Commit 22fb403a authored by Kai Wendel's avatar Kai Wendel
Browse files

a few commentary corrections and TODOs to be done



Signed-off-by: Kai Wendel's avatarKai Wendel <kaiwendel90@googlemail.com>
parent dc001ff4
......@@ -39,7 +39,7 @@ class Air_Xylene
public:
/*!
* \brief Henry coefficient \f$\mathrm{[Pa]}\f$ for mesitylene in air.
* \param temperature the temperature \f$\mathrm{[K]}\f$
* \param temperature The temperature \f$\mathrm{[K]}\f$
*/
template <class Scalar>
static Scalar henry(Scalar temperature)
......@@ -51,8 +51,8 @@ public:
* \brief Binary diffusion coefficient \f$\mathrm{[m^2/s]}\f$ for air and xylene.
* method according to Wilke and Lee
* see W.J. Lyman, W.F. Reehl, D.H. Rosenblatt (1990) \cite lyman1990 <BR>
* \param temperature temperature in \f$\mathrm{[K]}\f$
* \param pressure pressure in \f$\mathrm{[Pa]}\f$
* \param temperature Temperature in \f$\mathrm{[K]}\f$
* \param pressure Pressure in \f$\mathrm{[Pa]}\f$
*
*/
template <class Scalar>
......@@ -92,13 +92,13 @@ public:
const Scalar D_ax = (B_*pow(temperature,1.5)*sqrt(Mr))
/(1e-5*pressure*pow(sigma_ax, 2.0)*Omega); // [cm^2/s]
return D_ax*1e-4; // [m^2/s]
return D_ax*1e-4; // [m^2/s]
}
/*!
* \brief Diffusion coefficient \f$\mathrm{[m^2/s]}\f$ for air and xylene in liquid water.
* \param temperature temperature in \f$\mathrm{[K]}\f$
* \param pressure pressure in \f$\mathrm{[Pa]}\f$
* \param temperature Temperature in \f$\mathrm{[K]}\f$
* \param pressure Pressure in \f$\mathrm{[Pa]}\f$
*
* \note Returns just an order of magnitude.
*/
......
......@@ -49,14 +49,14 @@ public:
* \brief Binary diffusion coefficient \f$\mathrm{[m^2/s]}\f$ of water in the CO2 phase.
*
* According to B. Xu et al. (2002) \cite xu2003 <BR>
* \param temperature the temperature \f$\mathrm{[K]}\f$
* \param pressure the phase pressure \f$\mathrm{[Pa]}\f$
* \param temperature The temperature \f$\mathrm{[K]}\f$
* \param pressure The phase pressure \f$\mathrm{[Pa]}\f$
*/
static Scalar gasDiffCoeff(Scalar temperature, Scalar pressure)
{
if(!hasParam("BinaryCoefficients.GasDiffCoeff")) //in case one might set that user-specific as e.g. in dumux-lecture/mm/convectivemixing
{
//Diffusion coefficient of water in the CO2 phase
// Diffusion coefficient of water in the CO2 phase
Scalar const PI=3.141593;
Scalar const k = 1.3806504e-23; // Boltzmann constant
Scalar const c = 4; // slip parameter, can vary between 4 (slip condition) and 6 (stick condition)
......@@ -64,22 +64,26 @@ public:
Scalar mu = CO2::gasViscosity(temperature, pressure); // CO2 viscosity
Scalar D = k / (c * PI * R_h) * (temperature / mu);
return D;
} else return getParam<Scalar>("BinaryCoefficients.GasDiffCoeff");
}
else
return getParam<Scalar>("BinaryCoefficients.GasDiffCoeff");
}
/*!
* \brief Binary diffusion coefficient \f$\mathrm{[m^2/s]}\f$ of CO2 in the brine phase.
*
* \param temperature the temperature \f$\mathrm{[K]}\f$
* \param pressure the phase pressure \f$\mathrm{[Pa]}\f$
* \param temperature The temperature \f$\mathrm{[K]}\f$
* \param pressure The phase pressure \f$\mathrm{[Pa]}\f$
*/
static Scalar liquidDiffCoeff(Scalar temperature, Scalar pressure)
{
//Diffusion coefficient of CO2 in the brine phase
// Diffusion coefficient of CO2 in the brine phase
if(!hasParam("BinaryCoefficients.LiquidDiffCoeff")) //in case one might set that user-specific as e.g. in dumux-lecture/mm/convectivemixing
{
return 2e-9;
} else return getParam<Scalar>("BinaryCoefficients.LiquidDiffCoeff");
}
else
return getParam<Scalar>("BinaryCoefficients.LiquidDiffCoeff");
}
/*!
......@@ -92,12 +96,12 @@ public:
* applying the activity coefficient expression of Duan and Sun (2003) \cite duan2003 <BR>
* and the correlations for pure water given in Spycher, Pruess and Ennis-King (2003) \cite spycher2003 <BR>
*
* \param temperature the temperature \f$\mathrm{[K]}\f$
* \param pg the gas phase pressure \f$\mathrm{[Pa]}\f$
* \param salinity the salinity \f$\mathrm{[kg \ NaCl / kg \ solution]}\f$
* \param knownPhaseIdx indicates which phases are present
* \param xlCO2 mole fraction of CO2 in brine \f$\mathrm{[mol/mol]}\f$
* \param ygH2O mole fraction of water in the gas phase \f$\mathrm{[mol/mol]}\f$
* \param temperature The temperature \f$\mathrm{[K]}\f$
* \param pg The gas phase pressure \f$\mathrm{[Pa]}\f$
* \param salinity The salinity \f$\mathrm{[kg \ NaCl / kg \ solution]}\f$
* \param knownPhaseIdx Indicates which phases are present
* \param xlCO2 Mole fraction of CO2 in brine \f$\mathrm{[mol/mol]}\f$
* \param ygH2O Mole fraction of water in the gas phase \f$\mathrm{[mol/mol]}\f$
*/
static void calculateMoleFractions(const Scalar temperature,
const Scalar pg,
......@@ -140,8 +144,8 @@ public:
* \brief Returns the fugacity coefficient of the CO2 component in a water-CO2 mixture
* (given in Spycher, Pruess and Ennis-King (2003) \cite spycher2003 )
*
* \param T the temperature \f$\mathrm{[K]}\f$
* \param pg the gas phase pressure \f$\mathrm{[Pa]}\f$
* \param T The temperature \f$\mathrm{[K]}\f$
* \param pg The gas phase pressure \f$\mathrm{[Pa]}\f$
*/
static Scalar fugacityCoefficientCO2(Scalar T, Scalar pg)
{
......@@ -168,8 +172,8 @@ public:
* \brief Returns the fugacity coefficient of the H2O component in a water-CO2 mixture
* (given in Spycher, Pruess and Ennis-King (2003) \cite spycher2003 )
*
* \param T the temperature \f$\mathrm{[K]}\f$
* \param pg the gas phase pressure \f$\mathrm{[Pa]}\f$
* \param T The temperature \f$\mathrm{[K]}\f$
* \param pg The gas phase pressure \f$\mathrm{[Pa]}\f$
*/
static Scalar fugacityCoefficientH2O(Scalar T, Scalar pg)
{
......@@ -197,7 +201,7 @@ public:
private:
/*!
* \brief Returns the molality of NaCl \f$\mathrm{[mol \ NaCl / kg \ water]}\f$ for a given mole fraction
* \param salinity the salinity \f$\mathrm{[kg \ NaCl / kg \ solution]}\f$
* \param salinity The salinity \f$\mathrm{[kg \ NaCl / kg \ solution]}\f$
*/
static Scalar salinityToMoleFrac_(Scalar salinity)
{
......@@ -214,7 +218,7 @@ private:
* \brief Returns the molality of NaCl \f$\mathrm{(mol \ NaCl / kg \ water)}\f$
* for a given mole fraction \f$\mathrm{(mol \ NaCl / mol\ solution)}\f$
*
* \param x_NaCl mole fraction of NaCL in brine \f$\mathrm{[mol/mol]}\f$
* \param x_NaCl Mole fraction of NaCL in brine \f$\mathrm{[mol/mol]}\f$
*/
static Scalar molFracToMolality_(Scalar x_NaCl)
{
......@@ -225,10 +229,10 @@ private:
/*!
* \brief Returns the equilibrium molality of CO2 \f$\mathrm{(mol \ CO2 / kg \ water)}\f$ for a
* CO2-water mixture at a given pressure and temperature
* CO2-water mixture at a given pressure and temperature
*
* \param temperature the temperature \f$\mathrm{[K]}\f$
* \param pg the gas phase pressure \f$\mathrm{[Pa]}\f$
* \param temperature The temperature \f$\mathrm{[K]}\f$
* \param pg The gas phase pressure \f$\mathrm{[Pa]}\f$
*/
static Scalar molalityCO2inPureWater_(Scalar temperature, Scalar pg)
{
......@@ -245,9 +249,9 @@ private:
* molal description. According to Duan and Sun (2003) \cite duan2003 <BR>
* given in Spycher and Pruess (2005) \cite spycher2005 <BR>
*
* \param temperature the temperature \f$\mathrm{[K]}\f$
* \param pg the gas phase pressure \f$\mathrm{[Pa]}\f$
* \param molalityNaCl molality of NaCl \f$\mathrm{(mol \ NaCl / kg \ water)}\f$
* \param temperature The temperature \f$\mathrm{[K]}\f$
* \param pg The gas phase pressure \f$\mathrm{[Pa]}\f$
* \param molalityNaCl Molality of NaCl \f$\mathrm{(mol \ NaCl / kg \ water)}\f$
*/
static Scalar activityCoefficient_(Scalar temperature, Scalar pg, Scalar molalityNaCl)
{
......@@ -265,8 +269,8 @@ private:
* them mutual solubility in the water-CO2 system.
* Given in Spycher, Pruess and Ennis-King (2003) \cite spycher2003 <BR>
*
* \param T the temperature \f$\mathrm{[K]}\f$
* \param pg the gas phase pressure \f$\mathrm{[Pa]}\f$
* \param T The temperature \f$\mathrm{[K]}\f$
* \param pg The gas phase pressure \f$\mathrm{[Pa]}\f$
*/
static Scalar computeA_(Scalar T, Scalar pg)
{
......@@ -286,8 +290,8 @@ private:
* the mutual solubility in the water-CO2 system.
* Given in Spycher, Pruess and Ennis-King (2003) \cite spycher2003 <BR>
*
* \param T the temperature \f$\mathrm{[K]}\f$
* \param pg the gas phase pressure \f$\mathrm{[Pa]}\f$
* \param T The temperature \f$\mathrm{[K]}\f$
* \param pg The gas phase pressure \f$\mathrm{[Pa]}\f$
*/
static Scalar computeB_(Scalar T, Scalar pg)
{
......@@ -307,8 +311,8 @@ private:
* \brief Returns the parameter lambda, which is needed for the
* calculation of the CO2 activity coefficient in the brine-CO2 system.
* Given in Spycher and Pruess (2005) \cite spycher2005 <BR>
* \param T the temperature \f$\mathrm{[K]}\f$
* \param pg the gas phase pressure \f$\mathrm{[Pa]}\f$
* \param T The temperature \f$\mathrm{[K]}\f$
* \param pg The gas phase pressure \f$\mathrm{[Pa]}\f$
*/
static Scalar computeLambda_(Scalar T, Scalar pg)
{
......@@ -328,8 +332,8 @@ private:
* \brief Returns the parameter xi, which is needed for the
* calculation of the CO2 activity coefficient in the brine-CO2 system.
* Given in Spycher and Pruess (2005) \cite spycer2005 <BR>
* \param T the temperature \f$\mathrm{[K]}\f$
* \param pg the gas phase pressure \f$\mathrm{[Pa]}\f$
* \param T The temperature \f$\mathrm{[K]}\f$
* \param pg The gas phase pressure \f$\mathrm{[Pa]}\f$
*/
static Scalar computeXi_(Scalar T, Scalar pg)
{
......@@ -347,7 +351,7 @@ private:
* \brief Returns the equilibrium constant for CO2, which is needed for the
* calculation of the mutual solubility in the water-CO2 system
* Given in Spycher, Pruess and Ennis-King (2003) \cite spycher2003 <BR>
* \param T the temperature \f$\mathrm{[K]}\f$
* \param T The temperature \f$\mathrm{[K]}\f$
*/
static Scalar equilibriumConstantCO2_(Scalar T)
{
......@@ -363,7 +367,7 @@ private:
* \brief Returns the equilibrium constant for H2O, which is needed for the
* calculation of the mutual solubility in the water-CO2 system
* Given in Spycher, Pruess and Ennis-King (2003) \cite spycher2003 <BR>
* \param T the temperature \f$\mathrm{[K]}\f$
* \param T The temperature \f$\mathrm{[K]}\f$
*/
static Scalar equilibriumConstantH2O_(Scalar T)
{
......@@ -396,9 +400,9 @@ public:
* \brief Returns the _mole_ (!) fraction of CO2 in the liquid
* phase at a given temperature, pressure and density of
* CO2.
* \param temperature the temperature \f$\mathrm{[K]}\f$
* \param pg the gas phase pressure \f$\mathrm{[Pa]}\f$
* \param rhoCO2 density of CO2
* \param temperature The temperature \f$\mathrm{[K]}\f$
* \param pg The gas phase pressure \f$\mathrm{[Pa]}\f$
* \param rhoCO2 Density of CO2
*/
static Scalar moleFracCO2InBrine(Scalar temperature, Scalar pg, Scalar rhoCO2)
{
......@@ -447,9 +451,9 @@ public:
private:
/*!
* \brief computation of \f$\mathrm{[mu_{CO2}^{l(0)}/RT]}\f$
* \param T the temperature \f$\mathrm{[K]}\f$
* \param pg the gas phase pressure \f$\mathrm{[Pa]}\f$
* \brief Computation of \f$\mathrm{[mu_{CO2}^{l(0)}/RT]}\f$
* \param T The temperature \f$\mathrm{[K]}\f$
* \param pg The gas phase pressure \f$\mathrm{[Pa]}\f$
*/
static Scalar computeA_(Scalar T, Scalar pg)
{
......@@ -484,10 +488,10 @@ private:
}
/*!
* \brief computation of B
* \brief Computation of B
*
* \param T the temperature \f$\mathrm{[K]}\f$
* \param pg the gas phase pressure \f$\mathrm{[Pa]}\f$
* \param T The temperature \f$\mathrm{[K]}\f$
* \param pg The gas phase pressure \f$\mathrm{[Pa]}\f$
*/
static Scalar computeB_(Scalar T, Scalar pg)
{
......@@ -511,10 +515,10 @@ private:
}
/*!
* \brief computation of C
* \brief Computation of C
*
* \param T the temperature \f$\mathrm{[K]}\f$
* \param pg the gas phase pressure \f$\mathrm{[Pa]}\f$
* \param T The temperature \f$\mathrm{[K]}\f$
* \param pg The gas phase pressure \f$\mathrm{[Pa]}\f$
*/
static Scalar computeC_(Scalar T, Scalar pg)
{
......@@ -533,14 +537,14 @@ private:
}
/*!
* \brief computation of partial pressure CO2
* \brief Computation of partial pressure CO2
*
* We assume that the partial pressure of brine is its vapor pressure.
* \warning: Strictly this is assumption is invalid for CO2 because the
* mole fraction of CO2 in brine can be considerable
*
* \param temperature the temperature \f$\mathrm{[K]}\f$
* \param pg the gas phase pressure \f$\mathrm{[Pa]}\f$
* \param temperature The temperature \f$\mathrm{[K]}\f$
* \param pg The gas phase pressure \f$\mathrm{[Pa]}\f$
*/
static Scalar partialPressureCO2_(Scalar temperature, Scalar pg)
{
......@@ -550,9 +554,9 @@ private:
/*!
* \brief The fugacity coefficient of CO2 for a CO2-H2O mixture.
*
* \param temperature the temperature \f$\mathrm{[K]}\f$
* \param pg the gas phase pressure \f$\mathrm{[Pa]}\f$
* \param rhoCO2 the density of CO2 for the critical volume \f$\mathrm{[kg/m^3]}\f$
* \param temperature The temperature \f$\mathrm{[K]}\f$
* \param pg The gas phase pressure \f$\mathrm{[Pa]}\f$
* \param rhoCO2 The density of CO2 for the critical volume \f$\mathrm{[kg/m^3]}\f$
*/
static Scalar fugacityCoeffCO2_(Scalar temperature,
Scalar pg,
......
......@@ -33,10 +33,10 @@ namespace BinaryCoeff {
* \brief Estimate binary diffusion coefficients \f$\mathrm{[m^2/s]}\f$ in gases according to
* the method by Fuller.
*
* \param M molar masses \f$\mathrm{[g/mol]}\f$
* \param SigmaNu atomic diffusion volume
* \param M Molar masses \f$\mathrm{[g/mol]}\f$
* \param SigmaNu Atomic diffusion volume
* \param temperature The temperature \f$\mathrm{[K]}\f$
* \param pressure phase pressure \f$\mathrm{[Pa]}\f$
* \param pressure Phase pressure \f$\mathrm{[Pa]}\f$
*
* This function estimates the diffusion coefficients in binary gases
* using to the method proposed by Fuller. This method and is only
......
......@@ -64,14 +64,12 @@ public:
/*!
* \brief Binary diffusion coefficient \f$\mathrm{[m^2/s]}\f$ for molecular water in methane.
*
* \param temperature the temperature \f$\mathrm{[K]}\f$
* \param pressure the phase pressure \f$\mathrm{[Pa]}\f$
* \param temperature The temperature \f$\mathrm{[K]}\f$
* \param pressure The phase pressure \f$\mathrm{[Pa]}\f$
*/
template <class Scalar>
static Scalar gasDiffCoeff(Scalar temperature, Scalar pressure)
{
// DUNE_THROW(Dune::NotImplemented, "diffusion coefficient for gasous water and methane");
typedef Dumux::Components::H2O<Scalar> H2O;
typedef Dumux::Components::CH4<Scalar> CH4;
......@@ -86,8 +84,8 @@ public:
/*!
* \brief Diffusion coefficient \f$\mathrm{[m^2/s]}\f$ for molecular methane in liquid water.
* \param temperature the temperature \f$\mathrm{[K]}\f$
* \param pressure the phase pressure \f$\mathrm{[Pa]}\f$
* \param temperature The temperature \f$\mathrm{[K]}\f$
* \param pressure The phase pressure \f$\mathrm{[Pa]}\f$
*
* The empirical equations for estimating the diffusion coefficient in
* infinite solution which are presented in Reid, 1987 \cite reid1987 all show a
......
......@@ -39,7 +39,7 @@ class H2O_Mesitylene
public:
/*!
* \brief Henry coefficient \f$\mathrm{[Pa]}\f$ for mesitylene in liquid water.
* \param temperature the temperature \f$\mathrm{[K]}\f$
* \param temperature The temperature \f$\mathrm{[K]}\f$
* See:
* R. Sander (1999) \cite sander1999
*/
......@@ -48,7 +48,7 @@ public:
{
// after Sanders
Scalar sanderH = 1.7e-1; // [M/atm]
//conversion to our Henry definition
// conversion to our Henry definition
Scalar dumuxH = sanderH / 101.325; // has now [(mol/m^3)/Pa]
dumuxH *= 18.02e-6; // multiplied by molar volume of reference phase = water
return 1.0/dumuxH; // [Pa]
......@@ -56,8 +56,8 @@ public:
/*!
* \brief Binary diffusion coefficient \f$\mathrm{[m^2/s]}\f$ for molecular water and mesitylene.
* \param temperature the temperature \f$\mathrm{[K]}\f$
* \param pressure the pressure \f$\mathrm{[Pa]}\f$
* \param temperature The temperature \f$\mathrm{[K]}\f$
* \param pressure The pressure \f$\mathrm{[Pa]}\f$
*/
template <class Scalar>
static Scalar gasDiffCoeff(Scalar temperature, Scalar pressure)
......@@ -100,13 +100,13 @@ public:
const Scalar D_wm = (B_*pow(temperature, 1.6)*sqrt(Mr))
/(1e-5*pressure*pow(sigma_wm, 2)*Omega); // [cm^2/s]
return D_wm*1e-4; // [m^2/s]
return D_wm*1e-4; // [m^2/s]
}
/*!
* \brief Diffusion coefficient \f$\mathrm{[m^2/s]}\f$ for mesitylene in liquid water.
* \param temperature the temperature \f$\mathrm{[K]}\f$
* \param pressure the pressure \f$\mathrm{[Pa]}\f$
* \param temperature The temperature \f$\mathrm{[K]}\f$
* \param pressure The pressure \f$\mathrm{[Pa]}\f$
*
* \note Returns just an order of magnitude.
*/
......
......@@ -42,7 +42,7 @@ class H2O_N2
public:
/*!
* \brief Henry coefficient \f$\mathrm{[Pa]}\f$ for molecular nitrogen in liquid water.
* \param temperature the temperature \f$\mathrm{[K]}\f$
* \param temperature The temperature \f$\mathrm{[K]}\f$
*/
template <class Scalar>
static Scalar henry(Scalar temperature)
......@@ -59,8 +59,8 @@ public:
* \brief Binary diffusion coefficient \f$\mathrm{[m^2/s]}\f$ for molecular water and nitrogen.
*
* Uses fullerMethod to determine the diffusion of water in nitrogen.
* \param temperature the temperature \f$\mathrm{[K]}\f$
* \param pressure the phase pressure \f$\mathrm{[Pa]}\f$
* \param temperature The temperature \f$\mathrm{[K]}\f$
* \param pressure The phase pressure \f$\mathrm{[Pa]}\f$
*/
template <class Scalar>
static Scalar gasDiffCoeff(Scalar temperature, Scalar pressure)
......@@ -78,8 +78,8 @@ public:
/*!
* \brief Diffusion coefficient \f$\mathrm{[m^2/s]}\f$ for molecular nitrogen in liquid water.
* \param temperature the temperature \f$\mathrm{[K]}\f$
* \param pressure the phase pressure \f$\mathrm{[Pa]}\f$
* \param temperature The temperature \f$\mathrm{[K]}\f$
* \param pressure The phase pressure \f$\mathrm{[Pa]}\f$
*
* The empirical equations for estimating the diffusion coefficient in
* infinite solution which are presented in Reid, 1987 all show a
......
......@@ -42,7 +42,7 @@ class H2O_O2
public:
/*!
* \brief Henry coefficient \f$\mathrm{[Pa]}\f$ for molecular oxygen in liquid water.
* \param temperature the temperature \f$\mathrm{[K]}\f$
* \param temperature The temperature \f$\mathrm{[K]}\f$
*/
template <class Scalar>
static Scalar henry(Scalar temperature)
......@@ -59,8 +59,8 @@ public:
* \brief Binary diffusion coefficient \f$\mathrm{[m^2/s]}\f$ for molecular water and oxygen.
*
* Uses fullerMethod to determine the diffusion of water in nitrogen.
* \param temperature the temperature \f$\mathrm{[K]}\f$
* \param pressure the phase pressure \f$\mathrm{[Pa]}\f$
* \param temperature The temperature \f$\mathrm{[K]}\f$
* \param pressure The phase pressure \f$\mathrm{[Pa]}\f$
*/
template <class Scalar>
static Scalar gasDiffCoeff(Scalar temperature, Scalar pressure)
......@@ -78,8 +78,8 @@ public:
/*!
* \brief Diffusion coefficient \f$\mathrm{[m^2/s]}\f$ for molecular oxygen in liquid water.
* \param temperature the temperature \f$\mathrm{[K]}\f$
* \param pressure the phase pressure \f$\mathrm{[Pa]}\f$
* \param temperature The temperature \f$\mathrm{[K]}\f$
* \param pressure The phase pressure \f$\mathrm{[Pa]}\f$
*
* The empirical equations for estimating the diffusion coefficient in
* infinite solution which are presented in Reid, 1987 all show a
......
......@@ -39,7 +39,7 @@ class H2O_Xylene
public:
/*!
* \brief Henry coefficient \f$\mathrm{[Pa]}\f$ for xylene in liquid water.
* \param temperature the temperature \f$\mathrm{[K]}\f$
* \param temperature The temperature \f$\mathrm{[K]}\f$
*
* See:
*
......@@ -50,16 +50,16 @@ public:
{
// after Sander
Scalar sanderH = 1.5e-1; //[M/atm]
//conversion to our Henry definition
// conversion to our Henry definition
Scalar dumuxH = sanderH / 101.325; // has now [(mol/m^3)/Pa]
dumuxH *= 18.02e-6; //multiplied by molar volume of reference phase = water
dumuxH *= 18.02e-6; // multiplied by molar volume of reference phase = water
return 1.0/dumuxH; // [Pa]
}
/*!
* \brief Binary diffusion coefficient \f$\mathrm{[m^2/s]}\f$ for molecular water and xylene.
* \param temperature the temperature \f$\mathrm{[K]}\f$
* \param pressure the pressure \f$\mathrm{[Pa]}\f$
* \param temperature The temperature \f$\mathrm{[K]}\f$
* \param pressure The pressure \f$\mathrm{[Pa]}\f$
*
*/
template <class Scalar>
......@@ -106,8 +106,8 @@ public:
/*!
* \brief Diffusion coefficient \f$\mathrm{[m^2/s]}\f$ for xylene in liquid water.
* \param temperature the temperature \f$\mathrm{[K]}\f$
* \param pressure the pressure \f$\mathrm{[Pa]}\f$
* \param temperature The temperature \f$\mathrm{[K]}\f$
* \param pressure The pressure \f$\mathrm{[Pa]}\f$
*
* \note Returns just an order of magnitude.
*/
......
......@@ -42,7 +42,7 @@ class N2_O2
public:
/*!
* \brief Henry coefficient \f$\mathrm{[Pa]}\f$ for molecular oxygen in liquid nitrogen.
* \param temperature the temperature \f$\mathrm{[K]}\f$
* \param temperature The temperature \f$\mathrm{[K]}\f$
*/
template <class Scalar>
static Scalar henry(Scalar temperature)
......@@ -54,8 +54,8 @@ public:
* \brief Binary diffusion coefficient \f$\mathrm{[m^2/s]}\f$ for molecular oxygen in liquid nitrogen.
*
* Uses fullerMethod to determine the diffusion of water in nitrogen.
* \param temperature the temperature \f$\mathrm{[K]}\f$
* \param pressure the phase pressure \f$\mathrm{[Pa]}\f$
* \param temperature The temperature \f$\mathrm{[K]}\f$
* \param pressure The phase pressure \f$\mathrm{[Pa]}\f$
*/
template <class Scalar>
static Scalar gasDiffCoeff(Scalar temperature, Scalar pressure)
......@@ -72,8 +72,8 @@ public:
/*!
* \brief Diffusion coefficient \f$\mathrm{[m^2/s]}\f$ for molecular oxygen in liquid nitrogen.
* \param temperature the temperature \f$\mathrm{[K]}\f$
* \param pressure the phase pressure \f$\mathrm{[Pa]}\f$
* \param temperature The temperature \f$\mathrm{[K]}\f$
* \param pressure The phase pressure \f$\mathrm{[Pa]}\f$
*/
template <class Scalar>
static Scalar liquidDiffCoeff(Scalar temperature, Scalar pressure)
......
......@@ -78,8 +78,8 @@ public:
*
* Ideal gas is assumed.
*
* \param temperature temperature of component in \f$\mathrm{[K]}\f$
* \param pressure pressure of phase in \f$\mathrm{[Pa]}\f$
* \param temperature Temperature of component in \f$\mathrm{[K]}\f$
* \param pressure Pressure of phase in \f$\mathrm{[Pa]}\f$
*/
static Scalar gasDensity(Scalar temperature, Scalar pressure)
{
......@@ -113,8 +113,8 @@ public:
*
* Ideal gas is assumed.
*
* \param temperature temperature of component in \f$\mathrm{[K]}\f$
* \param density density of component in \f$\mathrm{[kg/m^3]}\f$
* \param temperature Temperature of component in \f$\mathrm{[K]}\f$
* \param density Density of component in \f$\mathrm{[kg/m^3]}\f$
*/
static Scalar gasPressure(Scalar temperature, Scalar density)
{
......@@ -133,17 +133,16 @@ public:
* Accentric factor taken from: <BR>
* Adebiyi (2003) \cite adebiyi2003
*
* air is a non-polar substance,
* thus dipole moment mu is zero, as well the dimensionless dipole moment mu_r
* therefore not considered below
* the same holds for the correction value kappa for highly polar substances
* Air is a non-polar substance, thus dipole moment mu is zero as well as the dimensionless dipole moment mu_r.
* Therefore they are not considered below.
* The same holds for the correction value kappa for highly polar substances.
*
* This calculation was introduced into Dumux in 2012 although the method here
* is designed for general polar substances. Air, however, is (a) non-polar,
* and (b) there are more precise methods available
*
* \param temperature temperature of component in \f$\mathrm{[K]}\f$
* \param pressure pressure of component in \f$\mathrm{[Pa]}\f$
* \param temperature Temperature of component in \f$\mathrm{[K]}\f$
* \param pressure Pressure of component in \f$\mathrm{[Pa]}\f$
*/
static Scalar oldGasViscosity(Scalar temperature, Scalar pressure)
{
......@@ -180,8 +179,8 @@ public:
* It shows very reasonable results throughout realistic pressure and
* temperature ranges up to several hundred Kelvin and up to 500 bar
*
* \param temperature temperature of component in \f$\mathrm{[K]}\f$
* \param pressure pressure of component in \f$\mathrm{[Pa]}\f$
* \param temperature Temperature of component in \f$\mathrm{[K]}\f$
* \param pressure Pressure of component in \f$\mathrm{[Pa]}\f$
*/
static Scalar gasViscosity(Scalar temperature, Scalar pressure)
{
......@@ -204,8 +203,8 @@ public:
* Gas viscosity is not very dependent on pressure. Thus, for
* low pressures one might switch the pressure correction off
*
* \param temperature temperature of component in \f$\mathrm{[K]}\f$
* \param pressure pressure of component in \f$\mathrm{[Pa]}\f$
* \param temperature Temperature of component in \f$\mathrm{[K]}\f$
* \param pressure Pressure of component in \f$\mathrm{[Pa]}\f$
*/
static Scalar simpleGasViscosity(Scalar temperature, Scalar pressure)
{
......@@ -223,8 +222,8 @@ public:
* Since they use ''eta'' for dyn. viscosity, we do it as well for easier
* comparison with the paper
*
* \param temperature temperature of component in \f$\mathrm{[K]}\f$
* \param pressure pressure of component in \f$\mathrm{[Pa]}\f$
* \param temperature Temperature of component in \f$\mathrm{[K]}\f$
* \param pressure Pressure of component in \f$\mathrm{[Pa]}\f$
*/
static Scalar exactGasViscosity(Scalar temperature, Scalar pressure)
{
......@@ -260,8 +259,8 @@ public:
* \brief Specific enthalpy of Air \f$\mathrm{[J/kg]}\f$
* with 273.15 \f$ K \f$ as basis.
*
* \param temperature temperature of component in \f$\mathrm{[K]}\f$
* \param pressure pressure of component in \f$\mathrm{[Pa]}\f$
* \param temperature Temperature of component in \f$\mathrm{[K]}\f$
* \param pressure Pressure of component in \f$\mathrm{[Pa]}\f$
*
* Kays et al. (2005, 431ff) \cite kays2005 <BR>
*/
......@@ -278,8 +277,8 @@ public:
* Exploiting the Ideal Gas assumption
* (\f$pv = R_{\textnormal{specific}} T\f$) gives: \f$u = h - R / M T \f$.
*