Commit 012d8780 authored by Martin Schneider's avatar Martin Schneider
Browse files

[md][ffpm][tests] Adopt BJ test

The implemented BJ test used an indefinite permeability matrix
which lead to loss of convergence.
The new test is according to Cao et al.
parent 8e16b934
......@@ -429,7 +429,8 @@ private:
return NumEqVector(result);
}
// exact solution for BJ-IC with symmetrized stress tensor (by Elissa Eggenweiler)
// see Cao et al., 2011: "Robin–Robin domain decomposition methods for the steady-state Stokes–Darcy system with
// the Beavers–Joseph interface condition"
Dune::FieldVector<Scalar, 3> analyticalSolutionCao_(const GlobalPosition& globalPos) const
{
Dune::FieldVector<Scalar, 3> sol(0.0);
......@@ -444,7 +445,8 @@ private:
return sol;
}
// exact solution for BJ-IC with symmetrized stress tensor (by Elissa Eggenweiler)
// see Cao et al., 2011: "Robin–Robin domain decomposition methods for the steady-state Stokes–Darcy system with
// the Beavers–Joseph interface condition"
NumEqVector rhsCao_(const GlobalPosition& globalPos) const
{
const Scalar x = globalPos[0];
......
......@@ -414,7 +414,8 @@ private:
return source;
}
// exact solution for BJ-IC with symmetrized stress tensor (by Elissa Eggenweiler)
// see Cao et al., 2011: "Robin–Robin domain decomposition methods for the steady-state Stokes–Darcy system with
// the Beavers–Joseph interface condition"
PrimaryVariables analyticalSolutionCao_(const GlobalPosition& globalPos) const
{
PrimaryVariables sol(0.0);
......@@ -429,7 +430,8 @@ private:
return sol;
}
// exact solution for BJ-IC with symmetrized stress tensor (by Elissa Eggenweiler)
// see Cao et al., 2011: "Robin–Robin domain decomposition methods for the steady-state Stokes–Darcy system with
// the Beavers–Joseph interface condition"
NumEqVector rhsCao_(const GlobalPosition& globalPos) const
{
const Scalar x = globalPos[0];
......
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment