diff --git a/examples/freeflowchannel/README.md b/examples/freeflowchannel/README.md index eb948e3b316bea4e80811d6d89821bf451ab4d9e..e1c739d58f8bf7278c9a37322ec0ef028aaff5d5 100644 --- a/examples/freeflowchannel/README.md +++ b/examples/freeflowchannel/README.md @@ -10,7 +10,7 @@ This example contains a stationary free flow of a fluid through two parallel sol ## Model description The Stokes model without gravitation and without sources or sinks for a stationary, incompressible, laminar, single phase, one-component, isothermal ($`T=10^\circ C`$) flow is considered assuming a Newtonian fluid of constant density $` \varrho = 1~\frac{\text{kg}}{\text{m}^3} `$ and constant kinematic viscosity $` \nu = 1~\frac{\text{m}^2}{\text{s}} `$. The momentum balance ```math -\nabla \cdot (\varrho\boldsymbol{u} \boldsymbol{u}^{\text{T}}) - \nabla\cdot\left(\mu\left(\nabla\boldsymbol{u}+\nabla\boldsymbol{u}^{\text{T}}\right)\right)+ \nabla p = 0 +- \nabla\cdot\left(\mu\left(\nabla\boldsymbol{u}+\nabla\boldsymbol{u}^{\text{T}}\right)\right)+ \nabla p = 0 ``` with density $`\varrho`$, velocity $`\boldsymbol{u}`$, dynamic viscosity $`\mu=\varrho\nu`$ and pressure $`p`$ and the mass balance ```math diff --git a/examples/freeflowchannel/doc/intro.md b/examples/freeflowchannel/doc/intro.md index 7c60c0742b3c588be6cf683b0a3b2021d4d7007b..682e9dab3dcadf96b2d4742ed3c706d1f5fe317a 100644 --- a/examples/freeflowchannel/doc/intro.md +++ b/examples/freeflowchannel/doc/intro.md @@ -10,7 +10,7 @@ This example contains a stationary free flow of a fluid through two parallel sol ## Model description The Stokes model without gravitation and without sources or sinks for a stationary, incompressible, laminar, single phase, one-component, isothermal ($`T=10^\circ C`$) flow is considered assuming a Newtonian fluid of constant density $` \varrho = 1~\frac{\text{kg}}{\text{m}^3} `$ and constant kinematic viscosity $` \nu = 1~\frac{\text{m}^2}{\text{s}} `$. The momentum balance ```math -\nabla \cdot (\varrho\boldsymbol{u} \boldsymbol{u}^{\text{T}}) - \nabla\cdot\left(\mu\left(\nabla\boldsymbol{u}+\nabla\boldsymbol{u}^{\text{T}}\right)\right)+ \nabla p = 0 +- \nabla\cdot\left(\mu\left(\nabla\boldsymbol{u}+\nabla\boldsymbol{u}^{\text{T}}\right)\right)+ \nabla p = 0 ``` with density $`\varrho`$, velocity $`\boldsymbol{u}`$, dynamic viscosity $`\mu=\varrho\nu`$ and pressure $`p`$ and the mass balance ```math