From 3f69afff9145a18d174a5147feda47f1c80c56a2 Mon Sep 17 00:00:00 2001 From: Katharina Heck <katharina.heck@iws.uni-stuttgart.de> Date: Sun, 6 Oct 2019 10:05:19 +0200 Subject: [PATCH] [doc][handbook] small corrections in basics --- doc/handbook/6_basics.tex | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/doc/handbook/6_basics.tex b/doc/handbook/6_basics.tex index d33f2a51fc..bfcfe229cf 100644 --- a/doc/handbook/6_basics.tex +++ b/doc/handbook/6_basics.tex @@ -260,7 +260,7 @@ It is a value between zero and one, depending on the saturation. The relations describing the relative permeabilities of the wetting and non-wetting phase are different as the wetting phase predominantly occupies small pores and the edges of larger pores while the non-wetting phases occupies large pores. -The relative permeabilities for the wetting phase $k_\mathrm{r,w}$ and the non-wetting phase are calculated as: +The relative permeabilities for the wetting phase $k_\mathrm{r,w}$ and the non-wetting phase are e.g. calculated as (also by \citet{brooks1964hydrau}): \begin{equation}\label{eq:krw} k_\mathrm{r,w} = S_\mathrm{e}^{\frac{2+3\lambda}{\lambda}} @@ -301,7 +301,7 @@ Molecular diffusion is a process determined by the concentration gradient. It is commonly modeled as Fickian diffusion following Fick's first law: \begin{equation} \label{eq:Diffusion} -\mathbf{j_d}=-\rho_{\mathrm{mol},\alpha} D^\kappa_\alpha \nabla x^\kappa_\alpha, +\mathbf{j_d}=-\rho_{\alpha} D^\kappa_\alpha \nabla X^\kappa_\alpha, \end{equation} where $D^\kappa_\alpha$ is the molecular diffusion coefficient of component $\kappa$ in phase $\alpha$. -- GitLab