diff --git a/dumux/boxmodels/1p/1pmodel.hh b/dumux/boxmodels/1p/1pmodel.hh
index 3f6ddc90c41b224f4d2fac40ba90f03b387d1f30..7c15dfa9f0225baddf8054174156a29e75d6da84 100644
--- a/dumux/boxmodels/1p/1pmodel.hh
+++ b/dumux/boxmodels/1p/1pmodel.hh
@@ -40,14 +40,13 @@ namespace Dumux
 {
 /*!
  * \ingroup OnePBoxModel
- * \brief Adaption of the BOX scheme to the single phase isothermal flow model.
+ * \brief Adaption of the BOX scheme to the single-phase isothermal flow model.
  *
- * Single phase compressible isothermal flow model,
+ * Single-phase compressible isothermal flow model,
  * \f{align*}
- * \phi \frac{\partial \varrho}{\partial t} + \vec{\nabla} \cdot (- \varrho \frac{\bar{\bar{K}}}{\mu} ( \nabla p -\varrho \vec{g})) = q,
+ * \phi \frac{\partial \varrho}{\partial t} + \text{div} (- \varrho \frac{\textbf K}{\mu} ( \text{grad}\, p -\varrho {\textbf g})) = q,
  * \f}
- * discretized using a vertex
- * centered finite volume (box) scheme as spatial and
+ * discretized using a vertex-centered finite volume (box) scheme as spatial and
  * the implicit Euler method as time discretization.
  * Of course, the model can also be used for incompressible
  * single phase flow modeling, if a fluid with constant density is chosen in the problem file.
diff --git a/dumux/boxmodels/1p2c/1p2cmodel.hh b/dumux/boxmodels/1p2c/1p2cmodel.hh
index bc56bf2c68760a3b352be828b9fbda65100ff5d9..f18c9b73d7586f3a08d4bef1eca501aed7164d05 100644
--- a/dumux/boxmodels/1p2c/1p2cmodel.hh
+++ b/dumux/boxmodels/1p2c/1p2cmodel.hh
@@ -49,26 +49,26 @@ namespace Dumux
  * using a standard Darcy
  * approach as the equation for the conservation of momentum:
  \f[
- v_{D} = - \frac{K}{\mu}
- \left(\text{grad} p - \varrho g \right)
+ v_{D} = - \frac{\textbf K}{\mu}
+ \left(\text{grad} p - \varrho {\textbf g} \right)
  \f]
  *
  * Gravity can be enabled or disabled via the property system.
  * By inserting this into the continuity equation, one gets
  \f[
  \Phi \frac{\partial \varrho}{\partial t} - \text{div} \left\{
-   \varrho \frac{K}{\mu}  \left(\text{grad} p - \varrho g \right)
+   \varrho \frac{\textbf K}{\mu}  \left(\text{grad}\, p - \varrho {\textbf g} \right)
  \right\} = q \;,
  \f]
  *
  * The transport of the components is described by the following equation:
  \f[
- \Phi \frac{ \partial \varrho}{\partial t} - \text{div} \left( \varrho \frac{K x}{\mu} \left( \text{grad} p -
- \varrho g \right) + \varrho \tau \Phi D \text{grad} x \right) = q.
+ \Phi \frac{ \partial \varrho x}{\partial t} - \text{div} \left( \varrho \frac{{\textbf K} x}{\mu} \left( \text{grad}\, p -
+ \varrho {\textbf g} \right) + \varrho \tau \Phi D \text{grad} x \right) = q.
  \f]
  *
- * All equations are discretized using a fully-coupled vertex
- * centered finite volume (box) scheme as spatial and
+ * All equations are discretized using a fully-coupled vertex-centered
+ * finite volume (box) scheme as spatial and
  * the implicit Euler method as time discretization.
  *
  * The primary variables are the pressure \f$p\f$ and the mole or mass fraction of dissolved component \f$x\f$.
diff --git a/dumux/boxmodels/2p/2pmodel.hh b/dumux/boxmodels/2p/2pmodel.hh
index 6e68d8e4e183d235475c56e565e7a29547767074..c85084449da779e9f2bd868ea9e29cd5ce1d401e 100644
--- a/dumux/boxmodels/2p/2pmodel.hh
+++ b/dumux/boxmodels/2p/2pmodel.hh
@@ -45,8 +45,8 @@ namespace Dumux
  * \f$\alpha \in \{ w, n \}\f$ using a standard multiphase Darcy
  * approach as the equation for the conservation of momentum:
  \f[
- v_\alpha = - \frac{k_{r\alpha}}{\mu_\alpha} \mbox{\bf K}
- \left(\text{grad} p_\alpha - \varrho_{\alpha} \mbox{\bf g} \right)
+ v_\alpha = - \frac{k_{r\alpha}}{\mu_\alpha} \textbf K}
+ \left(\text{grad}\, p_\alpha - \varrho_{\alpha} {\textbf g} \right)
  \f]
  *
  * By inserting this into the equation for the conservation of the
diff --git a/dumux/boxmodels/2p2c/2p2cmodel.hh b/dumux/boxmodels/2p2c/2p2cmodel.hh
index b2f0cdf80520005e0adfdf4fde746c222e253180..ebd74dd92a87d30dd0bbc2038bb3cc7a05cd0a63 100644
--- a/dumux/boxmodels/2p2c/2p2cmodel.hh
+++ b/dumux/boxmodels/2p2c/2p2cmodel.hh
@@ -55,7 +55,7 @@ namespace Dumux
  \frac{k_{r\alpha}}{\mu_\alpha} \mbox{\bf K}
  (\text{grad}\, p_\alpha - \varrho_{\alpha}  \mbox{\bf g}) \right\}
  \nonumber \\ \nonumber \\
- &-& \sum_\alpha \text{div} \left\{{\bf D_{\alpha, pm}^\kappa} \varrho_{\alpha} \text{grad}\, X^\kappa_{\alpha} \right\}
+ &-& \sum_\alpha \text{div} \left\{{\bf D}_{\alpha, pm}^\kappa \varrho_{\alpha} \text{grad}\, X^\kappa_{\alpha} \right\}
  - \sum_\alpha q_\alpha^\kappa = 0 \qquad \kappa \in \{w, a\} \, ,
  \alpha \in \{w, g\}
  \f}
diff --git a/dumux/boxmodels/2p2cni/2p2cnimodel.hh b/dumux/boxmodels/2p2cni/2p2cnimodel.hh
index 2f551b8fb18a8f4def11560643aa9d8e5991d48c..ad8891db35955af7443675f5c49ed803f89fb0ae 100644
--- a/dumux/boxmodels/2p2cni/2p2cnimodel.hh
+++ b/dumux/boxmodels/2p2cni/2p2cnimodel.hh
@@ -47,7 +47,7 @@ namespace Dumux {
     - \sum_\alpha \text{div} \left\{ \varrho_\alpha X_\alpha^\kappa
     \frac{k_{r\alpha}}{\mu_\alpha} \mbox{\bf K}
     (\text{grad}\, p_\alpha - \varrho_{\alpha} \mbox{\bf g}) \right\}\\
-    &-& \sum_\alpha \text{div} \left\{{\bf D_{\alpha, pm}^\kappa} \varrho_{\alpha} \text{grad}\, X^\kappa_{\alpha} \right\}
+    &-& \sum_\alpha \text{div} \left\{{\bf D}_{\alpha, pm}^\kappa \varrho_{\alpha} \text{grad}\, X^\kappa_{\alpha} \right\}
     - \sum_\alpha q_\alpha^\kappa = 0 \qquad \kappa \in \{w, a\} \, ,
     \alpha \in \{w, n\}
  *     \f}
diff --git a/dumux/boxmodels/3p3c/3p3cmodel.hh b/dumux/boxmodels/3p3c/3p3cmodel.hh
index 0d41f8b3e98b55a2de29490daf31a9bdb51b322c..3ba9de566f9cab4e08e12e205d022567ed975891 100644
--- a/dumux/boxmodels/3p3c/3p3cmodel.hh
+++ b/dumux/boxmodels/3p3c/3p3cmodel.hh
@@ -59,13 +59,13 @@ namespace Dumux
  * \f{eqnarray}
  && \phi \frac{\partial (\sum_\alpha \varrho_{\text{mol}, \alpha} x_\alpha^\kappa
  S_\alpha )}{\partial t}
- - \sum\limits_\alpha \nabla \cdot \left\{ \frac{k_{r\alpha}}{\mu_\alpha}
+ - \sum\limits_\alpha \text{div} \left\{ \frac{k_{r\alpha}}{\mu_\alpha}
  \varrho_{\text{mol}, \alpha} x_\alpha^\kappa \mbox{\bf K}
- (\nabla p_\alpha - \varrho_{\text{mass}, \alpha} \mbox{\bf g}) \right\}
+ (\text{grad}\, p_\alpha - \varrho_{\text{mass}, \alpha} \mbox{\bf g}) \right\}
  \nonumber \\
  \nonumber \\
- && - \sum\limits_\alpha \nabla \cdot \left\{ D_{pm}^\kappa \varrho_{\text{mol},
- \alpha } \nabla x_\alpha^\kappa \right\}
+ && - \sum\limits_\alpha \text{div} \left\{ D_{pm}^\kappa \varrho_{\text{mol},
+ \alpha } \text{grad}\, x_\alpha^\kappa \right\}
  - q^\kappa = 0 \qquad \forall \kappa , \; \forall \alpha
  \f}
  *
diff --git a/dumux/boxmodels/3p3cni/3p3cnimodel.hh b/dumux/boxmodels/3p3cni/3p3cnimodel.hh
index 233712bd74a76fb31ccffc9fd8cf7926b73b36c2..d5a701dda565bd0654c4d9fc619f7f158149dba5 100644
--- a/dumux/boxmodels/3p3cni/3p3cnimodel.hh
+++ b/dumux/boxmodels/3p3cni/3p3cnimodel.hh
@@ -52,13 +52,13 @@ namespace Dumux {
  * \f{eqnarray*}
  && \phi \frac{\partial (\sum_\alpha \varrho_{\text{mol}, \alpha} x_\alpha^\kappa
  S_\alpha )}{\partial t}
- - \sum\limits_\alpha \nabla \cdot \left\{ \frac{k_{r\alpha}}{\mu_\alpha}
+ - \sum\limits_\alpha \text{div} \left\{ \frac{k_{r\alpha}}{\mu_\alpha}
  \varrho_{\text{mol}, \alpha} x_\alpha^\kappa \mbox{\bf K}
- (\nabla p_\alpha - \varrho_{\text{mass}, \alpha} \mbox{\bf g}) \right\}
+ (\text{grad}\; p_\alpha - \varrho_{\text{mass}, \alpha} \mbox{\bf g}) \right\}
  \nonumber \\
  \nonumber \\
- && - \sum\limits_\alpha \nabla \cdot \left\{ D_{pm}^\kappa \varrho_{\text{mol},
- \alpha } \nabla x_\alpha^\kappa \right\}
+ && - \sum\limits_\alpha \text{div} \left\{ D_{pm}^\kappa \varrho_{\text{mol},
+ \alpha } \text{grad} \; x_\alpha^\kappa \right\}
  - q^\kappa = 0 \qquad \forall \kappa , \; \forall \alpha
  \f}
  *
diff --git a/dumux/boxmodels/richards/richardsmodel.hh b/dumux/boxmodels/richards/richardsmodel.hh
index df69183cae96b61857ac29d9326d443c062f299d..e31c2f9245828625678b6ee5cc474859ac962aac 100644
--- a/dumux/boxmodels/richards/richardsmodel.hh
+++ b/dumux/boxmodels/richards/richardsmodel.hh
@@ -48,9 +48,9 @@ namespace Dumux
  \f[
  \frac{\partial\;\phi S_\alpha \rho_\alpha}{\partial t}
  -
- \mathbf{div} \left\{
- \rho_\alpha \frac{k_{r\alpha}}{\mu_\alpha}\;K
- \mathbf{grad}\left[
+ \text{div} \left\{
+ \rho_\alpha \frac{k_{r\alpha}}{\mu_\alpha}\; {\textbf K}
+ \text{grad}\left[
  p_\alpha - g\rho_\alpha
  \right]
  \right\}