From 18f9a7a8c788fcc4246e4337cf1dacc1aeebef03 Mon Sep 17 00:00:00 2001 From: Katharina Heck <katharina.heck@iws.uni-stuttgart.de> Date: Thu, 29 Oct 2020 10:10:45 +0100 Subject: [PATCH] [docu][rans] update model descriptions --- dumux/freeflow/rans/oneeq/model.hh | 12 ++++----- dumux/freeflow/rans/twoeq/kepsilon/model.hh | 24 ++++++++--------- dumux/freeflow/rans/twoeq/komega/model.hh | 24 ++++++++--------- .../rans/twoeq/lowrekepsilon/model.hh | 26 +++++++++---------- 4 files changed, 43 insertions(+), 43 deletions(-) diff --git a/dumux/freeflow/rans/oneeq/model.hh b/dumux/freeflow/rans/oneeq/model.hh index 97160c26a1..06e5f75e7f 100644 --- a/dumux/freeflow/rans/oneeq/model.hh +++ b/dumux/freeflow/rans/oneeq/model.hh @@ -36,12 +36,12 @@ * term which account for the transition or trip, is dropped from the original equations, * such that the balance equation simplifies to: * \f[ - * \frac{\partial \tilde{\nu}}{\partial t} - * + \nabla \cdot \left( \tilde{\nu} \textbf{v} \right) - * - c_\text{b1} \tilde{S} \tilde{\nu} - * - \frac{1}{\sigma_{\tilde{\nu}}} \nabla \cdot \left( \left[ \nu + \tilde{\nu} \right] \nabla \tilde{\nu} \right) - * - \frac{c_\text{b2}}{\sigma_{\tilde{\nu}}} \left| \nabla \tilde{\nu} \right|^2 - * + c_\text{w1} f_\text{w} \frac{\tilde{\nu}^2}{y^2} + * \frac{\partial \tilde{\nu}\varrho}{\partial t} + * + \nabla \cdot \left( \tilde{\nu} \varrho \textbf{v} \right) + * - c_\text{b1} \tilde{S} \tilde{\nu} \varrho + * - \frac{1}{\sigma_{\tilde{\nu}}} \nabla \cdot \left( \left[ \mu + \tilde{\nu} \varrho \right] \nabla \tilde{\nu} \right) + * - \frac{c_\text{b2}}{\sigma_{\tilde{\nu}}} \varrho \left| \nabla \tilde{\nu} \right|^2 + * + c_\text{w1} f_\text{w} \varrho \frac{\tilde{\nu}^2}{y^2} * = 0 * \f] * diff --git a/dumux/freeflow/rans/twoeq/kepsilon/model.hh b/dumux/freeflow/rans/twoeq/kepsilon/model.hh index 6d87a2f9fc..e33a6720ae 100644 --- a/dumux/freeflow/rans/twoeq/kepsilon/model.hh +++ b/dumux/freeflow/rans/twoeq/kepsilon/model.hh @@ -31,27 +31,27 @@ * * The turbulent kinetic energy balance is: * \f[ - * \frac{\partial \left( k \right)}{\partial t} - * + \nabla \cdot \left( \textbf{v} k \right) - * - \nabla \cdot \left( \left( \nu + \frac{\nu_\text{t}}{\sigma_\text{k}} \right) \nabla k \right) - * - 2 \nu_\text{t} \textbf{S} \cdot \textbf{S} - * + \varepsilon + * \frac{\partial \left( \varrho k \right)}{\partial t} + * + \nabla \cdot \left( \textbf{v} \varhho k \right) + * - \nabla \cdot \left( \left( \mu + \frac{\mu_\text{t}}{\sigma_\text{k}} \right) \nabla k \right) + * - 2 \mu_\text{t} \textbf{S} \cdot \textbf{S} + * + \varrho \varepsilon * = 0 * \f]. * * The dissipation balance is: * \f[ - * \frac{\partial \left( \varepsilon \right)}{\partial t} - * + \nabla \cdot \left( \textbf{v} \varepsilon \right) - * - \nabla \cdot \left( \left( \nu + \frac{\nu_\text{t}}{\sigma_{\varepsilon}} \right) \nabla \varepsilon \right) - * - C_{1\varepsilon} \frac{\varepsilon}{k} 2 \nu_\text{t} \textbf{S} \cdot \textbf{S} - * + C_{2\varepsilon} \frac{\varepsilon^2}{k} + * \frac{\partial \left( \varrho \varepsilon \right)}{\partial t} + * + \nabla \cdot \left( \textbf{v} \varrho \varepsilon \right) + * - \nabla \cdot \left( \left( \mu + \frac{\mu_\text{t}}{\sigma_{\varepsilon}} \right) \nabla \varepsilon \right) + * - C_{1\varepsilon} \frac{\varepsilon}{k} 2 \mu_\text{t} \textbf{S} \cdot \textbf{S} + * + C_{2\varepsilon} \varrho \frac{\varepsilon^2}{k} * = 0 * \f]. * - * The kinematic eddy viscosity \f$ \nu_\text{t} \f$ is: + * The dynamic eddy viscosity \f$ \mu_\text{t} \f$ is: * \f[ - * \nu_\text{t} = C_\mu \frac{k^2}{\tilde{\varepsilon}} + * \mu_\text{t} = \varrho C_\mu \frac{k^2}{\tilde{\varepsilon}} * \f]. * * Finally, the model is closed with the following constants: diff --git a/dumux/freeflow/rans/twoeq/komega/model.hh b/dumux/freeflow/rans/twoeq/komega/model.hh index eb404167da..4c3e95b783 100644 --- a/dumux/freeflow/rans/twoeq/komega/model.hh +++ b/dumux/freeflow/rans/twoeq/komega/model.hh @@ -30,33 +30,33 @@ * * Turbulent Kinetic Energy balance: * \f[ - * \frac{\partial \left( k \right)}{\partial t} - * + \nabla \cdot \left( \mathbf{v} k \right) - * - \nabla \cdot \left[ \left( \nu + \sigma_\textrm{k} \nu_\textrm{t} \right) \nabla k \right] + * \frac{\partial \left( \varrho k \right)}{\partial t} + * + \nabla \cdot \left( \mathbf{v} \varrho k \right) + * - \nabla \cdot \left[ \left( \mu + \sigma_\textrm{k} \mu_\textrm{t} \right) \nabla k \right] * - P - * + \beta_k^{*} k \omega + * + \beta_k^{*} k \varrho \omega * = 0 * \f] - * with \f$ P = 2 \nu_\textrm{t} \mathbf{S} \cdot \mathbf{S} \f$ + * with \f$ P = 2 \mu_\textrm{t} \mathbf{S} \cdot \mathbf{S} \f$ * and \f$ S_{ij} = \frac{1}{2} \left[ \frac{\partial}{\partial x_i} v_j + \frac{\partial}{\partial x_j} v_i \right] \f$ * based on \f$ a_{ij} \cdot b_{ij} = \sum_{i,j} a_{ij} b_{ij} \f$. * * Dissipation balance: * \f[ - * \frac{\partial \left( \omega \right)}{\partial t} - * + \nabla \cdot \left( \mathbf{v} \omega \right) - * - \nabla \cdot \left[ \left( \nu + \sigma_{\omega} \nu_\textrm{t} \right) \nabla \omega \right] + * \frac{\partial \left( \varrho \omega \right)}{\partial t} + * + \nabla \cdot \left( \mathbf{v} \varrho \omega \right) + * - \nabla \cdot \left[ \left( \mu + \sigma_{\omega} \mu_\textrm{t} \right) \nabla \omega \right] * - \alpha \frac{\omega}{k} P * + \beta_{\omega} \omega^2 - * - \frac{\sigma_d}{\omega} \nabla k \nabla \omega + * - \varrho \frac{\sigma_d}{\omega} \nabla k \nabla \omega * = 0 * \f] * - * The kinematic eddy viscosity \f$ \nu_\textrm{t} \f$ is calculated as follows: - * \f[ \nu_\textrm{t} = \frac{k}{\tilde{\omega}} \f] + * The dynamic eddy viscosity \f$ \mu_\textrm{t} \f$ is calculated as follows: + * \f[ \mu_\textrm{t} = \varrho \frac{k}{\tilde{\omega}} \f] * * With a limited dissipation: - * \f[ \tilde{\omega} = \textrm{max} \left\{ \omega, 0.875 \sqrt{\frac{P}{\nu_\textrm{t} \beta_\textrm{k}}} \right\} \f] + * \f[ \tilde{\omega} = \textrm{max} \left\{ \omega, 0.875 \sqrt{\frac{P}{\mu_\textrm{t} \beta_\textrm{k}}} \right\} \f] * * And a cross-diffusion coefficient \f$ \sigma_\textrm{d} \f$ * \f[ diff --git a/dumux/freeflow/rans/twoeq/lowrekepsilon/model.hh b/dumux/freeflow/rans/twoeq/lowrekepsilon/model.hh index 79da934562..7365c59d80 100644 --- a/dumux/freeflow/rans/twoeq/lowrekepsilon/model.hh +++ b/dumux/freeflow/rans/twoeq/lowrekepsilon/model.hh @@ -34,30 +34,30 @@ * \f$ \varepsilon = \tilde{\varepsilon} + D_\varepsilon \f$: * * \f[ - * \frac{\partial \left( k \right)}{\partial t} - * + \nabla \cdot \left( \textbf{v} k \right) - * - \nabla \cdot \left( \left( \nu + \frac{\nu_\text{t}}{\sigma_\text{k}} \right) \nabla k \right) - * - 2 \nu_\text{t} \textbf{S} \cdot \textbf{S} - * + \tilde{\varepsilon} - * + D_\varepsilon + * \frac{\partial \left( \varrho k \right)}{\partial t} + * + \nabla \cdot \left( \textbf{v} \varhho k \right) + * - \nabla \cdot \left( \left( \mu + \frac{\mu_\text{t}}{\sigma_\text{k}} \right) \nabla k \right) + * - 2 \mu_\text{t} \textbf{S} \cdot \textbf{S} + * + \varrho \tilde{\varepsilon} + * + D_\varepsilon \varrho * = 0 * \f]. * * The dissipation balance is changed by introducing additional functions * (\f$ E_\text{k}\f$, \f$ f_1 \f$, and \f$ f_2 \f$) to account for a dampening towards the wall: * \f[ - * \frac{\partial \left( \tilde{\varepsilon} \right)}{\partial t} - * + \nabla \cdot \left( \textbf{v} \tilde{\varepsilon} \right) - * - \nabla \cdot \left( \left( \nu + \frac{\nu_\text{t}}{\sigma_{\varepsilon}} \right) \nabla \tilde{\varepsilon} \right) - * - C_{1\tilde{\varepsilon}} f_1 \frac{\tilde{\varepsilon}}{k} 2 \nu_\text{t} \textbf{S} \cdot \textbf{S} - * + C_{2\tilde{\varepsilon}} f_2 \frac{\tilde{\varepsilon}^2}{k} - * - E_\text{k} + * \frac{\partial \left( \varrho \tilde{\varepsilon} \right)}{\partial t} + * + \nabla \cdot \left( \textbf{v} \varrho \tilde{\varepsilon} \right) + * - \nabla \cdot \left( \left( \mu + \frac{\mu_\text{t}}{\sigma_{\varepsilon}} \right) \nabla \tilde{\varepsilon} \right) + * - C_{1\tilde{\varepsilon}} f_1 \frac{\tilde{\varepsilon}}{k} 2 \mu_\text{t} \textbf{S} \cdot \textbf{S} + * + C_{2\tilde{\varepsilon}} \varrho f_2 \frac{\tilde{\varepsilon}^2}{k} + * - E_\text{k} \varrho * = 0 * \f]. * * The kinematic eddy viscosity \f$ \nu_\text{t} \f$ is dampened by \f$ f_\mu \f$: * \f[ - * \nu_\text{t} = C_\mu f_\mu \frac{k^2}{\tilde{\varepsilon}} + * \mu_\text{t} = \varrho C_\mu f_\mu \frac{k^2}{\tilde{\varepsilon}} * \f]. * * The auxiliary and dampening functions are defined as: -- GitLab