diff --git a/dumux/assembly/coloring.hh b/dumux/assembly/coloring.hh
index 409d102b28dc447dbe67061110077fdab34e2173..2a527bd69d307466d762eac1d774f40c1495ead8 100644
--- a/dumux/assembly/coloring.hh
+++ b/dumux/assembly/coloring.hh
@@ -185,7 +185,7 @@ namespace Dumux {
  * Returns a struct with access to the colors of each element (member colors)
  * and vector of element seed sets of the same color (member sets)
  *
- * \param gridGeometry the grid geometry
+ * \param gg the grid geometry
  * \param verbosity the verbosity level
  */
 template<class GridGeometry>
diff --git a/dumux/freeflow/navierstokes/problem.hh b/dumux/freeflow/navierstokes/problem.hh
index e3ba1fa1b4b8d5411eedee90bee2d62a64b498d4..672222c09d08ada7be1a9989e2a32d7dc1d09e4d 100644
--- a/dumux/freeflow/navierstokes/problem.hh
+++ b/dumux/freeflow/navierstokes/problem.hh
@@ -217,7 +217,7 @@ public:
      * \param element The element for which the Neumann boundary condition is set
      * \param fvGeometry The fvGeometry
      * \param elemVolVars The element volume variables
-     * \param elemFaceVars The element face variables
+     * \param elemFluxVarsCache The element flux variables cache
      * \param scvf The boundary sub control volume face
      */
     template<class ElementFluxVariablesCache>
diff --git a/dumux/material/components/brine.hh b/dumux/material/components/brine.hh
index 2c46495f9076d2cd96c15589e1a16e051082da88..8bafa7414d0b4ebd72d7574b306168591b73a3fe 100644
--- a/dumux/material/components/brine.hh
+++ b/dumux/material/components/brine.hh
@@ -438,7 +438,7 @@ public:
      * \param temperature temperature of component in \f$\mathrm{[K]}\f$
      * \param pressure pressure of component in \f$\mathrm{[Pa]}\f$
      *
-     * The thermal conductivity of brine is implemented based on the contribution of NaCl ($\lambda_{brine}$/$\lambda_{H_2O}$) of \cite{Yusufova1975} https://link.springer.com/content/pdf/10.1007/BF00867119.pdf, also discussed in \cite{Ozbek1980} https://docecity.com/thermal-conductivity-of-aqueous-sodium-chloride-acs-publicat-5f10766acba00.html
+     * The thermal conductivity of brine is implemented based on the contribution of NaCl (\f$\lambda_{brine}\f$/\f$\lambda_{H_2O}\f$) of \cite Yusufova1975 https://link.springer.com/content/pdf/10.1007/BF00867119.pdf, also discussed in \cite Ozbek1980 https://docecity.com/thermal-conductivity-of-aqueous-sodium-chloride-acs-publicat-5f10766acba00.html
      */
     static Scalar liquidThermalConductivity(Scalar temperature, Scalar pressure)
     {
diff --git a/dumux/material/fluidsystems/brine.hh b/dumux/material/fluidsystems/brine.hh
index 5e6e3e328fd3b998183b2a226614d5e4898d5687..c10fd6eccfd0b53ebb02ee6d4c691a2aeb60ac8f 100644
--- a/dumux/material/fluidsystems/brine.hh
+++ b/dumux/material/fluidsystems/brine.hh
@@ -456,7 +456,7 @@ public:
      * \param fluidState An abitrary fluid state
      * \param phaseIdx The index of the fluid phase to consider
      *
-     * The thermal conductivity of brine is implemented based on the contribution of NaCl ($\lambda_{brine}$/$\lambda_{H_2O}$) of \cite{Yusufova1975} https://link.springer.com/content/pdf/10.1007/BF00867119.pdf, also discussed in \cite{Ozbek1980} https://docecity.com/thermal-conductivity-of-aqueous-sodium-chloride-acs-publicat-5f10766acba00.html
+     * The thermal conductivity of brine is implemented based on the contribution of NaCl (\f$\lambda_{brine}\f$/\f$\lambda_{H_2O}\f$) of \cite Yusufova1975 https://link.springer.com/content/pdf/10.1007/BF00867119.pdf, also discussed in \cite Ozbek1980 https://docecity.com/thermal-conductivity-of-aqueous-sodium-chloride-acs-publicat-5f10766acba00.html
      */
     template <class FluidState>
     static Scalar thermalConductivity(const FluidState& fluidState, int phaseIdx)
diff --git a/dumux/material/fluidsystems/brineair.hh b/dumux/material/fluidsystems/brineair.hh
index 1c230b1d6ab3a56b1c08bc60e2449c0d01a7e7b2..2ac9f89494e9168d38927002053f562761506262 100644
--- a/dumux/material/fluidsystems/brineair.hh
+++ b/dumux/material/fluidsystems/brineair.hh
@@ -654,7 +654,7 @@ public:
      * \note We assume an ideal mixture for the gas-phase thermal conductivity, as a first approximation.
      * In porous media, gas-phase thermal conductivities are negligible, as they are
      * orders of magnitude lower than the thermal conductivity in solid and liquids (gas: 0.0x compared to solid: x.).
-     * However, moisture can have a significant influce on the thermal conductivity of moist air, see e.g. \cite{Beirao2012},
+     * However, moisture can have a significant influce on the thermal conductivity of moist air, see e.g. \cite Beirao2012,
      * which could be relevant for free-flow systems.
      */
     template <class FluidState>