diff --git a/test/freeflow/stokes/stokestestproblem.hh b/test/freeflow/stokes/stokestestproblem.hh index f04e695b06ca3e13d4474a50062597492e47f898..7ac84ef6eada4cfdf037b70d3d045b9f8f3608d9 100644 --- a/test/freeflow/stokes/stokestestproblem.hh +++ b/test/freeflow/stokes/stokestestproblem.hh @@ -80,11 +80,10 @@ SET_BOOL_PROP(StokesTestProblem, EnableGravity, false); * The domain is sized 1m times 1m. The boundary conditions for the momentum balances * are set to Dirichlet with outflow on the right boundary. The mass balance has * outflow bcs, which are replaced in the localresidual by the sum - * of the two momentum balances. In the middle of the right boundary, - * one vertex receives Dirichlet bcs to set the pressure level. + * of the momentum balance equations in case of Dirichlet bcs for the momentum balance. + * In the middle of the right boundary, one vertex receives Dirichlet bcs to set the pressure level. * * This problem uses the \ref BoxStokesModel. - * * To run the simulation execute the following line in shell: * <tt>./test_stokes -parameterFile ./test_stokes.input</tt> */ @@ -146,7 +145,7 @@ public: * This problem assumes a constant temperature of 10 degrees Celsius. */ Scalar boxTemperature(const Element &element, - const FVElementGeometry &fvElemGeom, + const FVElementGeometry &fvGeometry, int scvIdx) const { return 273.15 + 10; // -> 10C @@ -159,14 +158,7 @@ public: */ // \{ - /*! - * \brief Specifies which kind of boundary condition should be - * used for which equation on a given boundary segment. - * - * \param values The boundary types for the conservation equations - * \param vertex The vertex on the boundary for which the - * conditions needs to be specified - */ + //! \copydoc BoxProblem::boundaryTypes() void boundaryTypes(BoundaryTypes &values, const Vertex &vertex) const { const GlobalPosition globalPos = vertex.geometry().center(); @@ -187,15 +179,7 @@ public: values.setDirichlet(massBalanceIdx); } - /*! - * \brief Evaluate the boundary conditions for a dirichlet - * control volume. - * - * \param values The dirichlet values for the primary variables - * \param vertex The vertex representing the "half volume on the boundary" - * - * For this method, the \a values parameter stores primary variables. - */ + //! \copydoc BoxProblem::dirichlet() void dirichlet(PrimaryVariables &values, const Vertex &vertex) const { const GlobalPosition globalPos = vertex.geometry().center(); @@ -212,15 +196,25 @@ public: * \brief Evaluate the boundary conditions for a neumann * boundary segment. * + * + * \param values The neumann values for the conservation equations + * \param element The finite element + * \param fvGeometry The finite-volume geometry in the box scheme + * \param is The intersection between element and boundary + * \param scvIdx The local vertex index + * \param boundaryFaceIdx The index of the boundary face + * * For this method, the \a values parameter stores the mass flux * in normal direction of each phase. Negative values mean influx. * * A NEUMANN condition for the Stokes equation corresponds to: * \f[ -\mu \nabla {\bf v} \cdot {\bf n} + p \cdot {\bf n} = q_N \f] + * + * */ void neumann(PrimaryVariables &values, const Element &element, - const FVElementGeometry &fvElemGeom, + const FVElementGeometry &fvGeometry, const Intersection &is, int scvIdx, int boundaryFaceIdx) const @@ -234,17 +228,10 @@ public: */ // \{ - /*! - * \brief Evaluate the source term for all phases within a given - * sub-control-volume. - * - * For this method, the \a values parameter stores the rate mass - * generated or annihilate per volume unit. Positive values mean - * that mass is created, negative ones mean that it vanishes. - */ + //! \copydoc BoxProblem::source() void source(PrimaryVariables &values, const Element &element, - const FVElementGeometry &, + const FVElementGeometry &fvGeometry, int subControlVolumeIdx) const { // ATTENTION: The source term of the mass balance has to be chosen as @@ -252,15 +239,10 @@ public: values = Scalar(0.0); } - /*! - * \brief Evaluate the initial value for a control volume. - * - * For this method, the \a values parameter stores primary - * variables. - */ + //! \copydoc BoxProblem::initial() void initial(PrimaryVariables &values, const Element &element, - const FVElementGeometry &fvElemGeom, + const FVElementGeometry &fvGeometry, int scvIdx) const { const GlobalPosition &globalPos = element.geometry().corner(scvIdx); diff --git a/test/freeflow/stokes2c/stokes2ctestproblem.hh b/test/freeflow/stokes2c/stokes2ctestproblem.hh index 57a6578aab58838c188d221acb0ae293a8ccb35f..2aafa59bdeda5b8c9d95adddeb5bfa98dc7a3250 100644 --- a/test/freeflow/stokes2c/stokes2ctestproblem.hh +++ b/test/freeflow/stokes2c/stokes2ctestproblem.hh @@ -18,7 +18,7 @@ *****************************************************************************/ /** * @file - * @brief Definition of a simple Stokes problem + * @brief Definition of a simple two-component Stokes problem */ #ifndef DUMUX_STOKES2CTESTPROBLEM_HH #define DUMUX_STOKES2CTESTPROBLEM_HH @@ -72,21 +72,19 @@ SET_BOOL_PROP(Stokes2cTestProblem, EnableGravity, false); /*! * \ingroup BoxStokes2cModel * \ingroup BoxTestProblems - * \brief Stokes transport problem with air flowing - * from the left to the right. + * \brief Stokes transport problem with dryer air flowing + * from the top to the bottom. * - * The domain is sized 1m times 1m. The boundary conditions for the momentum balances - * are all set to Dirichlet. The mass balance receives - * outflow bcs, which are replaced in the localresidual by the sum - * of the two momentum balances. In the middle of the right boundary, - * one vertex receives Dirichlet bcs, to set the pressure level. + * The domain is sized 1m times 1m. Dry air enters the domain from the top boundary + * and is transported downwards. The boundary conditions for the momentum balance + * and the component transport equation are all set to Dirichlet, except on the lower + * boundary, where outflow conditions are set. The mass balance receives + * outflow bcs everywhere, which are replaced in the localresidual by the sum + * of the momentum balance equations in case of Dirichlet bcs for the momentum balance. + * In the middle of the lower boundary one vertex receives Dirichlet bcs, to set the pressure level. * * This problem uses the \ref BoxStokes2cModel. - * - * This problem is non-stationary and can be simulated until \f$t_{\text{end}} = - * 1e5\;s\f$ is reached. A good choice for the initial time step size - * is \f$t_{\text{inital}} = 1\;s\f$. - * To run the simulation execute the following line in shell: + * To run the simulation execute the following line in a shell: * <tt>./test_stokes2c -parameterFile ./test_stokes2c.input</tt> */ template <class TypeTag> @@ -155,7 +153,7 @@ public: * This problem assumes a temperature of 10 degrees Celsius. */ Scalar boxTemperature(const Element &element, - const FVElementGeometry &fvElemGeom, + const FVElementGeometry &fvGeometry, int scvIdx) const { return 273.15 + 10; // -> 10 @@ -168,14 +166,7 @@ public: */ // \{ - /*! - * \brief Specifies which kind of boundary condition should be - * used for which equation on a given boundary segment. - * - * \param values The boundary types for the conservation equations - * \param vertex The vertex on the boundary for which the - * conditions needs to be specified - */ + //! \copydoc BoxProblem::boundaryTypes() void boundaryTypes(BoundaryTypes &values, const Vertex &vertex) const { const GlobalPosition globalPos = vertex.geometry().center(); @@ -196,15 +187,7 @@ public: values.setDirichlet(massBalanceIdx); } - /*! - * \brief Evaluate the boundary conditions for a dirichlet - * control volume. - * - * \param values The dirichlet values for the primary variables - * \param vertex The vertex representing the "half volume on the boundary" - * - * For this method, the \a values parameter stores primary variables. - */ + //! \copydoc BoxProblem::dirichlet() void dirichlet(PrimaryVariables &values, const Vertex &vertex) const { const GlobalPosition globalPos = vertex.geometry().center(); @@ -216,16 +199,10 @@ public: } } - /*! - * \brief Evaluate the boundary conditions for a neumann - * boundary segment. - * - * For this method, the \a values parameter stores the mass flux - * in normal direction of each phase. Negative values mean influx. - */ + //! \copydoc BoxProblem::neumann() void neumann(PrimaryVariables &values, const Element &element, - const FVElementGeometry &fvElemGeom, + const FVElementGeometry &fvGeometry, const Intersection &is, int scvIdx, int boundaryFaceIdx) const @@ -239,17 +216,10 @@ public: */ // \{ - /*! - * \brief Evaluate the source term for all phases within a given - * sub-control-volume. - * - * For this method, the \a values parameter stores the rate mass - * generated or annihilate per volume unit. Positive values mean - * that mass is created, negative ones mean that it vanishes. - */ + //! \copydoc BoxProblem::source() void source(PrimaryVariables &values, const Element &element, - const FVElementGeometry &, + const FVElementGeometry &fvGeometry, int subControlVolumeIdx) const { // ATTENTION: The source term of the mass balance has to be chosen as @@ -257,15 +227,10 @@ public: values = Scalar(0.0); } - /*! - * \brief Evaluate the initial value for a control volume. - * - * For this method, the \a values parameter stores primary - * variables. - */ + //! \copydoc BoxProblem::initial() void initial(PrimaryVariables &values, const Element &element, - const FVElementGeometry &fvElemGeom, + const FVElementGeometry &fvGeometry, int scvIdx) const { const GlobalPosition &globalPos = element.geometry().corner(scvIdx);