diff --git a/dumux/flux/darcyslaw.hh b/dumux/flux/darcyslaw.hh index 42d8762e30d351a0b684786d780dc1fcfd1137fa..22c6a3364213ea6699395e717c04897aaddf6675 100644 --- a/dumux/flux/darcyslaw.hh +++ b/dumux/flux/darcyslaw.hh @@ -11,19 +11,19 @@ * * Darcy's law describes the advective flux in porous media on the macro-scale and is valid in the creeping flow regime (Reynolds number << 1, Forchheimer extensions is also implemented->see forcheimerslaw.hh). * The advective flux characterizes the bulk flow for each fluid phase including all components in case of compositional flow. - * It is driven by the potential gradient \f$\textbf{grad}\, p - \varrho {\textbf g}\f$, + * It is driven by the potential gradient \f$\nabla p - \varrho {\textbf g}\f$, * accounting for both pressure-driven and gravitationally-driven flow. * The velocity is proportional to the potential gradient with the proportional factor \f$\frac{\textbf K}{\mu}\f$, * including the intrinsic permeability of the porous medium, and the viscosity µ of the fluid phase. For one-phase flow it is: * \f[ * v = - \frac{\mathbf K}{\mu} - * \left(\textbf{grad}\, p - \varrho {\mathbf g} \right) + * \left(\nabla p - \varrho {\mathbf g} \right) * \f] * This equation can be extended to calculate the velocity \f$v_\alpha\f$ of phase \f$\alpha\f$ in the case of multi-phase * flow by introducing a relative permeability \f$k_{r\alpha}\f$ restricting flow in the presence of other phases: * \f[ * v_\alpha = - \frac{k_{r\alpha}}{\mu_\alpha} \mathbf{K} - * \left(\text{grad}\, p_\alpha - \varrho_{\alpha} \mathbf{g} \right) + * \left(\nabla p_\alpha - \varrho_{\alpha} \mathbf{g} \right) * \f] * * Darcy's law is specialized for different discretization schemes. diff --git a/dumux/flux/fickslaw.hh b/dumux/flux/fickslaw.hh index bd8c48b1c9654a15f65477276f3ec2812bc07ec8..cfcf1e103fb6899e8926fb7c3b7cec72fa107978 100644 --- a/dumux/flux/fickslaw.hh +++ b/dumux/flux/fickslaw.hh @@ -15,14 +15,14 @@ * * \n * \f[ - * \mathbf{j}_{d} = - \varrho D_m \textbf{grad}\, X + * \mathbf{j}_{d} = - \varrho D_m \nabla X * \f] * \n * * Extending this to multi-phase, multi-component systems, Fick's law can be expressed as follows: * \n * \f[ - * \mathbf{j}_{d,\alpha}^\kappa = - \varrho_\alpha D_\alpha^\kappa \textbf{grad}\, X_\alpha^\kappa + * \mathbf{j}_{d,\alpha}^\kappa = - \varrho_\alpha D_\alpha^\kappa \nabla X_\alpha^\kappa * \f] * \n * diff --git a/dumux/flux/fourierslaw.hh b/dumux/flux/fourierslaw.hh index 798e5856db85b32681e144f09eec5843b8a5b585..53ad87b0b5d3e04f7285fec11fb981e0387577d4 100644 --- a/dumux/flux/fourierslaw.hh +++ b/dumux/flux/fourierslaw.hh @@ -14,7 +14,7 @@ * The flux is calculated as:\n * \n * \f[ - * \textbf{j}_{heat} = - \lambda \; \textbf{grad}\, T + * \textbf{j}_{heat} = - \lambda \; \nabla T * \f] * \n * \n diff --git a/dumux/flux/fourierslawnonequilibrium.hh b/dumux/flux/fourierslawnonequilibrium.hh index bec4e9d9a39bd6a3421a2c365a9ffab68d5dc114..e12815e1845dd6c912cb6f3e696058126ce5d337 100644 --- a/dumux/flux/fourierslawnonequilibrium.hh +++ b/dumux/flux/fourierslawnonequilibrium.hh @@ -10,12 +10,12 @@ * \brief Diffusive heat flux according to non-equilibrium Fourier's law * * This law is based on the general form of Fourier's law which describes the diffusive - * heat flux as proportional to a temperature gradient \f$\textbf{grad}\, T_\alpha \f$. + * heat flux as proportional to a temperature gradient \f$\nabla T_\alpha \f$. * In contrast to the general form, a local thermodynamic equilibrium is not assumed. * Thus, the heat flux for the different phases \f$\alpha \f$ needs to be solved. * \n * \f[ - * \textbf{j}_{heat,\alpha} = - \lambda_\alpha \; \textbf{grad}\, T_\alpha + * \textbf{j}_{heat,\alpha} = - \lambda_\alpha \; \nabla T_\alpha * \f] * \n * With \f$\lambda_\alpha \f$ as the thermal conductivity for either a solid, liquid or diff --git a/dumux/flux/maxwellstefanslaw.hh b/dumux/flux/maxwellstefanslaw.hh index cc9c150481aca537ea51dab04c34e74505e7176b..e62c260163c7a1921d1d4f923d968a6086602c31 100644 --- a/dumux/flux/maxwellstefanslaw.hh +++ b/dumux/flux/maxwellstefanslaw.hh @@ -17,7 +17,7 @@ * For diffusive mass fluxes \f$\textbf{j}_{diff}^i\f$ the Maxwell-Stefan formulation can be defined as: * * \f[ - * \frac{x^i \textbf{grad}_T \eta^i}{RT} = - \sum\limits_{j=1,j\neq i}^{N} \frac{x^ix^j}{D^{ij}}\left(\frac{\textbf{j}_{diff}^i}{\varrho^i}-\frac{\textbf{j}_{diff}^j}{\varrho^j}\right) = - + * \frac{x^i \nabla_T \eta^i}{RT} = - \sum\limits_{j=1,j\neq i}^{N} \frac{x^ix^j}{D^{ij}}\left(\frac{\textbf{j}_{diff}^i}{\varrho^i}-\frac{\textbf{j}_{diff}^j}{\varrho^j}\right) = - * \sum\limits_{j=1,j\neq i}^{N} \frac{x^ix^j}{D^{ij}\varrho}\left(\frac{\textbf{j}_{diff}^i}{X^i}-\frac{\textbf{j}_{diff}^j}{X^j}\right) * \f] * diff --git a/dumux/freeflow/compositional/navierstokesncmodel.hh b/dumux/freeflow/compositional/navierstokesncmodel.hh index d8ceccb6baa31936c426c07e2a959324178f19da..4c81f0b2639009fa82233c694ad35121bc28e4f6 100644 --- a/dumux/freeflow/compositional/navierstokesncmodel.hh +++ b/dumux/freeflow/compositional/navierstokesncmodel.hh @@ -16,7 +16,7 @@ * \f[ * \frac{\partial \left(\varrho X^\kappa\right)}{\partial t} * + \nabla \cdot \left( \varrho {\boldsymbol{v}} X^\kappa - * - (D^\kappa + D_\text{t}) \varrho \textbf{grad}\, X^\kappa \right) + * - (D^\kappa + D_\text{t}) \varrho \nabla X^\kappa \right) * - q^\kappa = 0 * \f] * @@ -25,7 +25,7 @@ * \frac{\partial \varrho_g}{\partial t} * + \nabla \cdot \left( * \varrho {\boldsymbol{v}} - * - \sum_\kappa (D^\kappa + D_\text{t}) \varrho \textbf{grad}\, X^\kappa + * - \sum_\kappa (D^\kappa + D_\text{t}) \varrho \nabla X^\kappa * \right) * - q = 0 * \f] diff --git a/dumux/freeflow/navierstokes/energy/model.hh b/dumux/freeflow/navierstokes/energy/model.hh index cf9161bd5f7254ac5ac1b5be681b8bb48e3bf31f..ef5e7359af0ad379a05f32e6e2aab34d91aa8263 100644 --- a/dumux/freeflow/navierstokes/energy/model.hh +++ b/dumux/freeflow/navierstokes/energy/model.hh @@ -14,7 +14,7 @@ * \f[ * \frac{\partial (\varrho v)}{\partial t} * + \nabla \cdot \left( \varrho h {\boldsymbol{v}} - * - \lambda_\text{eff} \textbf{grad}\, T \right) - q_T = 0 + * - \lambda_\text{eff} \nabla T \right) - q_T = 0 * \f] * * diff --git a/dumux/freeflow/nonisothermal/model.hh b/dumux/freeflow/nonisothermal/model.hh index 9c6369d06b646be4ba3a61681a34feed25541b61..53801383f62da9828908244196467d31d92d32f1 100644 --- a/dumux/freeflow/nonisothermal/model.hh +++ b/dumux/freeflow/nonisothermal/model.hh @@ -14,7 +14,7 @@ * \f[ * \frac{\partial (\varrho u)}{\partial t} * + \nabla \cdot \left( \varrho h {\boldsymbol{v}} - * - \lambda_\text{eff} \textbf{grad}\, T \right) - q_T = 0 + * - \lambda_\text{eff} \nabla T \right) - q_T = 0 * \f] * * diff --git a/dumux/material/fluidmatrixinteractions/porositydeformation.hh b/dumux/material/fluidmatrixinteractions/porositydeformation.hh index 8a17093e066cc68709119ceb4cad16a728570223..232b7c022886bcf4160c4fb49f0e193b104579ec 100644 --- a/dumux/material/fluidmatrixinteractions/porositydeformation.hh +++ b/dumux/material/fluidmatrixinteractions/porositydeformation.hh @@ -42,12 +42,12 @@ public: * * \note \cite han2003 ( https://doi.org/10.1016/S0920-4105(03)00047-0 ) * provide a derivation for \f$\text{d} \phi = -(1 - \phi ) \text{d} \epsilon_v \f$. - * Here, \f$\epsilon_v\f$ is equal to \f$\text{div} \mathbf{u}\f$. + * Here, \f$\epsilon_v\f$ is equal to \f$\nabla \cdot \mathbf{u}\f$. * By using an initial porosity \f$\phi_0\f$ and assuming \f$ \epsilon_{v, 0} = 0 \f$, - * one obtains \f$\phi = \frac{\phi_0 - \text{div} \mathbf{u}}{1 - \text{div} \mathbf{u}}\f$, + * one obtains \f$\phi = \frac{\phi_0 - \nabla \cdot \mathbf{u}}{1 - \nabla \cdot \mathbf{u}}\f$, * which is the formulation for the rock mechanics sign convention. Here we are * using the continuum mechanics sign convention, thus, the final formula reads: - * \f$\phi = \frac{\phi_0 + \text{div} \mathbf{u}}{1 + \text{div} \mathbf{u}}\f$. + * \f$\phi = \frac{\phi_0 + \nabla \cdot \mathbf{u}}{1 + \nabla \cdot \mathbf{u}}\f$. */ template< class FVGridGeom, class ElemSol > static Scalar evaluatePorosity(const FVGridGeom& gridGeometry, diff --git a/dumux/material/fluidsystems/3pimmiscible.hh b/dumux/material/fluidsystems/3pimmiscible.hh index 4f84a38818396953f5c1081c5844f8c24742dbe4..e6893298f1396915e65c58ec758ce1f1df3f5d2f 100644 --- a/dumux/material/fluidsystems/3pimmiscible.hh +++ b/dumux/material/fluidsystems/3pimmiscible.hh @@ -454,7 +454,7 @@ public: * Molecular diffusion of a component \f$\mathrm{\kappa}\f$ is caused by a * gradient of the chemical potential and follows the law * - * \f[ J = - D \mathbf{grad} \mu_\kappa \f] + * \f[ J = - D \nabla \mu_\kappa \f] * * where \f$\mathrm{\mu_\kappa]}\f$ is the component's chemical potential, * \f$\mathrm{D}\f$ is the diffusion coefficient and \f$\mathrm{J}\f$ is the diff --git a/dumux/material/fluidsystems/base.hh b/dumux/material/fluidsystems/base.hh index 5122e256118d2901ff7391dcf5b7957259ea71e6..a3d276e0688391677b45bb43d37004fb5e540f16 100644 --- a/dumux/material/fluidsystems/base.hh +++ b/dumux/material/fluidsystems/base.hh @@ -253,7 +253,7 @@ public: * Molecular diffusion of a component \f$\mathrm{\kappa}\f$ is caused by a * gradient of the chemical potential and follows the law * - * \f[ J = - D \mathbf{grad} \mu_\kappa \f] + * \f[ J = - D \nabla \mu_\kappa \f] * * where \f$\mathrm{\mu_\kappa}\f$ is the component's chemical potential, * \f$\mathrm{D}\f$ is the diffusion coefficient and \f$\mathrm{J}\f$ is the @@ -283,7 +283,7 @@ public: * Molecular diffusion of a component \f$\mathrm{\kappa}\f$ is caused by a * gradient of the chemical potential and follows the law * - * \f[ J = - D \mathbf{grad} \mu_\kappa \f] + * \f[ J = - D \nabla \mu_\kappa \f] * * where \f$\mathrm{\mu_\kappa}\f$ is the component's chemical potential, * \f$\mathrm{D}\f$ is the diffusion coefficient and \f$\mathrm{J}\f$ is the diff --git a/dumux/material/fluidsystems/brineco2.hh b/dumux/material/fluidsystems/brineco2.hh index 06a3a99b756ecab1b70195811077dffe2d826236..5d811492ac8017dacf13993e4344fa42f24f92f3 100644 --- a/dumux/material/fluidsystems/brineco2.hh +++ b/dumux/material/fluidsystems/brineco2.hh @@ -504,7 +504,7 @@ public: * Molecular diffusion of a component \f$\mathrm{\kappa}\f$ is caused by a * gradient of the chemical potential and follows the law * - * \f[ J = - D \textbf{grad} mu_\kappa \f] + * \f[ J = - D \nabla mu_\kappa \f] * * where \f$\mathrm{\mu_\kappa}\f$ is the component's chemical potential, * \f$D\f$ is the diffusion coefficient and \f$\mathrm{J}\f$ is the diff --git a/dumux/porenetwork/solidenergy/model.hh b/dumux/porenetwork/solidenergy/model.hh index a278bd2c367bb2eea5d1e859ea19617b7fe1d5aa..13ada644af693c93d93e26186a95ccdf42e94a47 100644 --- a/dumux/porenetwork/solidenergy/model.hh +++ b/dumux/porenetwork/solidenergy/model.hh @@ -31,7 +31,7 @@ * The energy balance is described by the following equation: \f[ \frac{ \partial n c_p \varrho T}{\partial t} - - \text{div} \left\lbrace \lambda_\text{pm} \textbf{grad} T \right\rbrace = q, + - \nabla \cdot \left\lbrace \lambda_\text{pm} \nabla T \right\rbrace = q, \f] * where \f$n\f$ is the volume fraction of the conducting material, \f$c_p\f$ its specific heat capacity, * \f$\varrho\f$ its density, \f$T\f$ the temperature, and \f$\lambda\f$ the heat conductivity of the porous solid. diff --git a/dumux/porousmediumflow/1p/model.hh b/dumux/porousmediumflow/1p/model.hh index 974f746043cb0f88a51e07d71992262c509be8e1..4d1cc3e27364b1bd92b52ec7f8f8f8887c3b2452 100644 --- a/dumux/porousmediumflow/1p/model.hh +++ b/dumux/porousmediumflow/1p/model.hh @@ -14,8 +14,8 @@ * * Furthermore, it solves the mass continuity equation * \f[ - \phi \frac{\partial \varrho}{\partial t} + \text{div} \left\lbrace - - \varrho \frac{\textbf K}{\mu} \left( \textbf{grad}\, p -\varrho {\textbf g} \right) \right\rbrace = q, + \phi \frac{\partial \varrho}{\partial t} + \nabla \cdot \left\lbrace + - \varrho \frac{\textbf K}{\mu} \left( \nabla p -\varrho {\textbf g} \right) \right\rbrace = q, * \f] * where: * * \f$ \phi \f$ is the porosity of the porous medium, diff --git a/dumux/porousmediumflow/1pnc/model.hh b/dumux/porousmediumflow/1pnc/model.hh index e44629d578927dab000be18b306ad3f64d7016b2..4ebdeb35f1eb58a4130adb77fb834c6a59a7d51e 100644 --- a/dumux/porousmediumflow/1pnc/model.hh +++ b/dumux/porousmediumflow/1pnc/model.hh @@ -15,17 +15,17 @@ * Gravity can be enabled or disabled via the property system. * By inserting Darcy's law into the continuity equation, one gets \f[ - \phi\frac{\partial \varrho}{\partial t} - \text{div} \left\{ - \varrho \frac{\textbf K}{\mu} \left(\textbf{grad}\, p - \varrho {\textbf g} \right) + \phi\frac{\partial \varrho}{\partial t} - \nabla \cdot \left\{ + \varrho \frac{\textbf K}{\mu} \left(\nabla p - \varrho {\textbf g} \right) \right\} = q. \f] * * The transport of the components \f$\kappa \in \{ w, a, ... \}\f$ is described by the following equation: \f[ \phi \frac{ \partial \varrho X^\kappa}{\partial t} - - \text{div} \left\lbrace \varrho X^\kappa \frac{{\textbf K}}{\mu} \left( \textbf{grad}\, p - + - \nabla \cdot \left\lbrace \varrho X^\kappa \frac{{\textbf K}}{\mu} \left( \nabla p - \varrho {\textbf g} \right) - + \varrho D^\kappa_\text{pm} \textbf{grad} X^\kappa \right\rbrace = q, + + \varrho D^\kappa_\text{pm} \nabla X^\kappa \right\rbrace = q, \f] * * where: diff --git a/dumux/porousmediumflow/1pncmin/model.hh b/dumux/porousmediumflow/1pncmin/model.hh index 3c853041f9dfc8931a936858c071ab5f62d1a1cf..5c1bf5a51d8aa999d7847d32634366f2f7074f08 100644 --- a/dumux/porousmediumflow/1pncmin/model.hh +++ b/dumux/porousmediumflow/1pncmin/model.hh @@ -19,10 +19,10 @@ * components, one gets one transport equation for each component, * \f[ \frac{\partial ( \varrho_f X^\kappa \phi )} -{\partial t} - \text{div} \left\{ \varrho_f X^\kappa +{\partial t} - \nabla \cdot \left\{ \varrho_f X^\kappa \frac{k_{r}}{\mu} \mathbf{K} -(\text{grad}\, p - \varrho_{f} \mathbf{g}) \right\} -- \text{div} \left\{{\bf D_{pm}^\kappa} \varrho_{f} \text{grad}\, X^\kappa \right\} +(\nabla p - \varrho_{f} \mathbf{g}) \right\} +- \nabla \cdot \left\{{\bf D_{pm}^\kappa} \varrho_{f} \nabla X^\kappa \right\} - q_\kappa = 0 \qquad \kappa \in \{w, a,\cdots \}, * \f] * where: diff --git a/dumux/porousmediumflow/2p/model.hh b/dumux/porousmediumflow/2p/model.hh index ea762c5ec9bf7a793e4255aa0a8b64bad6137300..fe7adb6fbe1f6a3f124a9990a87d97e9d5b8d742 100644 --- a/dumux/porousmediumflow/2p/model.hh +++ b/dumux/porousmediumflow/2p/model.hh @@ -19,8 +19,8 @@ \f[ \phi \frac{\partial \varrho_\alpha S_\alpha}{\partial t} - - \text{div} \left\{ - \varrho_\alpha \frac{k_{r\alpha}}{\mu_\alpha} \mathbf{K} \left(\textbf{grad}\, p_\alpha - \varrho_{\alpha} \mathbf{g} \right) + \nabla \cdot \left\{ + \varrho_\alpha \frac{k_{r\alpha}}{\mu_\alpha} \mathbf{K} \left(\nabla p_\alpha - \varrho_{\alpha} \mathbf{g} \right) \right\} - q_\alpha = 0, \f] *where: diff --git a/dumux/porousmediumflow/2p1c/model.hh b/dumux/porousmediumflow/2p1c/model.hh index aadf24482aae9322d7a2e33bd1b1e84bf8b2fd51..a34e4799f0726394a6abd2e966d880537c16e95f 100644 --- a/dumux/porousmediumflow/2p1c/model.hh +++ b/dumux/porousmediumflow/2p1c/model.hh @@ -23,8 +23,8 @@ * By inserting Darcy's law into the equations for the conservation of the * phase mass, one gets \f[ -\phi \frac{\partial\ \sum_\alpha (\rho_\alpha S_\alpha)}{\partial t} \\-\sum \limits_ \alpha \text{div} \left \{\rho_\alpha \frac{k_{r\alpha}}{\mu_\alpha} -\mathbf{K} (\mathbf{grad}p_\alpha - \rho_\alpha \mathbf{g}) \right \} -q^w =0, +\phi \frac{\partial\ \sum_\alpha (\rho_\alpha S_\alpha)}{\partial t} \\-\sum \limits_ \alpha \nabla \cdot \left \{\rho_\alpha \frac{k_{r\alpha}}{\mu_\alpha} +\mathbf{K} (\nabla p_\alpha - \rho_\alpha \mathbf{g}) \right \} -q^w =0, \f] * where: * * \f$ \phi \f$ is the porosity of the porous medium, diff --git a/dumux/porousmediumflow/2p2c/model.hh b/dumux/porousmediumflow/2p2c/model.hh index 4b388d2ccbce567017f5033a6f4e3fd512f460d7..e50ef401f24c4de403306ef64c01d98b72465838 100644 --- a/dumux/porousmediumflow/2p2c/model.hh +++ b/dumux/porousmediumflow/2p2c/model.hh @@ -17,15 +17,15 @@ * depending on the property <tt>UseMoles</tt>. The mass balance equations are given as * \f[ \phi \frac{\partial (\sum_\alpha \rho_\alpha X_\alpha^\kappa S_\alpha)}{\partial t} - - \sum_\alpha \text{div} \left\{ \rho_\alpha X_\alpha^\kappa v_\alpha \right\} - - \sum_\alpha \text{div} \mathbf{F}_{\mathrm{diff, mass}, \alpha}^\kappa + - \sum_\alpha \nabla \cdot \left\{ \rho_\alpha X_\alpha^\kappa v_\alpha \right\} + - \sum_\alpha \nabla \cdot \mathbf{F}_{\mathrm{diff, mass}, \alpha}^\kappa - \sum_\alpha q_\alpha^\kappa = 0 \qquad \kappa \in \{\kappa_w, \kappa_n\} \, , \alpha \in \{w, n\}. \f] * The mole balance is given as * \f[ \phi \frac{\partial (\sum_\alpha \varrho_{m, \alpha} x_\alpha^\kappa S_\alpha)}{\partial t} - + \sum_\alpha \text{div} \left\{ \varrho_{m, \alpha} x_\alpha^\kappa v_\alpha \right\} - + \sum_\alpha \text{div} \mathbf{F}_{\mathrm{diff, mole}, \alpha}^\kappa + + \sum_\alpha \nabla \cdot \left\{ \varrho_{m, \alpha} x_\alpha^\kappa v_\alpha \right\} + + \sum_\alpha \nabla \cdot \mathbf{F}_{\mathrm{diff, mole}, \alpha}^\kappa - \sum_\alpha q_\alpha^\kappa = 0 \qquad \kappa \in \{\kappa_w, \kappa_n\} \, , \alpha \in \{w, n\}, \f] * where: diff --git a/dumux/porousmediumflow/2pnc/model.hh b/dumux/porousmediumflow/2pnc/model.hh index c4eeee6390be88cf38a4df96750a5a591d6e8ced..85d42a3c10e7ab8648b80ec3a4b8b6c723570582 100644 --- a/dumux/porousmediumflow/2pnc/model.hh +++ b/dumux/porousmediumflow/2pnc/model.hh @@ -22,11 +22,11 @@ * \f{eqnarray*}{ * && \frac{\partial (\sum_\alpha \varrho_\alpha X_\alpha^\kappa \phi S_\alpha )} * {\partial t} - * - \sum_\alpha \text{div} \left\{ \varrho_\alpha X_\alpha^\kappa + * - \sum_\alpha \nabla \cdot \left\{ \varrho_\alpha X_\alpha^\kappa * \frac{k_{r\alpha}}{\mu_\alpha} \mathbf{K} - * (\text{grad}\, p_\alpha - \varrho_{\alpha} \mathbf{g}) \right\} + * (\nabla p_\alpha - \varrho_{\alpha} \mathbf{g}) \right\} * \nonumber \\ \nonumber \\ - * &-& \sum_\alpha \text{div} \left\{{\bf D_{\alpha, pm}^\kappa} \varrho_{\alpha} \text{grad}\, X^\kappa_{\alpha} \right\} + * &-& \sum_\alpha \nabla \cdot \left\{{\bf D_{\alpha, pm}^\kappa} \varrho_{\alpha} \nabla X^\kappa_{\alpha} \right\} * - \sum_\alpha q_\alpha^\kappa = 0 \qquad \kappa \in \{w, a,\cdots \} \, , * \alpha \in \{w, g\}, * \f} diff --git a/dumux/porousmediumflow/2pncmin/model.hh b/dumux/porousmediumflow/2pncmin/model.hh index ed403351ba2a42759479d7ff8fc0a796e5ee78ec..a10644a7cd59882c13e3d7ed7b773b0dfc55dcbe 100644 --- a/dumux/porousmediumflow/2pncmin/model.hh +++ b/dumux/porousmediumflow/2pncmin/model.hh @@ -22,11 +22,11 @@ * \f{eqnarray*}{ * && \frac{\partial (\sum_\alpha \varrho_\alpha X_\alpha^\kappa \phi S_\alpha )} * {\partial t} - * - \sum_\alpha \text{div} \left\{ \varrho_\alpha X_\alpha^\kappa + * - \sum_\alpha \nabla \cdot \left\{ \varrho_\alpha X_\alpha^\kappa * \frac{k_{r\alpha}}{\mu_\alpha} \mathbf{K} - * (\text{grad}\, p_\alpha - \varrho_{\alpha} \mathbf{g}) \right\} + * (\nabla p_\alpha - \varrho_{\alpha} \mathbf{g}) \right\} * \nonumber \\ \nonumber \\ - * &-& \sum_\alpha \text{div} \left\{{\bf D_{\alpha, pm}^\kappa} \varrho_{\alpha} \text{grad}\, X^\kappa_{\alpha} \right\} + * &-& \sum_\alpha \nabla \cdot \left\{{\bf D_{\alpha, pm}^\kappa} \varrho_{\alpha} \nabla X^\kappa_{\alpha} \right\} * - \sum_\alpha q_\alpha^\kappa = 0 \qquad \kappa \in \{w, a,\cdots \} \, , * \alpha \in \{w, g\}, * \f} diff --git a/dumux/porousmediumflow/3p/model.hh b/dumux/porousmediumflow/3p/model.hh index 93355b96a1044ce7cbb6988848e7ee96e039bfc3..d2fc6cd27ac0b2885811c3a1f78e6dd6165d0fac 100644 --- a/dumux/porousmediumflow/3p/model.hh +++ b/dumux/porousmediumflow/3p/model.hh @@ -20,8 +20,8 @@ \f[ \phi \frac{\partial \varrho_\alpha S_\alpha}{\partial t} - - \text{div} \left\{ - \varrho_\alpha \frac{k_{r\alpha}}{\mu_\alpha} \mathbf{K} \left(\textbf{grad}\, p_\alpha - \varrho_{\alpha} \mathbf{g} \right) + \nabla \cdot \left\{ + \varrho_\alpha \frac{k_{r\alpha}}{\mu_\alpha} \mathbf{K} \left(\nabla p_\alpha - \varrho_{\alpha} \mathbf{g} \right) \right\} - q_\alpha = 0, \f] * where: diff --git a/dumux/porousmediumflow/3p3c/model.hh b/dumux/porousmediumflow/3p3c/model.hh index 4896a2b9ba917a56e06c7304df2700fe37e11ef3..b41ba06e32d17a3d415a49b61d1a490c1ab21031 100644 --- a/dumux/porousmediumflow/3p3c/model.hh +++ b/dumux/porousmediumflow/3p3c/model.hh @@ -21,13 +21,13 @@ * \f{eqnarray*} && \phi \frac{\partial (\sum_\alpha \varrho_{\alpha,mol} x_\alpha^\kappa S_\alpha )}{\partial t} - - \sum\limits_\alpha \text{div} \left\{ \frac{k_{r\alpha}}{\mu_\alpha} + - \sum\limits_\alpha \nabla \cdot \left\{ \frac{k_{r\alpha}}{\mu_\alpha} \varrho_{\alpha,mol} x_\alpha^\kappa \mathbf{K} - (\textbf{grad}\, p_\alpha - \varrho_{\alpha,mass} \mathbf{g}) \right\} + (\nabla p_\alpha - \varrho_{\alpha,mass} \mathbf{g}) \right\} \nonumber \\ \nonumber \\ - && - \sum\limits_\alpha \text{div} \left\{ D_\text{pm}^\kappa \frac{1}{M_{\kappa}} \varrho_{\alpha} - \textbf{grad} X^\kappa_{\alpha} \right\} + && - \sum\limits_\alpha \nabla \cdot \left\{ D_\text{pm}^\kappa \frac{1}{M_{\kappa}} \varrho_{\alpha} + \nabla X^\kappa_{\alpha} \right\} - q^\kappa = 0 \qquad \forall \kappa , \; \forall \alpha, \f} * where: diff --git a/dumux/porousmediumflow/3pwateroil/model.hh b/dumux/porousmediumflow/3pwateroil/model.hh index 3a167f89f3ebb7a0028258e853b6a9e015dece2e..02806c10bdd4bc4c6901cd280a07a49424495301 100644 --- a/dumux/porousmediumflow/3pwateroil/model.hh +++ b/dumux/porousmediumflow/3pwateroil/model.hh @@ -22,13 +22,13 @@ * \f{eqnarray*} && \phi \frac{\partial (\sum_\alpha \varrho_\alpha X_\alpha^\kappa S_\alpha )}{\partial t} - - \sum\limits_\alpha \text{div} \left\{ \frac{k_{r\alpha}}{\mu_\alpha} + - \sum\limits_\alpha \nabla \cdot \left\{ \frac{k_{r\alpha}}{\mu_\alpha} \varrho_\alpha x_\alpha^\kappa \mathbf{K} - (\textbf{grad}\, p_\alpha - \varrho_\alpha \mathbf{g}) \right\} + (\nabla p_\alpha - \varrho_\alpha \mathbf{g}) \right\} \nonumber \\ \nonumber \\ - && - \sum\limits_\alpha \text{div} \left\{ D_\text{pm}^\kappa \varrho_\alpha \frac{1}{M_\kappa} - \textbf{grad} X^\kappa_{\alpha} \right\} + && - \sum\limits_\alpha \nabla \cdot \left\{ D_\text{pm}^\kappa \varrho_\alpha \frac{1}{M_\kappa} + \nabla X^\kappa_{\alpha} \right\} - q^\kappa = 0 \qquad \forall \kappa , \; \forall \alpha, \f} * diff --git a/dumux/porousmediumflow/nonisothermal/model.hh b/dumux/porousmediumflow/nonisothermal/model.hh index 7d4593ac2bcb1efaa4463e26066392d2337474dc..024e76c4d1539e21929fef22b43dae05962f1b8a 100644 --- a/dumux/porousmediumflow/nonisothermal/model.hh +++ b/dumux/porousmediumflow/nonisothermal/model.hh @@ -23,13 +23,13 @@ & + \left( 1 - \phi \right) \frac{\partial (\varrho_s c_s T)}{\partial t} - - \sum_\alpha \text{div} + \sum_\alpha \nabla \cdot \left\{ \varrho_\alpha h_\alpha \frac{k_{r\alpha}}{\mu_\alpha} \mathbf{K} - \left( \textbf{grad}\,p_\alpha - \varrho_\alpha \mathbf{g} \right) + \left( \nabla p_\alpha - \varrho_\alpha \mathbf{g} \right) \right\} \\ - & - \text{div} \left(\lambda_{pm} \textbf{grad} \, T \right) + & - \nabla \cdot \left(\lambda_{pm} \nabla T \right) - q^h = 0, \f} * where: diff --git a/dumux/porousmediumflow/richards/model.hh b/dumux/porousmediumflow/richards/model.hh index e1f00351fa61de68a19517c568d7363e058be614..01efffdcb72d37514b94b3fde447aea7d208ff4b 100644 --- a/dumux/porousmediumflow/richards/model.hh +++ b/dumux/porousmediumflow/richards/model.hh @@ -14,9 +14,9 @@ \f[ \frac{\partial\;\phi S_w \varrho_w}{\partial t} - - \text{div} \left\lbrace + \nabla \cdot \left\lbrace \varrho_w \frac{k_{rw}}{\mu_w} \; \mathbf{K} \; - \left( \textbf{grad} + \left( \nabla p_w - \varrho_w \textbf{g} \right) \right\rbrace @@ -31,9 +31,9 @@ \f[ \phi\frac{\partial S_\alpha \varrho_\alpha}{\partial t} - - \text{div} \left\lbrace + \nabla \cdot \left\lbrace \varrho_\alpha \frac{k_{r\alpha}}{\mu_\alpha}\; \mathbf{K} \; - \left(\textbf{grad} + \left(\nabla p_\alpha - \varrho_\alpha \textbf{g} \right) \right\rbrace diff --git a/dumux/porousmediumflow/richardsextended/model.hh b/dumux/porousmediumflow/richardsextended/model.hh index 4d76a3039a82b2ac994934b4c7b00b41833e6273..f3e0749cf64507dd7c3ad02169ac8c34094dca99 100644 --- a/dumux/porousmediumflow/richardsextended/model.hh +++ b/dumux/porousmediumflow/richardsextended/model.hh @@ -16,13 +16,13 @@ + \frac{\partial\;\phi (1-S_w)\varrho_n X_n^w}{\partial t} - - \text{div} \left\lbrace + \nabla \cdot \left\lbrace \varrho_w \frac{k_{rw}}{\mu_w} \; \mathbf{K} \; - \left( \text{\textbf{grad}} + \left( \text{\nabla} p_w - \varrho_w \textbf{g} \right) + - {\bf D_{n, pm}^w} \varrho_n \text{grad}\, X^w_n + {\bf D_{n, pm}^w} \varrho_n \nabla X^w_n \right\rbrace = q_w, @@ -48,9 +48,9 @@ \f[ \phi\frac{\partial S_\alpha \varrho_\alpha}{\partial t} - - \text{div} \left\lbrace + \nabla \cdot \left\lbrace \varrho_\alpha \frac{k_{r\alpha}}{\mu_\alpha}\; \mathbf{K} \; - \left( \text{\textbf{grad}} + \left( \text{\nabla} p_\alpha - \varrho_\alpha \textbf{g} \right) \right\rbrace diff --git a/dumux/porousmediumflow/richardsnc/model.hh b/dumux/porousmediumflow/richardsnc/model.hh index b6768784636caac922eb25e69596e7069c1aa14c..737f318cd671b74bdb660bf744cc032769334485 100644 --- a/dumux/porousmediumflow/richardsnc/model.hh +++ b/dumux/porousmediumflow/richardsnc/model.hh @@ -14,11 +14,11 @@ *\f{eqnarray*} && \frac{\partial (\sum_w \varrho_w X_w^\kappa \phi S_w )} {\partial t} - - \sum_w \text{div} \left\{ \varrho_w X_w^\kappa + - \sum_w \nabla \cdot \left\{ \varrho_w X_w^\kappa \frac{k_{rw}}{\mu_w} \mathbf{K} - (\text{grad}\, p_w - \varrho_{w} \mathbf{g}) \right\} + (\nabla p_w - \varrho_{w} \mathbf{g}) \right\} \nonumber \\ \nonumber \\ - &-& \sum_w \text{div} \left\{{\bf D_{w, pm}^\kappa} \varrho_{w} \text{grad}\, X^\kappa_{w} \right\} + &-& \sum_w \nabla \cdot \left\{{\bf D_{w, pm}^\kappa} \varrho_{w} \nabla X^\kappa_{w} \right\} - \sum_w q_w^\kappa = 0 \qquad \kappa \in \{w, a,\cdots \} \, , w \in \{w, g\}, \f} diff --git a/dumux/porousmediumflow/solidenergy/model.hh b/dumux/porousmediumflow/solidenergy/model.hh index 0ab596483652b9c7abe625167975d520a86379de..cffb23ec70cd371ffce623934f5a5c0f7003cb88 100644 --- a/dumux/porousmediumflow/solidenergy/model.hh +++ b/dumux/porousmediumflow/solidenergy/model.hh @@ -13,7 +13,7 @@ * The energy balance is described by the following equation: \f[ \frac{ \partial n c_p \varrho T}{\partial t} - - \text{div} \left\lbrace \lambda_\text{pm} \textbf{grad} T \right\rbrace = q, + - \nabla \cdot \left\lbrace \lambda_\text{pm} \nabla T \right\rbrace = q, \f] * where: * * \f$ n \f$ represents volume fraction of the conducting material, diff --git a/dumux/porousmediumflow/tracer/model.hh b/dumux/porousmediumflow/tracer/model.hh index c9b4242c29cdb6380f1ce877ff35574bcf68357f..4c4efa24f10cbfd073900cb243ac1c66a49f0dc8 100644 --- a/dumux/porousmediumflow/tracer/model.hh +++ b/dumux/porousmediumflow/tracer/model.hh @@ -20,8 +20,8 @@ * The transport of the components \f$\kappa \in \{ a, b, c, ... \}\f$ is described by the following equation: \f[ \phi \frac{ \partial \varrho X^\kappa}{\partial t} - - \text{div} \left\lbrace \varrho X^\kappa {\textbf v_f} - + \varrho D^\kappa_\text{pm} \textbf{grad} X^\kappa \right\rbrace = q, + - \nabla \cdot \left\lbrace \varrho X^\kappa {\textbf v_f} + + \varrho D^\kappa_\text{pm} \nabla X^\kappa \right\rbrace = q, \f] * where: * * \f$ \phi \f$ is the porosity of the porous medium,