Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
dumux-repositories
dumux
Commits
0431ae6d
Commit
0431ae6d
authored
Apr 02, 2019
by
Shirin
Browse files
el2p_Decoupled for relative Pn=0, and corrected for avg sw for initial stress values.
parent
dfac8ae9
Changes
13
Expand all
Hide whitespace changes
Inline
Side-by-side
dumux/material/binarycoefficients/h2o_airrelativpressure.hh
0 → 100644
View file @
0431ae6d
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
* See the file COPYING for full copying permissions. *
* *
* This program is free software: you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation, either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
*****************************************************************************/
/*!
* \file
*
* \brief Binary coefficients for water and nitrogen.
*/
#ifndef DUMUX_BINARY_COEFF_H2O_AIR_RELPRESS_HH
#define DUMUX_BINARY_COEFF_H2O_AIR_RELPRESS_HH
#include
<cmath>
namespace
Dumux
{
namespace
BinaryCoeff
{
/*!
* \ingroup Binarycoefficients
* \brief Binary coefficients for water and nitrogen.
*/
class
H2O_Air
{
public:
/*!
* \brief Henry coefficient \f$\mathrm{[Pa]}\f$ for air in liquid water.
* \param temperature the temperature \f$\mathrm{[K]}\f$
*
* Henry coefficient See:
* Stefan Finsterle (1993, page 33 Formula (2.9)) \cite finsterle1993 <BR>
* (fitted to data from Tchobanoglous & Schroeder, 1985 \cite tchobanoglous1985 )
*/
template
<
class
Scalar
>
static
Scalar
henry
(
Scalar
temperature
)
{
using
std
::
exp
;
Scalar
r
=
(
0.8942
+
1.47
*
exp
(
-
0.04394
*
(
temperature
-
273.15
)))
*
1.E-10
;
return
1.
/
r
;
}
/*!
* \brief Binary diffusion coefficient \f$\mathrm{[m^2/s]}\f$ for molecular water and air
*
* \param temperature the temperature \f$\mathrm{[K]}\f$
* \param pressure the phase pressure \f$\mathrm{[Pa]}\f$
* Vargaftik: Tables on the thermophysical properties of liquids and gases.
* John Wiley & Sons, New York, 1975. \cite vargaftik1975 <BR>
* Walker, Sabey, Hampton: Studies of heat transfer and water migration in soils.
* Dep. of Agricultural and Chemical Engineering, Colorado State University,
* Fort Collins, 1981. \cite walker1981
*/
template
<
class
Scalar
>
static
Scalar
gasDiffCoeff
(
Scalar
temperature
,
Scalar
pressure
)
{
const
Scalar
Theta
=
1.8
;
const
Scalar
Daw
=
2.13e-5
;
/* reference value */
const
Scalar
pg0
=
1.e5
;
/* reference pressure */
const
Scalar
T0
=
273.15
;
/* reference temperature */
Scalar
Dgaw
;
using
std
::
pow
;
Dgaw
=
Daw
*
(
pg0
/
(
pressure
+
1e5
))
*
pow
((
temperature
/
T0
),
Theta
);
return
Dgaw
;
}
/*!
* Lacking better data on water-air diffusion in liquids, we use at the
* moment the diffusion coefficient of the air's main component nitrogen!!
* \brief Diffusion coefficient \f$\mathrm{[m^2/s]}\f$ for molecular nitrogen in liquid water.
*
* \param temperature the temperature \f$\mathrm{[K]}\f$
* \param pressure the phase pressure \f$\mathrm{[Pa]}\f$
*
* The empirical equations for estimating the diffusion coefficient in
* infinite solution which are presented in Reid, 1987 all show a
* linear dependency on temperature. We thus simply scale the
* experimentally obtained diffusion coefficient of Ferrell and
* Himmelblau by the temperature.
*
* See:
* R. Reid et al. (1987, pp. 599) \cite reid1987 <BR>
* R. Ferrell, D. Himmelblau (1967, pp. 111-115) \cite ferrell1967
*/
template
<
class
Scalar
>
static
Scalar
liquidDiffCoeff
(
Scalar
temperature
,
Scalar
pressure
)
{
const
Scalar
Texp
=
273.15
+
25
;
// [K]
const
Scalar
Dexp
=
2.01e-9
;
// [m^2/s]
return
Dexp
*
temperature
/
Texp
;
}
};
}
}
// end namespace
#endif
dumux/material/components/airrelativepressure.hh
0 → 100644
View file @
0431ae6d
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
* See the file COPYING for full copying permissions. *
* *
* This program is free software: you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation, either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
*****************************************************************************/
/*!
* \file
*
* \ingroup Components
*
* \brief A simple class for the air fluid properties
*/
#ifndef DUMUX_AIR_RELPRESS_HH
#define DUMUX_AIR_RELPRESS_HH
#include
<dumux/common/exceptions.hh>
#include
<dumux/material/components/component.hh>
#include
<dumux/material/idealgas.hh>
namespace
Dumux
{
/*!
* \ingroup Components
*
* \brief A class for the air fluid properties
*
* \tparam Scalar The type used for scalar values
*/
template
<
class
Scalar
>
class
AirRelPress
:
public
Component
<
Scalar
,
AirRelPress
<
Scalar
>
>
{
typedef
Dumux
::
IdealGas
<
Scalar
>
IdealGas
;
public:
/*!
* \brief A human readable name for Air.
*/
static
std
::
string
name
()
{
return
"Air"
;
}
/*!
* \brief The molar mass in \f$\mathrm{[kg/mol]}\f$ of Air.
*
* Taken from constrelair.hh.
*/
static
Scalar
molarMass
()
{
return
0.02896
;
/* [kg/mol] */
}
/*!
* \brief Returns the critical temperature \f$\mathrm{[K]}\f$ of Air.
*/
static
Scalar
criticalTemperature
()
{
return
132.6312
;
/* [K] */
}
/*!
* \brief Returns the critical pressure \f$\mathrm{[Pa]}\f$ of Air.
*/
static
Scalar
criticalPressure
()
{
return
37.86e5
-
1e5
;
/* [Pa] */
}
/*!
* \brief The density \f$\mathrm{[kg/m^3]}\f$ of Air at a given pressure and temperature.
*
* Ideal gas is assumed.
*
* \param temperature temperature of component in \f$\mathrm{[K]}\f$
* \param pressure pressure of phase in \f$\mathrm{[Pa]}\f$
*/
static
Scalar
gasDensity
(
Scalar
temperature
,
Scalar
pressure
)
{
// Assume an ideal gas
return
IdealGas
::
density
(
molarMass
(),
temperature
,
pressure
+
1e5
);
}
/*!
* \brief Returns true, the gas phase is assumed to be compressible
*/
static
bool
gasIsCompressible
()
{
return
true
;
}
/*!
* \brief Returns true, the gas phase is assumed to be ideal
*/
static
bool
gasIsIdeal
()
{
return
true
;
}
/*!
* \brief The pressure \f$\mathrm{[Pa]}\f$ of gaseous Air at a given density and temperature.
*
* Ideal gas is assumed.
*
* \param temperature temperature of component in \f$\mathrm{[K]}\f$
* \param density density of component in \f$\mathrm{[kg/m^3]}\f$
*/
static
Scalar
gasPressure
(
Scalar
temperature
,
Scalar
density
)
{
// Assume an ideal gas
return
IdealGas
::
pressure
(
temperature
,
density
/
molarMass
())
-
1e5
;
}
/*!
* \brief The dynamic viscosity \f$\mathrm{[Pa*s]}\f$ of Air at a given pressure and temperature.
*
* Criticial specific volume calculated by \f$V_c = (R*T_c)/p_c\f$.
*
* Reid et al. (1987, pp 396-397, 667) \cite reid1987 <BR>
* Poling et al. (2001, pp 9.7-9.8) \cite poling2001 <BR>
*
* Accentric factor taken from: <BR>
* Adebiyi (2003) \cite adebiyi2003
*
* air is a non-polar substance,
* thus dipole moment mu is zero, as well the dimensionless dipole moment mu_r
* therefore not considered below
* the same holds for the correction value kappa for highly polar substances
*
* This calculation was introduced into Dumux in 2012 although the method here
* is designed for general polar substances. Air, however, is (a) non-polar,
* and (b) there are more precise methods available
*
* \param temperature temperature of component in \f$\mathrm{[K]}\f$
* \param pressure pressure of component in \f$\mathrm{[Pa]}\f$
*/
static
Scalar
oldGasViscosity
(
Scalar
temperature
,
Scalar
pressure
)
{
const
Scalar
Tc
=
criticalTemperature
();
const
Scalar
Vc
=
84.525138
;
// critical specific volume [cm^3/mol]
const
Scalar
omega
=
0.078
;
// accentric factor
const
Scalar
M
=
molarMass
()
*
1e3
;
// molar mas [g/mol]
const
Scalar
Fc
=
1.0
-
0.2756
*
omega
;
const
Scalar
Tstar
=
1.2593
*
temperature
/
Tc
;
using
std
::
exp
;
using
std
::
pow
;
const
Scalar
Omega_v
=
1.16145
*
pow
(
Tstar
,
-
0.14874
)
+
0.52487
*
exp
(
-
0.77320
*
Tstar
)
+
2.16178
*
exp
(
-
2.43787
*
Tstar
);
using
std
::
cbrt
;
using
std
::
sqrt
;
const
Scalar
mu
=
40.785
*
Fc
*
sqrt
(
M
*
temperature
)
/
(
cbrt
(
Vc
*
Vc
)
*
Omega_v
);
// convertion from micro poise to Pa s
return
mu
/
1.0e6
/
10.0
;
}
/*!
* \brief The dynamic viscosity \f$\mathrm{[Pa*s]}\f$ of Air at a given pressure and temperature.
*
* Simple method, already implemented in MUFTE-UG, but pretty accurate.
*
* The pressure correction is even simpler and developed and tested by
* Holger Class in 2016 against the results of the Lemmon and Jacobsen (2004)
* approach \cite LemmonJacobsen2004
* It shows very reasonable results throughout realistic pressure and
* temperature ranges up to several hundred Kelvin and up to 500 bar
*
* \param temperature temperature of component in \f$\mathrm{[K]}\f$
* \param pressure pressure of component in \f$\mathrm{[Pa]}\f$
*/
static
Scalar
gasViscosity
(
Scalar
temperature
,
Scalar
pressure
)
{
// above 1200 K, the function becomes inaccurate
// since this should realistically never happen, we can live with it
const
Scalar
tempCelsius
=
temperature
-
273.15
;
const
Scalar
pressureCorrectionFactor
=
9.7115e-9
*
tempCelsius
*
tempCelsius
-
5.5e-6
*
tempCelsius
+
0.0010809
;
using
std
::
sqrt
;
const
Scalar
mu
=
1.496e-6
*
sqrt
(
temperature
*
temperature
*
temperature
)
/
(
temperature
+
120.0
)
*
(
1.0
+
((
pressure
+
1e5
)
/
1.0e5
-
1.0
)
*
pressureCorrectionFactor
);
return
mu
;
}
/*!
* \brief The dynamic viscosity \f$\mathrm{[Pa*s]}\f$ of Air at a given pressure and temperature.
*
* Simple method, already implemented in MUFTE-UG, but pretty accurate
* at atmospheric pressures.
* Gas viscosity is not very dependent on pressure. Thus, for
* low pressures one might switch the pressure correction off
*
* \param temperature temperature of component in \f$\mathrm{[K]}\f$
* \param pressure pressure of component in \f$\mathrm{[Pa]}\f$
*/
static
Scalar
simpleGasViscosity
(
Scalar
temperature
,
Scalar
pressure
)
{
// above 1200 K, the function becomes inaccurate
// since this should realistically never happen, we can live with it
using
std
::
sqrt
;
return
1.496e-6
*
sqrt
(
temperature
*
temperature
*
temperature
)
/
(
temperature
+
120.0
);
}
/*!
* \brief The dynamic viscosity \f$\mathrm{[Pa*s]}\f$ of Air at a given pressure and temperature.
*
* This is a very exact approach by Lemmon and Jacobsen (2004) \cite LemmonJacobsen2004
* All the values and parameters used below are explained in their paper
* Since they use ''eta'' for dyn. viscosity, we do it as well for easier
* comparison with the paper
*
* \param temperature temperature of component in \f$\mathrm{[K]}\f$
* \param pressure pressure of component in \f$\mathrm{[Pa]}\f$
*/
static
Scalar
exactGasViscosity
(
Scalar
temperature
,
Scalar
pressure
)
{
const
Scalar
epsk
=
103.3
;
// [K]
using
namespace
std
;
const
Scalar
logTstar
=
log
(
temperature
/
epsk
);
const
Scalar
Omega
=
exp
(
0.431
-
0.4623
*
logTstar
+
0.08406
*
logTstar
*
logTstar
+
0.005341
*
logTstar
*
logTstar
*
logTstar
-
0.00331
*
logTstar
*
logTstar
*
logTstar
*
logTstar
);
const
Scalar
sigma
=
0.36
;
// [nm]
const
Scalar
eta0
=
0.0266958
*
sqrt
(
1000.0
*
molarMass
()
*
temperature
)
/
(
sigma
*
sigma
*
Omega
);
const
Scalar
tau
=
criticalTemperature
()
/
temperature
;
const
Scalar
rhoc
=
10.4477
;
// [mol/m^3]
const
Scalar
delta
=
0.001
*
pressure
/
(
temperature
*
8.3144598
)
/
rhoc
;
const
Scalar
etaR
=
10.72
*
pow
(
tau
,
0.2
)
*
delta
+
1.122
*
pow
(
tau
,
0.05
)
*
pow
(
delta
,
4
)
+
0.002019
*
pow
(
tau
,
2.4
)
*
pow
(
delta
,
9
)
-
8.876
*
pow
(
tau
,
0.6
)
*
delta
*
exp
(
-
delta
)
-
0.02916
*
pow
(
tau
,
3.6
)
*
pow
(
delta
,
8
)
*
exp
(
-
delta
);
return
(
eta0
+
etaR
)
*
1e-6
;
}
/*!
* \brief Specific enthalpy of Air \f$\mathrm{[J/kg]}\f$
* with 273.15 \f$ K \f$ as basis. <BR>
*
* \param temperature temperature of component in \f$\mathrm{[K]}\f$
* \param pressure pressure of component in \f$\mathrm{[Pa]}\f$
*
* Kays et al. (2005, 431ff) \cite kays2005 <BR>
*/
static
Scalar
gasEnthalpy
(
Scalar
temperature
,
Scalar
pressure
)
{
return
1005
*
(
temperature
-
273.15
);
}
/*!
* \brief Specific internal energy of Air \f$\mathrm{[J/kg]}\f$.
*
* Definition of enthalpy: \f$h= u + pv = u + p / \rho\f$.
* Rearranging for internal energy yields: \f$u = h - pv\f$.
* Exploiting the Ideal Gas assumption
* (\f$pv = R_{\textnormal{specific}} T\f$) gives: \f$u = h - R / M T \f$.
*
* \param temperature temperature of component in \f$\mathrm{[K]}\f$
* \param pressure pressure of component in \f$\mathrm{[Pa]}\f$
*/
static
const
Scalar
gasInternalEnergy
(
Scalar
temperature
,
Scalar
pressure
)
{
return
gasEnthalpy
(
temperature
,
pressure
+
1e5
)
-
IdealGas
::
R
*
temperature
// = pressure * molar volume for an ideal gas
/
molarMass
();
// conversion from [J/(mol K)] to [J/(kg K)]
}
/*!
* \brief Specific isobaric heat capacity \f$\mathrm{[J/(kg*K)]}\f$ of pure
* air.
*
* This methods uses the formula for "zero-pressure" heat capacity that
* is only dependent on temperature, because the pressure dependence is rather small.
* This one should be accurate for a pressure of 1 atm.
* \param temperature temperature of component in \f$\mathrm{[K]}\f$
* \param pressure pressure of component in \f$\mathrm{[Pa]}\f$
*
* Values taken from Hollis (1996) \cite hollis1996 <BR>
* "Tables of Thermal Properties of Gases"
*/
static
const
Scalar
gasHeatCapacity
(
Scalar
temperature
,
Scalar
pressure
)
{
// scale temperature with reference temp of 100K
Scalar
phi
=
temperature
/
100
;
using
std
::
pow
;
Scalar
c_p
=
0.661738E+01
-
0.105885E+01
*
phi
+
0.201650E+00
*
pow
(
phi
,
2
)
-
0.196930E-01
*
pow
(
phi
,
3
)
+
0.106460E-02
*
pow
(
phi
,
4
)
-
0.303284E-04
*
pow
(
phi
,
5
)
+
0.355861E-06
*
pow
(
phi
,
6
);
c_p
+=
-
0.549169E+01
*
pow
(
phi
,
-
1
)
+
0.585171E+01
*
pow
(
phi
,
-
2
)
-
0.372865E+01
*
pow
(
phi
,
-
3
)
+
0.133981E+01
*
pow
(
phi
,
-
4
)
-
0.233758E+00
*
pow
(
phi
,
-
5
)
+
0.125718E-01
*
pow
(
phi
,
-
6
);
c_p
*=
IdealGas
::
R
/
(
molarMass
()
*
1000
);
// in J/mol/K * mol / kg / 1000 = kJ/kg/K
return
c_p
;
}
/*!
* \brief Thermal conductivity \f$\mathrm{[[W/(m*K)]}\f$ of air.
*
* Isobaric Properties for Nitrogen in: NIST Standard \cite NIST <BR>
* evaluated at p=.1 MPa, T=20°C <BR>
* Nitrogen: 0.025398 <BR>
* Oxygen: 0.026105 <BR>
* lambda_air is approximately 0.78*lambda_N2+0.22*lambda_O2
*
* \param temperature absolute temperature in \f$\mathrm{[K]}\f$
* \param pressure of the phase in \f$\mathrm{[Pa]}\f$
*/
static
Scalar
gasThermalConductivity
(
Scalar
temperature
,
Scalar
pressure
)
{
return
0.0255535
;
}
};
}
// end namespace
#endif
dumux/material/components/simpleh2orelativepressure.hh
0 → 100644
View file @
0431ae6d
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
* See the file COPYING for full copying permissions. *
* *
* This program is free software: you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation, either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
*****************************************************************************/
/*!
* \file
* \ingroup Components
* \brief A much simpler (and thus potentially less buggy) version of
* pure water.
*/
#ifndef DUMUX_SIMPLE_H2O_RELPRESS_HH
#define DUMUX_SIMPLE_H2O_RELPRESS_HH
#include
<dumux/material/idealgas.hh>
#include
"component.hh"
#include
<cmath>
namespace
Dumux
{
/*!
* \ingroup Components
*
* \brief A much simpler (and thus potentially less buggy) version of
* pure water.
*
* \tparam Scalar The type used for scalar values
*/
template
<
class
Scalar
>
class
SimpleH2ORelPress
:
public
Component
<
Scalar
,
SimpleH2ORelPress
<
Scalar
>
>
{
typedef
Dumux
::
IdealGas
<
Scalar
>
IdealGas
;
static
const
Scalar
R
;
// specific gas constant of water
public:
/*!
* \brief A human readable name for the water.
*/
static
std
::
string
name
()
{
return
"H2O"
;
}
/*!
* \brief The molar mass in \f$\mathrm{[kg/mol]}\f$ of water.
*/
static
Scalar
molarMass
()
{
return
18e-3
;
}
/*!
* \brief Returns the critical temperature \f$\mathrm{[K]}\f$ of water.
*/
static
Scalar
criticalTemperature
()
{
return
647.096
;
/* [K] */
}
/*!
* \brief Returns the critical pressure \f$\mathrm{[Pa]}\f$ of water.
*/
static
Scalar
criticalPressure
()
{
return
22.064e6
-
1e5
;
/* [N/m^2] */
}
/*!
* \brief Returns the temperature \f$\mathrm{[K]}\f$ at water's triple point.
*/
static
Scalar
tripleTemperature
()
{
return
273.16
;
/* [K] */
}
/*!
* \brief Returns the pressure \f$\mathrm{[Pa]}\f$ at water's triple point.
*/
static
Scalar
triplePressure
()
{
return
611.657
-
1e5
;
/* [N/m^2] */
}
/*!
* \brief The vapor pressure in \f$\mathrm{[Pa]}\f$ of pure water
* at a given temperature.
*
*\param T temperature of component in \f$\mathrm{[K]}\f$
*
* See:
*
* IAPWS: "Revised Release on the IAPWS Industrial Formulation
* 1997 for the Thermodynamic Properties of Water and Steam",
* http://www.iapws.org/relguide/IF97-Rev.pdf \cite IAPWS1997
*/
static
Scalar
vaporPressure
(
Scalar
T
)
{
if
(
T
>
criticalTemperature
())
return
criticalPressure
();
if
(
T
<
tripleTemperature
())
return
0
;
// water is solid: We don't take sublimation into account
static
const
Scalar
n
[
10
]
=
{
0.11670521452767e4
,
-
0.72421316703206e6
,
-
0.17073846940092e2
,
0.12020824702470e5
,
-
0.32325550322333e7
,
0.14915108613530e2
,
-
0.48232657361591e4
,
0.40511340542057e6
,
-
0.23855557567849
,
0.65017534844798e3
};
Scalar
sigma
=
T
+
n
[
8
]
/
(
T
-
n
[
9
]);
Scalar
A
=
(
sigma
+
n
[
0
])
*
sigma
+
n
[
1
];
Scalar
B
=
(
n
[
2
]
*
sigma
+
n
[
3
])
*
sigma
+
n
[
4
];
Scalar
C
=
(
n
[
5
]
*
sigma
+
n
[
6
])
*
sigma
+
n
[
7
];
using
std
::
sqrt
;
Scalar
tmp
=
Scalar
(
2.0
)
*
C
/
(
sqrt
(
B
*
B
-
Scalar
(
4.0
)
*
A
*
C
)
-
B
);
tmp
*=
tmp
;
tmp
*=
tmp
;
return
Scalar
(
1e6
)
*
tmp
-
1e5
;
}
/*!
* \brief Specific enthalpy of water steam \f$\mathrm{[J/kg]}\f$.
*
* \param temperature temperature of component in \f$\mathrm{[K]}\f$
* \param pressure pressure of component in \f$\mathrm{[Pa]}\f$
*/
static
const
Scalar
gasEnthalpy
(
Scalar
temperature
,
Scalar
pressure
)
{
return
1976
*
(
temperature
-
293.15
)
+
2.45e6
;
}
/*!
* \brief Specific enthalpy of liquid water \f$\mathrm{[J/kg]}\f$.
*
* \param temperature temperature of component in \f$\mathrm{[K]}\f$
* \param pressure pressure of component in \f$\mathrm{[Pa]}\f$
*/
static
const
Scalar
liquidEnthalpy
(
Scalar
temperature
,
Scalar
pressure
)
{
return
4180
*
(
temperature
-
293.15
);
}