Commit 2e9956d5 authored by Timo Koch's avatar Timo Koch
Browse files

Merge branch 'feature/ff-tests-docu' into 'next'

Feature/ff tests docu

See merge request !707
parents a3da3e31 36935f11
......@@ -18,7 +18,7 @@
*****************************************************************************/
/*!
* \file
*
* \ingroup NavierStokesTests
* \brief Test for the instationary staggered grid Navier-Stokes model with analytical solution (Angeli et al., 2017)
*/
#ifndef DUMUX_ANGELI_TEST_PROBLEM_HH
......@@ -64,7 +64,7 @@ SET_BOOL_PROP(AngeliTestProblem, EnableInertiaTerms, true);
}
/*!
* \ingroup ImplicitTestProblems
* \ingroup NavierStokesTests
* \brief Test problem for the staggered grid (Angeli 1947)
* \todo doc me!
*/
......@@ -130,7 +130,7 @@ public:
cellSizeX_ = this->fvGridGeometry().bBoxMax()[0] / numCells[0];
}
/*!
/*!
* \name Problem parameters
*/
// \{
......@@ -157,7 +157,7 @@ public:
}
}
/*!
/*!
* \brief Return the temperature within the domain in [K].
*
* This problem assumes a temperature of 10 degrees Celsius.
......@@ -166,7 +166,7 @@ public:
{ return 298.0; }
/*!
/*!
* \brief Return the sources within the domain.
*
* \param globalPos The global position
......@@ -177,12 +177,12 @@ public:
}
// \}
/*!
/*!
* \name Boundary conditions
*/
// \{
/*!
/*!
* \brief Specifies which kind of boundary condition should be
* used for which equation on a given boundary control volume.
*
......@@ -201,7 +201,7 @@ public:
return values;
}
/*!
/*!
* \brief Return dirichlet boundary values at a given position
*
* \param globalPos The global position
......@@ -212,7 +212,7 @@ public:
return analyticalSolution(globalPos, time());
}
/*!
/*!
* \brief Return the analytical solution of the problem at a given position
*
* \param globalPos The global position
......@@ -235,12 +235,12 @@ public:
// \}
/*!
/*!
* \name Volume terms
*/
// \{
/*!
/*!
* \brief Evaluate the initial value for a control volume.
*
* \param globalPos The global position
......@@ -251,7 +251,7 @@ public:
}
/*!
/*!
* \brief Calculate the L2 error between the analytical solution and the numerical approximation.
*
*/
......@@ -323,7 +323,7 @@ public:
return std::make_pair(l2NormAbs, l2NormRel);
}
/*!
/*!
* \brief Returns the analytical solution for the pressure
*/
auto& getAnalyticalPressureSolution() const
......@@ -331,7 +331,7 @@ public:
return analyticalPressure_;
}
/*!
/*!
* \brief Returns the analytical solution for the velocity
*/
auto& getAnalyticalVelocitySolution() const
......@@ -339,7 +339,7 @@ public:
return analyticalVelocity_;
}
/*!
/*!
* \brief Returns the analytical solution for the velocity at the faces
*/
auto& getAnalyticalVelocitySolutionOnFace() const
......@@ -358,7 +358,7 @@ public:
return timeLoop_->time();
}
/*!
/*!
* \brief Adds additional VTK output data to the VTKWriter. Function is called by the output module on every write.
*/
void createAnalyticalSolution()
......
......@@ -18,7 +18,7 @@
*****************************************************************************/
/*!
* \file
*
* \ingroup NavierStokesTests
* \brief Channel flow test for the staggered grid (Navier-)Stokes model
*/
#ifndef DUMUX_CHANNEL_TEST_PROBLEM_HH
......@@ -76,8 +76,9 @@ SET_BOOL_PROP(ChannelTestProblem, EnableInertiaTerms, false);
}
/*!
* \brief Test problem for the one-phase (Navier-) Stokes problem in a channel:
\todo doc me!
* \ingroup NavierStokesTests
* \brief Test problem for the one-phase (Navier-) Stokes problem in a channel.
* \todo doc me!
*/
template <class TypeTag>
class ChannelTestProblem : public NavierStokesProblem<TypeTag>
......@@ -131,7 +132,7 @@ public:
inletVelocity_ = getParam<Scalar>("Problem.InletVelocity");
}
/*!
/*!
* \name Problem parameters
*/
// \{
......@@ -142,7 +143,7 @@ public:
return false;
}
/*!
/*!
* \brief Return the temperature within the domain in [K].
*
* This problem assumes a temperature of 10 degrees Celsius.
......@@ -150,7 +151,7 @@ public:
Scalar temperature() const
{ return 273.15 + 10; } // 10C
/*!
/*!
* \brief Return the sources within the domain.
*
* \param globalPos The global position
......@@ -160,12 +161,12 @@ public:
return SourceValues(0.0);
}
// \}
/*!
/*!
* \name Boundary conditions
*/
// \{
/*!
/*!
* \brief Specifies which kind of boundary condition should be
* used for which equation on a given boundary control volume.
*
......@@ -197,7 +198,7 @@ public:
return values;
}
/*!
/*!
* \brief Evaluate the boundary conditions for a dirichlet
* control volume.
*
......@@ -222,12 +223,12 @@ public:
// \}
/*!
/*!
* \name Volume terms
*/
// \{
/*!
/*!
* \brief Evaluate the initial value for a control volume.
*
* \param globalPos The global position
......
......@@ -18,7 +18,7 @@
*****************************************************************************/
/*!
* \file
*
* \ingroup NavierStokesTests
* \brief A test problem for the staggered (Navier-) Stokes model
*/
#ifndef DUMUX_CLOSEDSYSTEM_TEST_PROBLEM_HH
......@@ -61,8 +61,9 @@ SET_BOOL_PROP(ClosedSystemTestProblem, EnableGridVolumeVariablesCache, true);
}
/*!
* \brief Test problem for the one-phase model:
\todo doc me!
* \ingroup NavierStokesTests
* \brief Test problem for the one-phase model.
* \todo doc me!
*/
template <class TypeTag>
class ClosedSystemTestProblem : public NavierStokesProblem<TypeTag>
......@@ -119,7 +120,7 @@ public:
cellSizeX_ = this->fvGridGeometry().bBoxMax()[0] / numCells[0];
}
/*!
/*!
* \name Problem parameters
*/
// \{
......@@ -130,7 +131,7 @@ public:
return false;
}
/*!
/*!
* \brief Return the temperature within the domain in [K].
*
* This problem assumes a temperature of 10 degrees Celsius.
......@@ -138,7 +139,7 @@ public:
Scalar temperature() const
{ return 273.15 + 10; } // 10C
/*!
/*!
* \brief Return the sources within the domain.
*
* \param values Stores the source values, acts as return value
......@@ -149,12 +150,12 @@ public:
return SourceValues(0.0);
}
// \}
/*!
/*!
* \name Boundary conditions
*/
// \{
/*!
/*!
* \brief Specifies which kind of boundary condition should be
* used for which equation on a given boundary control volume.
*
......@@ -177,7 +178,7 @@ public:
return values;
}
/*!
/*!
* \brief Return dirichlet boundary values at a given position
*
* \param globalPos The global position
......@@ -195,7 +196,7 @@ public:
return values;
}
/*!
/*!
* \brief Evaluate the initial value for a control volume.
*
* \param globalPos The global position
......
......@@ -18,7 +18,7 @@
*****************************************************************************/
/*!
* \file
*
* \ingroup NavierStokesTests
* \brief Test for the staggered grid (Navier-)Stokes model with analytical solution (Donea et al., 2003)
*/
#ifndef DUMUX_DONEA_TEST_PROBLEM_HH
......@@ -67,7 +67,7 @@ SET_BOOL_PROP(DoneaTestProblem, EnableInertiaTerms, false);
}
/*!
* \ingroup ImplicitTestProblems
* \ingroup NavierStokesTests
* \brief Test problem for the staggered grid (Donea et al., 2003)
* \todo doc me!
*/
......@@ -127,12 +127,12 @@ public:
createAnalyticalSolution_();
}
/*!
/*!
* \name Problem parameters
*/
// \{
/*!
/*!
* \brief The problem name.
*
* This is used as a prefix for files generated by the simulation.
......@@ -164,7 +164,7 @@ public:
}
}
/*!
/*!
* \brief Return the temperature within the domain in [K].
*
* This problem assumes a temperature of 10 degrees Celsius.
......@@ -172,7 +172,7 @@ public:
Scalar temperature() const
{ return 298.0; }
/*!
/*!
* \brief Return the sources within the domain.
*
* \param globalPos The global position
......@@ -193,12 +193,12 @@ public:
return source;
}
// \}
/*!
/*!
* \name Boundary conditions
*/
// \{
/*!
/*!
* \brief Specifies which kind of boundary condition should be
* used for which equation on a given boundary control volume.
*
......@@ -215,7 +215,7 @@ public:
return values;
}
/*!
/*!
* \brief Return dirichlet boundary values at a given position
*
* \param globalPos The global position
......@@ -226,7 +226,7 @@ public:
return analyticalSolution(globalPos);
}
/*!
/*!
* \brief Return the analytical solution of the problem at a given position
*
* \param globalPos The global position
......@@ -246,12 +246,12 @@ public:
// \}
/*!
/*!
* \name Volume terms
*/
// \{
/*!
/*!
* \brief Evaluate the initial value for a control volume.
*
* \param globalPos The global position
......@@ -266,7 +266,7 @@ public:
return values;
}
/*!
/*!
* \brief Calculate the L2 error between the analytical solution and the numerical approximation.
*
*/
......@@ -338,7 +338,7 @@ public:
return std::make_pair(l2NormAbs, l2NormRel);
}
/*!
/*!
* \brief Returns the analytical solution for the pressure
*/
auto& getAnalyticalPressureSolution() const
......@@ -346,7 +346,7 @@ public:
return analyticalPressure_;
}
/*!
/*!
* \brief Returns the analytical solution for the velocity
*/
auto& getAnalyticalVelocitySolution() const
......@@ -354,7 +354,7 @@ public:
return analyticalVelocity_;
}
/*!
/*!
* \brief Returns the analytical solution for the velocity at the faces
*/
auto& getAnalyticalVelocitySolutionOnFace() const
......@@ -364,7 +364,7 @@ public:
private:
/*!
/*!
* \brief Adds additional VTK output data to the VTKWriter. Function is called by the output module on every write.
*/
void createAnalyticalSolution_()
......
......@@ -18,7 +18,7 @@
*****************************************************************************/
/*!
* \file
*
* \ingroup NavierStokesTests
* \brief Test for the staggered grid Navier-Stokes model with analytical solution (Kovasznay 1947)
*/
#ifndef DUMUX_KOVASZNAY_TEST_PROBLEM_HH
......@@ -62,7 +62,7 @@ SET_BOOL_PROP(KovasznayTestProblem, EnableInertiaTerms, true);
}
/*!
* \ingroup ImplicitTestProblems
* \ingroup NavierStokesTests
* \brief Test problem for the staggered grid (Kovasznay 1947)
* \todo doc me!
*/
......@@ -130,7 +130,7 @@ public:
createAnalyticalSolution_();
}
/*!
/*!
* \name Problem parameters
*/
// \{
......@@ -157,7 +157,7 @@ public:
}
}
/*!
/*!
* \brief Return the temperature within the domain in [K].
*
* This problem assumes a temperature of 10 degrees Celsius.
......@@ -166,7 +166,7 @@ public:
{ return 298.0; }
/*!
/*!
* \brief Return the sources within the domain.
*
* \param globalPos The global position
......@@ -177,12 +177,12 @@ public:
}
// \}
/*!
/*!
* \name Boundary conditions
*/
// \{
/*!
/*!
* \brief Specifies which kind of boundary condition should be
* used for which equation on a given boundary control volume.
*
......@@ -204,7 +204,7 @@ public:
return values;
}
/*!
/*!
* \brief Return dirichlet boundary values at a given position
*
* \param globalPos The global position
......@@ -215,7 +215,7 @@ public:
return analyticalSolution(globalPos);
}
/*!
/*!
* \brief Return the analytical solution of the problem at a given position
*
* \param globalPos The global position
......@@ -235,12 +235,12 @@ public:
// \}
/*!
/*!
* \name Volume terms
*/
// \{
/*!
/*!
* \brief Evaluate the initial value for a control volume.
*
* \param globalPos The global position
......@@ -256,9 +256,10 @@ public:
}
/*!
/*!
* \brief Calculate the L2 error between the analytical solution and the numerical approximation.
*
* \param curSol Vector containing the current solution
*/
auto calculateL2Error(const SolutionVector& curSol) const
{
......@@ -328,7 +329,7 @@ public:
return std::make_pair(l2NormAbs, l2NormRel);
}
/*!
/*!
* \brief Returns the analytical solution for the pressure
*/
auto& getAnalyticalPressureSolution() const
......@@ -336,7 +337,7 @@ public:
return analyticalPressure_;
}
/*!
/*!
* \brief Returns the analytical solution for the velocity
*/
auto& getAnalyticalVelocitySolution() const
......@@ -344,7 +345,7 @@ public:
return analyticalVelocity_;
}
/*!
/*!
* \brief Returns the analytical solution for the velocity at the faces
*/
auto& getAnalyticalVelocitySolutionOnFace() const
......@@ -354,7 +355,7 @@ public:
private:
/*!
/*!
* \brief Adds additional VTK output data to the VTKWriter. Function is called by the output module on every write.
*/
void createAnalyticalSolution_()
......
......@@ -18,7 +18,7 @@
*****************************************************************************/
/*!
* \file
*
* \ingroup NavierStokesNCTests
* \brief Channel flow test for the multi-component staggered grid (Navier-)Stokes model
*/
#ifndef DUMUX_CHANNEL_NC_TEST_PROBLEM_HH
......@@ -86,8 +86,9 @@ SET_BOOL_PROP(ChannelNCTestProblem, EnableInertiaTerms, true);
}
/*!
* \brief Test problem for the one-phase model:
\todo doc me!
* \ingroup NavierStokesNCTests
* \brief Test problem for the one-phase model.
* \todo doc me!
*/
template <class TypeTag>
class ChannelNCTestProblem : public NavierStokesProblem<TypeTag>
......@@ -149,7 +150,7 @@ public:
deltaP_.resize(this->fvGridGeometry().numCellCenterDofs());
}
/*!
/*!
* \name Problem parameters
*/
// \{
......@@ -160,7 +161,7 @@ public:
return false;
}
/*!
/*!
* \brief Return the temperature within the domain in [K].
*
* This problem assumes a temperature of 10 degrees Celsius.
......@@ -168,7 +169,7 @@ public:
Scalar temperature() const
{ return 273.15 + 10; } // 10C
/*!
/*!
* \brief Return the sources within the domain.
*
* \param globalPos The global position
......@@ -178,12 +179,12 @@ public:
return SourceValues(0.0);
}
// \}
/*!
/*!
* \name Boundary conditions
*/
// \{
/*!
/*!
* \brief Specifies which kind of boundary condition should be
* used for which equation on a given boundary control volume.
*
......@@ -226,7 +227,7 @@ public:
return values;
}
/*!
/*!
* \brief Evaluate the boundary conditions for a dirichlet
* control volume.
*
......@@ -253,12 +254,12 @@ public:
// \}
/*!
/*!
* \name Volume terms
*/
// \{
/*!
/*!