From 19f2c89fefae28ba0e9f8e37c1dfe9ad92d5c8f4 Mon Sep 17 00:00:00 2001 From: melaniel <melanie.lipp@iws.uni-stuttgart.de> Date: Thu, 13 Feb 2020 09:07:20 +0100 Subject: [PATCH] [example][freeflowchannel] Stokes not Navier Stokes. --- examples/freeflowchannel/README.md | 2 +- examples/freeflowchannel/doc/intro.md | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/examples/freeflowchannel/README.md b/examples/freeflowchannel/README.md index eb948e3b31..e1c739d58f 100644 --- a/examples/freeflowchannel/README.md +++ b/examples/freeflowchannel/README.md @@ -10,7 +10,7 @@ This example contains a stationary free flow of a fluid through two parallel sol ## Model description The Stokes model without gravitation and without sources or sinks for a stationary, incompressible, laminar, single phase, one-component, isothermal ($`T=10^\circ C`$) flow is considered assuming a Newtonian fluid of constant density $` \varrho = 1~\frac{\text{kg}}{\text{m}^3} `$ and constant kinematic viscosity $` \nu = 1~\frac{\text{m}^2}{\text{s}} `$. The momentum balance ```math -\nabla \cdot (\varrho\boldsymbol{u} \boldsymbol{u}^{\text{T}}) - \nabla\cdot\left(\mu\left(\nabla\boldsymbol{u}+\nabla\boldsymbol{u}^{\text{T}}\right)\right)+ \nabla p = 0 +- \nabla\cdot\left(\mu\left(\nabla\boldsymbol{u}+\nabla\boldsymbol{u}^{\text{T}}\right)\right)+ \nabla p = 0 ``` with density $`\varrho`$, velocity $`\boldsymbol{u}`$, dynamic viscosity $`\mu=\varrho\nu`$ and pressure $`p`$ and the mass balance ```math diff --git a/examples/freeflowchannel/doc/intro.md b/examples/freeflowchannel/doc/intro.md index 7c60c0742b..682e9dab3d 100644 --- a/examples/freeflowchannel/doc/intro.md +++ b/examples/freeflowchannel/doc/intro.md @@ -10,7 +10,7 @@ This example contains a stationary free flow of a fluid through two parallel sol ## Model description The Stokes model without gravitation and without sources or sinks for a stationary, incompressible, laminar, single phase, one-component, isothermal ($`T=10^\circ C`$) flow is considered assuming a Newtonian fluid of constant density $` \varrho = 1~\frac{\text{kg}}{\text{m}^3} `$ and constant kinematic viscosity $` \nu = 1~\frac{\text{m}^2}{\text{s}} `$. The momentum balance ```math -\nabla \cdot (\varrho\boldsymbol{u} \boldsymbol{u}^{\text{T}}) - \nabla\cdot\left(\mu\left(\nabla\boldsymbol{u}+\nabla\boldsymbol{u}^{\text{T}}\right)\right)+ \nabla p = 0 +- \nabla\cdot\left(\mu\left(\nabla\boldsymbol{u}+\nabla\boldsymbol{u}^{\text{T}}\right)\right)+ \nabla p = 0 ``` with density $`\varrho`$, velocity $`\boldsymbol{u}`$, dynamic viscosity $`\mu=\varrho\nu`$ and pressure $`p`$ and the mass balance ```math -- GitLab