::instance(argc, argv, usage);
+
+    // print dumux start message
+    if (mpiHelper.rank() == 0)
+        DumuxMessage::print(/*firstCall=*/true);
+
+    // parse command line arguments and input file
+    Parameters::init(argc, argv, usage);
+
+    // try to create a grid (from the given grid file or the input file)
+    using GridCreator = typename GET_PROP_TYPE(TypeTag, GridCreator);
+    GridCreator::makeGrid(Parameters::getTree());
+    GridCreator::loadBalance();
+
+    ////////////////////////////////////////////////////////////
+    // run instationary non-linear problem on this grid
+    ////////////////////////////////////////////////////////////
+
+    // we compute on the leaf grid view
+    const auto& leafGridView = GridCreator::grid().leafGridView();
+
+    // create the finite volume grid geometry
+    using FVGridGeometry = typename GET_PROP_TYPE(TypeTag, FVGridGeometry);
+    auto fvGridGeometry = std::make_shared<FVGridGeometry>(leafGridView);
+    fvGridGeometry->update();
+
+    // the problem (initial and boundary conditions)
+    using Problem = typename GET_PROP_TYPE(TypeTag, Problem);
+    auto problem = std::make_shared<Problem>(fvGridGeometry);
+
+    // the solution vector
+    using GridView = typename GET_PROP_TYPE(TypeTag, GridView);
+    using SolutionVector = typename GET_PROP_TYPE(TypeTag, SolutionVector);
+    SolutionVector x(leafGridView.size(GridView::dimension));
+    problem->applyInitialSolution(x);
+    auto xOld = x;
+
+    // the grid variables
+    using GridVariables = typename GET_PROP_TYPE(TypeTag, GridVariables);
+    auto gridVariables = std::make_shared<GridVariables>(problem, fvGridGeometry);
+    gridVariables->init(x, xOld);
+
+    // get some time loop parameters
+    using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar);
+    const auto tEnd = getParam<Scalar>("TimeLoop.TEnd");
+    const auto maxDivisions = getParam<int>("TimeLoop.MaxTimeStepDivisions");
+    const auto maxDt = getParam<Scalar>("TimeLoop.MaxTimeStepSize");
+    auto dt = getParam<Scalar>("TimeLoop.DtInitial");
+
+    // check if we are about to restart a previously interrupted simulation
+    Scalar restartTime = 0;
+    if (Parameters::getTree().hasKey("Restart") || Parameters::getTree().hasKey("TimeLoop.Restart"))
+        restartTime = getParam<Scalar>("TimeLoop.Restart");
+
+    // intialize the vtk output module
+    using VtkOutputFields = typename GET_PROP_TYPE(TypeTag, VtkOutputFields);
+    VtkOutputModule<TypeTag> vtkWriter(*problem, *fvGridGeometry, *gridVariables, x, problem->name());
+    VtkOutputFields::init(vtkWriter); //! Add model specific output fields
+    vtkWriter.write(0.0);
+
+    // instantiate time loop
+    auto timeLoop = std::make_shared<TimeLoop<Scalar>>(restartTime, dt, tEnd);
+    timeLoop->setMaxTimeStepSize(maxDt);
+
+    // the assembler with time loop for instationary problem
+    using Assembler = FVAssembler<TypeTag, diffMeth::numeric, isImplicit>;
+    auto assembler = std::make_shared<Assembler>(problem, fvGridGeometry, gridVariables, timeLoop);
+
+    // the linear solver
+    using LinearSolver = Dumux::AMGBackend<TypeTag>;
+    auto linearSolver = std::make_shared<LinearSolver>(leafGridView, fvGridGeometry->vertexMapper());
+
+    // the non-linear solver
+    using NewtonController = typename GET_PROP_TYPE(TypeTag, NewtonController);
+    using NewtonMethod = Dumux::NewtonMethod<TypeTag, NewtonController, Assembler, LinearSolver>;
+    auto newtonController = std::make_shared<NewtonController>(leafGridView.comm(), timeLoop);
+    NewtonMethod nonLinearSolver(newtonController, assembler, linearSolver);
+
+    // time loop
+    timeLoop->start(); do
+    {
+        // set previous solution for storage evaluations
+        assembler->setPreviousSolution(xOld);
+
+        // try solving the non-linear system
+        for (int i = 0; i < maxDivisions; ++i)
+        {
+            // linearize & solve
+            auto converged = nonLinearSolver.solve(x);
+
+            if (converged)
+                break;
+
+            if (!converged && i == maxDivisions-1)
+                DUNE_THROW(Dune::MathError,
+                            "Newton solver didn't converge after "
+                            << maxDivisions
+                            << " time-step divisions. dt="
+                            << timeLoop->timeStepSize()
+                            << ".\nThe solutions of the current and the previous time steps "
+                            << "have been saved to restart files.");
+        }
+
+        // make the new solution the old solution
+        xOld = x;
+        gridVariables->advanceTimeStep();
+
+        // advance to the time loop to the next step
+        timeLoop->advanceTimeStep();
+
+        // write vtk output
+        vtkWriter.write(timeLoop->time());
+
+        // report statistics of this time step
+        timeLoop->reportTimeStep();
+
+        // set new dt as suggested by newton controller
+        timeLoop->setTimeStepSize(newtonController->suggestTimeStepSize(timeLoop->timeStepSize()));
+
+    } while (!timeLoop->finished());
+
+    timeLoop->finalize(leafGridView.comm());
+
+    ////////////////////////////////////////////////////////////
+    // finalize, print dumux message to say goodbye
+    ////////////////////////////////////////////////////////////
+
+    // print dumux end message
+    if (mpiHelper.rank() == 0)
+    {
+        Parameters::print();
+        DumuxMessage::print(/*firstCall=*/false);
+    }
+
+    return 0;
+
+}
+catch (Dumux::ParameterException &e)
+{
+    std::cerr << std::endl << e << " ---> Abort!" << std::endl;
+    return 1;
+}
+catch (Dune::DGFException & e)
+{
+    std::cerr << "DGF exception thrown (" << e <<
+                 "). Most likely, the DGF file name is wrong "
+                 "or the DGF file is corrupted, "
+                 "e.g. missing hash at end of file or wrong number (dimensions) of entries."
+                 << " ---> Abort!" << std::endl;
+    return 2;
+}
+catch (Dune::Exception &e)
+{
+    std::cerr << "Dune reported error: " << e << " ---> Abort!" << std::endl;
+    return 3;
+}
+catch (...)
 {
-    typedef TTAG(ThreePNIConvectionBoxProblem) ProblemTypeTag;
-    return Dumux::start<ProblemTypeTag>(argc, argv, usage);
+    std::cerr << "Unknown exception thrown! ---> Abort!" << std::endl;
+    return 4;
 }
diff --git a/test/porousmediumflow/3p/implicit/test_cc3p.cc b/test/porousmediumflow/3p/implicit/test_cc3p.cc
index 7ad8e04e371041dc68ffd728e3ded8845685b187..d0f712f3134a525b112dd2ae6179bb58bf39f477 100644
--- a/test/porousmediumflow/3p/implicit/test_cc3p.cc
+++ b/test/porousmediumflow/3p/implicit/test_cc3p.cc
@@ -23,7 +23,31 @@
  */
 #include <config.h>
 #include "infiltration3pproblem.hh"
-#include <dumux/common/start.hh>
+#include <ctime>
+#include <iostream>
+
+#include <dune/common/parallel/mpihelper.hh>
+#include <dune/common/timer.hh>
+#include <dune/grid/io/file/dgfparser/dgfexception.hh>
+#include <dune/grid/io/file/vtk.hh>
+#include <dune/istl/io.hh>
+
+#include <dumux/common/propertysystem.hh>
+#include <dumux/common/parameters.hh>
+#include <dumux/common/valgrind.hh>
+#include <dumux/common/dumuxmessage.hh>
+#include <dumux/common/defaultusagemessage.hh>
+
+#include <dumux/linear/seqsolverbackend.hh>
+#include <dumux/nonlinear/newtonmethod.hh>
+#include <dumux/nonlinear/newtoncontroller.hh>
+
+#include <dumux/assembly/fvassembler.hh>
+#include <dumux/assembly/diffmethod.hh>
+
+#include <dumux/discretization/methods.hh>
+
+#include <dumux/io/vtkoutputmodule.hh>
 
 /*!
  * \brief Provides an interface for customizing error messages associated with
@@ -40,20 +64,188 @@ void usage(const char *progName, const std::string &errorMsg)
                     errorMessageOut += progName;
                     errorMessageOut += " [options]\n";
                     errorMessageOut += errorMsg;
-                    errorMessageOut += "\n\nThe list of mandatory options for this program is:\n"
-                                        "\t-TimeManager.TEnd              End of the simulation [s] \n"
-                                        "\t-TimeManager.DtInitial         Initial timestep size [s] \n"
-                                        "\t-Grid.File                     Name of the file containing the grid \n"
-                                        "\t                               definition in DGF format\n";
+                    errorMessageOut += "\n\nThe list of mandatory arguments for this program is:\n"
+                                        "\t-TimeManager.TEnd               End of the simulation [s] \n"
+                                        "\t-TimeManager.DtInitial          Initial timestep size [s] \n"
+                                        "\t-Grid.LowerLeft                 Lower left corner coordinates\n"
+                                        "\t-Grid.UpperRight                Upper right corner coordinates\n"
+                                        "\t-Grid.Cells                     Number of cells in respective coordinate directions\n"
+                                        "\t                                definition in DGF format\n"
+                                        "\t-SpatialParams.LensLowerLeft   coordinates of the lower left corner of the lens [m] \n"
+                                        "\t-SpatialParams.LensUpperRight  coordinates of the upper right corner of the lens [m] \n"
+                                        "\t-SpatialParams.Permeability     Permeability of the domain [m^2] \n"
+                                        "\t-SpatialParams.PermeabilityLens Permeability of the lens [m^2] \n";
 
         std::cout << errorMessageOut
                   << "\n";
     }
 }
 
-int main(int argc, char** argv)
+int main(int argc, char** argv) try
 {
-    typedef TTAG(InfiltrationThreePCCProblem) ProblemTypeTag;
-    return Dumux::start<ProblemTypeTag>(argc, argv, usage);
-}
+    using namespace Dumux;
+
+    // define the type tag for this problem
+    using TypeTag = TTAG(InfiltrationThreePCCProblem);
+
+    // initialize MPI, finalize is done automatically on exit
+    const auto& mpiHelper = Dune::MPIHelper::instance(argc, argv);
+
+    // print dumux start message
+    if (mpiHelper.rank() == 0)
+        DumuxMessage::print(/*firstCall=*/true);
+
+    // parse command line arguments and input file
+    Parameters::init(argc, argv, usage);
+
+    // try to create a grid (from the given grid file or the input file)
+    using GridCreator = typename GET_PROP_TYPE(TypeTag, GridCreator);
+    GridCreator::makeGrid(Parameters::getTree());
+    GridCreator::loadBalance();
+
+    ////////////////////////////////////////////////////////////
+    // run instationary non-linear problem on this grid
+    ////////////////////////////////////////////////////////////
+
+    // we compute on the leaf grid view
+    const auto& leafGridView = GridCreator::grid().leafGridView();
+
+    // create the finite volume grid geometry
+    using FVGridGeometry = typename GET_PROP_TYPE(TypeTag, FVGridGeometry);
+    auto fvGridGeometry = std::make_shared<FVGridGeometry>(leafGridView);
+    fvGridGeometry->update();
+
+    // the problem (initial and boundary conditions)
+    using Problem = typename GET_PROP_TYPE(TypeTag, Problem);
+    auto problem = std::make_shared<Problem>(fvGridGeometry);
+
+    // the solution vector
+    using GridView = typename GET_PROP_TYPE(TypeTag, GridView);
+    using SolutionVector = typename GET_PROP_TYPE(TypeTag, SolutionVector);
+    SolutionVector x(leafGridView.size(GridView::dimension));
+    problem->applyInitialSolution(x);
+    auto xOld = x;
+
+    // the grid variables
+    using GridVariables = typename GET_PROP_TYPE(TypeTag, GridVariables);
+    auto gridVariables = std::make_shared<GridVariables>(problem, fvGridGeometry);
+    gridVariables->init(x, xOld);
+
+    // get some time loop parameters
+    using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar);
+    const auto tEnd = getParam<Scalar>("TimeLoop.TEnd");
+    const auto maxDivisions = getParam<int>("TimeLoop.MaxTimeStepDivisions");
+    const auto maxDt = getParam<Scalar>("TimeLoop.MaxTimeStepSize");
+    auto dt = getParam<Scalar>("TimeLoop.DtInitial");
+
+    // check if we are about to restart a previously interrupted simulation
+    Scalar restartTime = 0;
+    if (Parameters::getTree().hasKey("Restart") || Parameters::getTree().hasKey("TimeLoop.Restart"))
+        restartTime = getParam<Scalar>("TimeLoop.Restart");
+
+    // intialize the vtk output module
+    using VtkOutputFields = typename GET_PROP_TYPE(TypeTag, VtkOutputFields);
+    VtkOutputModule<TypeTag> vtkWriter(*problem, *fvGridGeometry, *gridVariables, x, problem->name());
+    VtkOutputFields::init(vtkWriter); //! Add model specific output fields
+    vtkWriter.write(0.0);
+
+    // instantiate time loop
+    auto timeLoop = std::make_shared<TimeLoop<Scalar>>(restartTime, dt, tEnd);
+    timeLoop->setMaxTimeStepSize(maxDt);
+
+    // the assembler with time loop for instationary problem
+    using Assembler = FVAssembler<TypeTag, DiffMethod::numeric>;
+    auto assembler = std::make_shared<Assembler>(problem, fvGridGeometry, gridVariables, timeLoop);
+
+    // the linear solver
+    using LinearSolver = Dumux::AMGBackend<TypeTag>;
+    auto linearSolver = std::make_shared<LinearSolver>(leafGridView, fvGridGeometry->elementMapper());
 
+    // the non-linear solver
+    using NewtonController = typename GET_PROP_TYPE(TypeTag, NewtonController);
+    using NewtonMethod = Dumux::NewtonMethod<TypeTag, NewtonController, Assembler, LinearSolver>;
+    auto newtonController = std::make_shared<NewtonController>(leafGridView.comm(), timeLoop);
+    NewtonMethod nonLinearSolver(newtonController, assembler, linearSolver);
+
+    // time loop
+    timeLoop->start(); do
+    {
+        // set previous solution for storage evaluations
+        assembler->setPreviousSolution(xOld);
+
+        // try solving the non-linear system
+        for (int i = 0; i < maxDivisions; ++i)
+        {
+            // linearize & solve
+            auto converged = nonLinearSolver.solve(x);
+
+            if (converged)
+                break;
+
+            if (!converged && i == maxDivisions-1)
+                DUNE_THROW(Dune::MathError,
+                           "Newton solver didn't converge after "
+                           << maxDivisions
+                           << " time-step divisions. dt="
+                           << timeLoop->timeStepSize()
+                           << ".\nThe solutions of the current and the previous time steps "
+                           << "have been saved to restart files.");
+        }
+
+        // make the new solution the old solution
+        xOld = x;
+        gridVariables->advanceTimeStep();
+
+        // advance to the time loop to the next step
+        timeLoop->advanceTimeStep();
+
+        // write vtk output
+        vtkWriter.write(timeLoop->time());
+
+        // report statistics of this time step
+        timeLoop->reportTimeStep();
+
+        // set new dt as suggested by newton controller
+        timeLoop->setTimeStepSize(newtonController->suggestTimeStepSize(timeLoop->timeStepSize()));
+
+    } while (!timeLoop->finished());
+
+    timeLoop->finalize(leafGridView.comm());
+
+    ////////////////////////////////////////////////////////////
+    // finalize, print dumux message to say goodbye
+    ////////////////////////////////////////////////////////////
+
+    // print dumux end message
+    if (mpiHelper.rank() == 0)
+    {
+        Parameters::print();
+        DumuxMessage::print(/*firstCall=*/false);
+    }
+
+    return 0;
+} // end main
+catch (Dumux::ParameterException &e)
+{
+    std::cerr << std::endl << e << " ---> Abort!" << std::endl;
+    return 1;
+}
+catch (Dune::DGFException & e)
+{
+    std::cerr << "DGF exception thrown (" << e <<
+                 "). Most likely, the DGF file name is wrong "
+                 "or the DGF file is corrupted, "
+                 "e.g. missing hash at end of file or wrong number (dimensions) of entries."
+                 << " ---> Abort!" << std::endl;
+    return 2;
+}
+catch (Dune::Exception &e)
+{
+    std::cerr << "Dune reported error: " << e << " ---> Abort!" << std::endl;
+    return 3;
+}
+catch (...)
+{
+    std::cerr << "Unknown exception thrown! ---> Abort!" << std::endl;
+    return 4;
+}
diff --git a/test/porousmediumflow/3p/implicit/test_cc3pniconduction.cc b/test/porousmediumflow/3p/implicit/test_cc3pniconduction.cc
index 6c1fc640e642a690be25416d747a657a7f54acc6..fc3689beb02b23b1be40913b7d07fe2b36e23b90 100644
--- a/test/porousmediumflow/3p/implicit/test_cc3pniconduction.cc
+++ b/test/porousmediumflow/3p/implicit/test_cc3pniconduction.cc
@@ -23,7 +23,31 @@
  */
 #include <config.h>
 #include "3pniconductionproblem.hh"
-#include <dumux/common/start.hh>
+#include <ctime>
+#include <iostream>
+
+#include <dune/common/parallel/mpihelper.hh>
+#include <dune/common/timer.hh>
+#include <dune/grid/io/file/dgfparser/dgfexception.hh>
+#include <dune/grid/io/file/vtk.hh>
+#include <dune/istl/io.hh>
+
+#include <dumux/common/propertysystem.hh>
+#include <dumux/common/parameters.hh>
+#include <dumux/common/valgrind.hh>
+#include <dumux/common/dumuxmessage.hh>
+#include <dumux/common/defaultusagemessage.hh>
+
+#include <dumux/linear/seqsolverbackend.hh>
+#include <dumux/nonlinear/newtonmethod.hh>
+#include <dumux/nonlinear/newtoncontroller.hh>
+
+#include <dumux/assembly/fvassembler.hh>
+#include <dumux/assembly/diffmethod.hh>
+
+#include <dumux/discretization/methods.hh>
+
+#include <dumux/io/vtkoutputmodule.hh>
 
 /*!
  * \brief Provides an interface for customizing error messages associated with
@@ -40,18 +64,188 @@ void usage(const char *progName, const std::string &errorMsg)
                     errorMessageOut += progName;
                     errorMessageOut += " [options]\n";
                     errorMessageOut += errorMsg;
-                    errorMessageOut += "\n\nThe list of mandatory options for this program is:\n"
-                                        "\t-TimeManager.TEnd      End of the simulation [s] \n"
-                                        "\t-TimeManager.DtInitial Initial timestep size [s] \n"
-                                        "\t-Grid.File             Name of the file containing the grid \n"
-                                        "\t                       definition in DGF format\n";
+                    errorMessageOut += "\n\nThe list of mandatory arguments for this program is:\n"
+                                        "\t-TimeManager.TEnd               End of the simulation [s] \n"
+                                        "\t-TimeManager.DtInitial          Initial timestep size [s] \n"
+                                        "\t-Grid.LowerLeft                 Lower left corner coordinates\n"
+                                        "\t-Grid.UpperRight                Upper right corner coordinates\n"
+                                        "\t-Grid.Cells                     Number of cells in respective coordinate directions\n"
+                                        "\t                                definition in DGF format\n"
+                                        "\t-SpatialParams.LensLowerLeft   coordinates of the lower left corner of the lens [m] \n"
+                                        "\t-SpatialParams.LensUpperRight  coordinates of the upper right corner of the lens [m] \n"
+                                        "\t-SpatialParams.Permeability     Permeability of the domain [m^2] \n"
+                                        "\t-SpatialParams.PermeabilityLens Permeability of the lens [m^2] \n";
+
         std::cout << errorMessageOut
                   << "\n";
     }
 }
 
-int main(int argc, char** argv)
+int main(int argc, char** argv) try
+{
+    using namespace Dumux;
+
+    // define the type tag for this problem
+    using TypeTag = TTAG(ThreePNIConductionCCProblem);
+
+    // initialize MPI, finalize is done automatically on exit
+    const auto& mpiHelper = Dune::MPIHelper::instance(argc, argv);
+
+    // print dumux start message
+    if (mpiHelper.rank() == 0)
+        DumuxMessage::print(/*firstCall=*/true);
+
+    // parse command line arguments and input file
+    Parameters::init(argc, argv, usage);
+
+    // try to create a grid (from the given grid file or the input file)
+    using GridCreator = typename GET_PROP_TYPE(TypeTag, GridCreator);
+    GridCreator::makeGrid(Parameters::getTree());
+    GridCreator::loadBalance();
+
+    ////////////////////////////////////////////////////////////
+    // run instationary non-linear problem on this grid
+    ////////////////////////////////////////////////////////////
+
+    // we compute on the leaf grid view
+    const auto& leafGridView = GridCreator::grid().leafGridView();
+
+    // create the finite volume grid geometry
+    using FVGridGeometry = typename GET_PROP_TYPE(TypeTag, FVGridGeometry);
+    auto fvGridGeometry = std::make_shared<FVGridGeometry>(leafGridView);
+    fvGridGeometry->update();
+
+    // the problem (initial and boundary conditions)
+    using Problem = typename GET_PROP_TYPE(TypeTag, Problem);
+    auto problem = std::make_shared<Problem>(fvGridGeometry);
+
+    // the solution vector
+    using GridView = typename GET_PROP_TYPE(TypeTag, GridView);
+    using SolutionVector = typename GET_PROP_TYPE(TypeTag, SolutionVector);
+    SolutionVector x(leafGridView.size(GridView::dimension));
+    problem->applyInitialSolution(x);
+    auto xOld = x;
+
+    // the grid variables
+    using GridVariables = typename GET_PROP_TYPE(TypeTag, GridVariables);
+    auto gridVariables = std::make_shared<GridVariables>(problem, fvGridGeometry);
+    gridVariables->init(x, xOld);
+
+    // get some time loop parameters
+    using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar);
+    const auto tEnd = getParam<Scalar>("TimeLoop.TEnd");
+    const auto maxDivisions = getParam<int>("TimeLoop.MaxTimeStepDivisions");
+    const auto maxDt = getParam<Scalar>("TimeLoop.MaxTimeStepSize");
+    auto dt = getParam<Scalar>("TimeLoop.DtInitial");
+
+    // check if we are about to restart a previously interrupted simulation
+    Scalar restartTime = 0;
+    if (Parameters::getTree().hasKey("Restart") || Parameters::getTree().hasKey("TimeLoop.Restart"))
+        restartTime = getParam<Scalar>("TimeLoop.Restart");
+
+    // intialize the vtk output module
+    using VtkOutputFields = typename GET_PROP_TYPE(TypeTag, VtkOutputFields);
+    VtkOutputModule<TypeTag> vtkWriter(*problem, *fvGridGeometry, *gridVariables, x, problem->name());
+    VtkOutputFields::init(vtkWriter); //! Add model specific output fields
+    vtkWriter.write(0.0);
+
+    // instantiate time loop
+    auto timeLoop = std::make_shared<TimeLoop<Scalar>>(restartTime, dt, tEnd);
+    timeLoop->setMaxTimeStepSize(maxDt);
+
+    // the assembler with time loop for instationary problem
+    using Assembler = FVAssembler<TypeTag, DiffMethod::numeric>;
+    auto assembler = std::make_shared<Assembler>(problem, fvGridGeometry, gridVariables, timeLoop);
+
+    // the linear solver
+    using LinearSolver = Dumux::AMGBackend<TypeTag>;
+    auto linearSolver = std::make_shared<LinearSolver>(leafGridView, fvGridGeometry->elementMapper());
+
+    // the non-linear solver
+    using NewtonController = typename GET_PROP_TYPE(TypeTag, NewtonController);
+    using NewtonMethod = Dumux::NewtonMethod<TypeTag, NewtonController, Assembler, LinearSolver>;
+    auto newtonController = std::make_shared<NewtonController>(leafGridView.comm(), timeLoop);
+    NewtonMethod nonLinearSolver(newtonController, assembler, linearSolver);
+
+    // time loop
+    timeLoop->start(); do
+    {
+        // set previous solution for storage evaluations
+        assembler->setPreviousSolution(xOld);
+
+        // try solving the non-linear system
+        for (int i = 0; i < maxDivisions; ++i)
+        {
+            // linearize & solve
+            auto converged = nonLinearSolver.solve(x);
+
+            if (converged)
+                break;
+
+            if (!converged && i == maxDivisions-1)
+                DUNE_THROW(Dune::MathError,
+                           "Newton solver didn't converge after "
+                           << maxDivisions
+                           << " time-step divisions. dt="
+                           << timeLoop->timeStepSize()
+                           << ".\nThe solutions of the current and the previous time steps "
+                           << "have been saved to restart files.");
+        }
+
+        // make the new solution the old solution
+        xOld = x;
+        gridVariables->advanceTimeStep();
+
+        // advance to the time loop to the next step
+        timeLoop->advanceTimeStep();
+
+        // write vtk output
+        vtkWriter.write(timeLoop->time());
+
+        // report statistics of this time step
+        timeLoop->reportTimeStep();
+
+        // set new dt as suggested by newton controller
+        timeLoop->setTimeStepSize(newtonController->suggestTimeStepSize(timeLoop->timeStepSize()));
+
+    } while (!timeLoop->finished());
+
+    timeLoop->finalize(leafGridView.comm());
+
+    ////////////////////////////////////////////////////////////
+    // finalize, print dumux message to say goodbye
+    ////////////////////////////////////////////////////////////
+
+    // print dumux end message
+    if (mpiHelper.rank() == 0)
+    {
+        Parameters::print();
+        DumuxMessage::print(/*firstCall=*/false);
+    }
+
+    return 0;
+} // end main
+catch (Dumux::ParameterException &e)
+{
+    std::cerr << std::endl << e << " ---> Abort!" << std::endl;
+    return 1;
+}
+catch (Dune::DGFException & e)
+{
+    std::cerr << "DGF exception thrown (" << e <<
+                 "). Most likely, the DGF file name is wrong "
+                 "or the DGF file is corrupted, "
+                 "e.g. missing hash at end of file or wrong number (dimensions) of entries."
+                 << " ---> Abort!" << std::endl;
+    return 2;
+}
+catch (Dune::Exception &e)
+{
+    std::cerr << "Dune reported error: " << e << " ---> Abort!" << std::endl;
+    return 3;
+}
+catch (...)
 {
-    typedef TTAG(ThreePNIConductionCCProblem) ProblemTypeTag;
-    return Dumux::start<ProblemTypeTag>(argc, argv, usage);
+    std::cerr << "Unknown exception thrown! ---> Abort!" << std::endl;
+    return 4;
 }
diff --git a/test/porousmediumflow/3p/implicit/test_cc3pniconvection.cc b/test/porousmediumflow/3p/implicit/test_cc3pniconvection.cc
index dce33c08ccc8e3cbc7044a0ecb07dd64509e2c73..ce1130a0f268c12b686d2fc0a00981b47658587b 100644
--- a/test/porousmediumflow/3p/implicit/test_cc3pniconvection.cc
+++ b/test/porousmediumflow/3p/implicit/test_cc3pniconvection.cc
@@ -23,7 +23,31 @@
  */
 #include <config.h>
 #include "3pniconvectionproblem.hh"
-#include <dumux/common/start.hh>
+#include <ctime>
+#include <iostream>
+
+#include <dune/common/parallel/mpihelper.hh>
+#include <dune/common/timer.hh>
+#include <dune/grid/io/file/dgfparser/dgfexception.hh>
+#include <dune/grid/io/file/vtk.hh>
+#include <dune/istl/io.hh>
+
+#include <dumux/common/propertysystem.hh>
+#include <dumux/common/parameters.hh>
+#include <dumux/common/valgrind.hh>
+#include <dumux/common/dumuxmessage.hh>
+#include <dumux/common/defaultusagemessage.hh>
+
+#include <dumux/linear/seqsolverbackend.hh>
+#include <dumux/nonlinear/newtonmethod.hh>
+#include <dumux/nonlinear/newtoncontroller.hh>
+
+#include <dumux/assembly/fvassembler.hh>
+#include <dumux/assembly/diffmethod.hh>
+
+#include <dumux/discretization/methods.hh>
+
+#include <dumux/io/vtkoutputmodule.hh>
 
 /*!
  * \brief Provides an interface for customizing error messages associated with
@@ -40,18 +64,188 @@ void usage(const char *progName, const std::string &errorMsg)
                     errorMessageOut += progName;
                     errorMessageOut += " [options]\n";
                     errorMessageOut += errorMsg;
-                    errorMessageOut += "\n\nThe list of mandatory options for this program is:\n"
-                                        "\t-TimeManager.TEnd      End of the simulation [s] \n"
-                                        "\t-TimeManager.DtInitial Initial timestep size [s] \n"
-                                        "\t-Grid.File             Name of the file containing the grid \n"
-                                        "\t                       definition in DGF format\n";
+                    errorMessageOut += "\n\nThe list of mandatory arguments for this program is:\n"
+                                        "\t-TimeManager.TEnd               End of the simulation [s] \n"
+                                        "\t-TimeManager.DtInitial          Initial timestep size [s] \n"
+                                        "\t-Grid.LowerLeft                 Lower left corner coordinates\n"
+                                        "\t-Grid.UpperRight                Upper right corner coordinates\n"
+                                        "\t-Grid.Cells                     Number of cells in respective coordinate directions\n"
+                                        "\t                                definition in DGF format\n"
+                                        "\t-SpatialParams.LensLowerLeft   coordinates of the lower left corner of the lens [m] \n"
+                                        "\t-SpatialParams.LensUpperRight  coordinates of the upper right corner of the lens [m] \n"
+                                        "\t-SpatialParams.Permeability     Permeability of the domain [m^2] \n"
+                                        "\t-SpatialParams.PermeabilityLens Permeability of the lens [m^2] \n";
+
         std::cout << errorMessageOut
                   << "\n";
     }
 }
 
-int main(int argc, char** argv)
+int main(int argc, char** argv) try
+{
+    using namespace Dumux;
+
+    // define the type tag for this problem
+    using TypeTag = TTAG(ThreePNIConvectionCCProblem);
+
+    // initialize MPI, finalize is done automatically on exit
+    const auto& mpiHelper = Dune::MPIHelper::instance(argc, argv);
+
+    // print dumux start message
+    if (mpiHelper.rank() == 0)
+        DumuxMessage::print(/*firstCall=*/true);
+
+    // parse command line arguments and input file
+    Parameters::init(argc, argv, usage);
+
+    // try to create a grid (from the given grid file or the input file)
+    using GridCreator = typename GET_PROP_TYPE(TypeTag, GridCreator);
+    GridCreator::makeGrid(Parameters::getTree());
+    GridCreator::loadBalance();
+
+    ////////////////////////////////////////////////////////////
+    // run instationary non-linear problem on this grid
+    ////////////////////////////////////////////////////////////
+
+    // we compute on the leaf grid view
+    const auto& leafGridView = GridCreator::grid().leafGridView();
+
+    // create the finite volume grid geometry
+    using FVGridGeometry = typename GET_PROP_TYPE(TypeTag, FVGridGeometry);
+    auto fvGridGeometry = std::make_shared<FVGridGeometry>(leafGridView);
+    fvGridGeometry->update();
+
+    // the problem (initial and boundary conditions)
+    using Problem = typename GET_PROP_TYPE(TypeTag, Problem);
+    auto problem = std::make_shared<Problem>(fvGridGeometry);
+
+    // the solution vector
+    using GridView = typename GET_PROP_TYPE(TypeTag, GridView);
+    using SolutionVector = typename GET_PROP_TYPE(TypeTag, SolutionVector);
+    SolutionVector x(leafGridView.size(GridView::dimension));
+    problem->applyInitialSolution(x);
+    auto xOld = x;
+
+    // the grid variables
+    using GridVariables = typename GET_PROP_TYPE(TypeTag, GridVariables);
+    auto gridVariables = std::make_shared<GridVariables>(problem, fvGridGeometry);
+    gridVariables->init(x, xOld);
+
+    // get some time loop parameters
+    using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar);
+    const auto tEnd = getParam<Scalar>("TimeLoop.TEnd");
+    const auto maxDivisions = getParam<int>("TimeLoop.MaxTimeStepDivisions");
+    const auto maxDt = getParam<Scalar>("TimeLoop.MaxTimeStepSize");
+    auto dt = getParam<Scalar>("TimeLoop.DtInitial");
+
+    // check if we are about to restart a previously interrupted simulation
+    Scalar restartTime = 0;
+    if (Parameters::getTree().hasKey("Restart") || Parameters::getTree().hasKey("TimeLoop.Restart"))
+        restartTime = getParam<Scalar>("TimeLoop.Restart");
+
+    // intialize the vtk output module
+    using VtkOutputFields = typename GET_PROP_TYPE(TypeTag, VtkOutputFields);
+    VtkOutputModule<TypeTag> vtkWriter(*problem, *fvGridGeometry, *gridVariables, x, problem->name());
+    VtkOutputFields::init(vtkWriter); //! Add model specific output fields
+    vtkWriter.write(0.0);
+
+    // instantiate time loop
+    auto timeLoop = std::make_shared<TimeLoop<Scalar>>(restartTime, dt, tEnd);
+    timeLoop->setMaxTimeStepSize(maxDt);
+
+    // the assembler with time loop for instationary problem
+    using Assembler = FVAssembler<TypeTag, DiffMethod::numeric>;
+    auto assembler = std::make_shared<Assembler>(problem, fvGridGeometry, gridVariables, timeLoop);
+
+    // the linear solver
+    using LinearSolver = Dumux::AMGBackend<TypeTag>;
+    auto linearSolver = std::make_shared<LinearSolver>(leafGridView, fvGridGeometry->elementMapper());
+
+    // the non-linear solver
+    using NewtonController = typename GET_PROP_TYPE(TypeTag, NewtonController);
+    using NewtonMethod = Dumux::NewtonMethod<TypeTag, NewtonController, Assembler, LinearSolver>;
+    auto newtonController = std::make_shared<NewtonController>(leafGridView.comm(), timeLoop);
+    NewtonMethod nonLinearSolver(newtonController, assembler, linearSolver);
+
+    // time loop
+    timeLoop->start(); do
+    {
+        // set previous solution for storage evaluations
+        assembler->setPreviousSolution(xOld);
+
+        // try solving the non-linear system
+        for (int i = 0; i < maxDivisions; ++i)
+        {
+            // linearize & solve
+            auto converged = nonLinearSolver.solve(x);
+
+            if (converged)
+                break;
+
+            if (!converged && i == maxDivisions-1)
+                DUNE_THROW(Dune::MathError,
+                           "Newton solver didn't converge after "
+                           << maxDivisions
+                           << " time-step divisions. dt="
+                           << timeLoop->timeStepSize()
+                           << ".\nThe solutions of the current and the previous time steps "
+                           << "have been saved to restart files.");
+        }
+
+        // make the new solution the old solution
+        xOld = x;
+        gridVariables->advanceTimeStep();
+
+        // advance to the time loop to the next step
+        timeLoop->advanceTimeStep();
+
+        // write vtk output
+        vtkWriter.write(timeLoop->time());
+
+        // report statistics of this time step
+        timeLoop->reportTimeStep();
+
+        // set new dt as suggested by newton controller
+        timeLoop->setTimeStepSize(newtonController->suggestTimeStepSize(timeLoop->timeStepSize()));
+
+    } while (!timeLoop->finished());
+
+    timeLoop->finalize(leafGridView.comm());
+
+    ////////////////////////////////////////////////////////////
+    // finalize, print dumux message to say goodbye
+    ////////////////////////////////////////////////////////////
+
+    // print dumux end message
+    if (mpiHelper.rank() == 0)
+    {
+        Parameters::print();
+        DumuxMessage::print(/*firstCall=*/false);
+    }
+
+    return 0;
+} // end main
+catch (Dumux::ParameterException &e)
+{
+    std::cerr << std::endl << e << " ---> Abort!" << std::endl;
+    return 1;
+}
+catch (Dune::DGFException & e)
+{
+    std::cerr << "DGF exception thrown (" << e <<
+                 "). Most likely, the DGF file name is wrong "
+                 "or the DGF file is corrupted, "
+                 "e.g. missing hash at end of file or wrong number (dimensions) of entries."
+                 << " ---> Abort!" << std::endl;
+    return 2;
+}
+catch (Dune::Exception &e)
+{
+    std::cerr << "Dune reported error: " << e << " ---> Abort!" << std::endl;
+    return 3;
+}
+catch (...)
 {
-    typedef TTAG(ThreePNIConvectionCCProblem) ProblemTypeTag;
-    return Dumux::start<ProblemTypeTag>(argc, argv, usage);
+    std::cerr << "Unknown exception thrown! ---> Abort!" << std::endl;
+    return 4;
 }