diff --git a/dumux/decoupled/1p/diffusion/fv/fvpressure1p.hh b/dumux/decoupled/1p/diffusion/fv/fvpressure1p.hh index a5f5725ba5564ca6d8a57a31c8b56bde96f4aa7b..136e6b543860b8d67119c6ff837f1a81c3520562 100644 --- a/dumux/decoupled/1p/diffusion/fv/fvpressure1p.hh +++ b/dumux/decoupled/1p/diffusion/fv/fvpressure1p.hh @@ -39,14 +39,13 @@ namespace Dumux //! \ingroup FV1p //! \brief Single Phase Finite Volume Model -/*! Provides a Finite Volume implementation for the evaluation - * of equations of the form +/*! This model solves equations of the form * \f[ - * \text{div}\, \boldsymbol v = q. + * \textbf{div}\, \boldsymbol v = q. * \f] * The velocity \f$ \boldsymbol v \f$ is the single phase Darcy velocity: * \f[ - * \boldsymbol v = -\frac{1}{\mu} \boldsymbol K \left(\text{grad}\, p + \rho g \text{grad}\, z\right), + * \boldsymbol v = -\frac{1}{\mu} \boldsymbol K \left(\textbf{grad}\, p + \rho \, g \, \textbf{grad}\, z\right), * \f] * where \f$ p \f$ is the pressure, \f$ \boldsymbol K \f$ the absolute permeability, \f$ \mu \f$ the viscosity, \f$ \rho \f$ the density, and \f$ g \f$ the gravity constant, * and \f$ q \f$ is the source term. diff --git a/dumux/decoupled/2p/diffusion/fv/fvpressure2p.hh b/dumux/decoupled/2p/diffusion/fv/fvpressure2p.hh index 05550b729b1f107b1e5015ddf24c320229617da8..0cbc30ac16a5e69624bb37c96aebcaf4020c32d7 100644 --- a/dumux/decoupled/2p/diffusion/fv/fvpressure2p.hh +++ b/dumux/decoupled/2p/diffusion/fv/fvpressure2p.hh @@ -39,28 +39,28 @@ namespace Dumux //! \ingroup FVPressure2p /*! \brief Finite Volume discretization of a two-phase flow pressure equation of the sequential IMPES model. * - * This class provides a finite volume (FV) implementation for solving equations of the form + * This model solves equations of the form * \f[ - * \phi \left( \rho_w \frac{\partial S_w}{\partial t} + \rho_n \frac{\partial S_n}{\partial t}\right) + \text{div}\, \boldsymbol{v}_{total} = q. + * \phi \left( \rho_w \frac{\partial S_w}{\partial t} + \rho_n \frac{\partial S_n}{\partial t}\right) + \textbf{div}\, \boldsymbol{v}_{total} = q. * \f] * The definition of the total velocity \f$\boldsymbol{v}_{total}\f$ depends on the choice of the primary pressure variable. * Further, fluids can be assumed to be compressible or incompressible (Property: <tt>EnableCompressibility</tt>). * In the incompressible case a wetting (\f$ w \f$) phase pressure as primary variable leads to * * \f[ - * - \text{div}\, \left[\lambda \boldsymbol K \left(\text{grad}\, p_w + f_n \text{grad}\, p_c + \sum f_\alpha \rho_\alpha g \text{grad}\, z\right)\right] = q, + * - \textbf{div}\, \left[\lambda \boldsymbol K \left(\textbf{grad}\, p_w + f_n \textbf{grad}\, p_c + \sum f_\alpha \rho_\alpha \, g \, \textbf{grad}\, z\right)\right] = q, * \f] * * a non-wetting (\f$ n \f$) phase pressure yields * \f[ - * - \text{div}\, \left[\lambda \boldsymbol K \left(\text{grad}\, p_n - f_w \text{grad}\, p_c + \sum f_\alpha \rho_\alpha g \text{grad}\, z\right)\right] = q, + * - \textbf{div}\, \left[\lambda \boldsymbol K \left(\textbf{grad}\, p_n - f_w \textbf{grad}\, p_c + \sum f_\alpha \rho_\alpha \, g \, \textbf{grad}\, z\right)\right] = q, * \f] * and a global pressure leads to * \f[ - * - \text{div}\, \left[\lambda \boldsymbol K \left(\text{grad}\, p_{global} + \sum f_\alpha \rho_\alpha g \text{grad}\, z\right)\right] = q. + * - \textbf{div}\, \left[\lambda \boldsymbol K \left(\textbf{grad}\, p_{global} + \sum f_\alpha \rho_\alpha \, g \, \textbf{grad}\, z\right)\right] = q. * \f] * Here, \f$ p_\alpha \f$ is a phase pressure, \f$ p_ {global} \f$ the global pressure of a classical fractional flow formulation - * (see e.g. P. Binning and M. A. Celia, “Practical implementation of the fractional flow approach to multi-phase flow simulation,†Advances in water resources, vol. 22, no. 5, pp. 461-478, 1999.), + * (see e.g. P. Binning and M. A. Celia, \glqq Practical implementation of the fractional flow approach to multi-phase flow simulation \grqq , Advances in water resources, vol. 22, no. 5, pp. 461-478, 1999.), * \f$ p_c = p_n - p_w \f$ is the capillary pressure, \f$ \boldsymbol K \f$ the absolute permeability, \f$ \lambda = \lambda_w + \lambda_n \f$ the total mobility depending on the * saturation (\f$ \lambda_\alpha = k_{r_\alpha} / \mu_\alpha \f$),\f$ f_\alpha = \lambda_\alpha / \lambda \f$ the fractional flow function of a phase, * \f$ \rho_\alpha \f$ a phase density, \f$ g \f$ the gravity constant and \f$ q \f$ the source term. @@ -70,11 +70,11 @@ namespace Dumux * * The slightly compressible case is only implemented for phase pressures! In this case for a wetting (\f$ w \f$) phase pressure as primary variable the equations are formulated as * \f[ - * \phi \left( \rho_w \frac{\partial S_w}{\partial t} + \rho_n \frac{\partial S_n}{\partial t}\right) - \text{div}\, \left[\lambda \boldsymbol{K} \left(\text{grad}\, p_w + f_n \text{grad}\, p_c + \sum f_\alpha \rho_\alpha g \text{grad}\, z\right)\right] = q, + * \phi \left( \rho_w \frac{\partial S_w}{\partial t} + \rho_n \frac{\partial S_n}{\partial t}\right) - \textbf{div}\, \left[\lambda \boldsymbol{K} \left(\textbf{grad}\, p_w + f_n \, \textbf{grad}\, p_c + \sum f_\alpha \rho_\alpha \, g \, \textbf{grad}\, z\right)\right] = q, * \f] * and for a non-wetting (\f$ n \f$) phase pressure as * \f[ - * \phi \left( \rho_w \frac{\partial S_w}{\partial t} + \rho_n \frac{\partial S_n}{\partial t}\right) - \text{div}\, \left[\lambda \boldsymbol{K} \left(\text{grad}\, p_n - f_w \text{grad}\, p_c + \sum f_\alpha \rho_\alpha g \text{grad}\, z\right)\right] = q, + * \phi \left( \rho_w \frac{\partial S_w}{\partial t} + \rho_n \frac{\partial S_n}{\partial t}\right) - \textbf{div}\, \left[\lambda \boldsymbol{K} \left(\textbf{grad}\, p_n - f_w \textbf{grad}\, p_c + \sum f_\alpha \rho_\alpha \, g \, \textbf{grad}\, z\right)\right] = q, * \f] * In this slightly compressible case the following definitions are valid: \f$ \lambda = \rho_w \lambda_w + \rho_n \lambda_n \f$, \f$ f_\alpha = (\rho_\alpha \lambda_\alpha) / \lambda \f$ * This model assumes that temporal changes in density are very small and thus terms of temporal derivatives are negligible in the pressure equation. diff --git a/dumux/decoupled/2p/transport/fv/fvsaturation2p.hh b/dumux/decoupled/2p/transport/fv/fvsaturation2p.hh index 03a0d266916aab3d6d93e67fd8fa2e3cd3fe4a02..588dbe2d8d55aae1c1b2add2037a8d088fcfd868 100644 --- a/dumux/decoupled/2p/transport/fv/fvsaturation2p.hh +++ b/dumux/decoupled/2p/transport/fv/fvsaturation2p.hh @@ -35,22 +35,21 @@ namespace Dumux { //! \ingroup FVSaturation2p //! \brief The finite volume discretization of a saturation transport equation -/*! Provides a Finite Volume implementation for the evaluation - * of equations of the form +/*! This model solves equations of the form * * \f[ - * \phi \frac{\partial (\rho_\alpha S_\alpha)}{\partial t} + \text{div}\, (\rho_\alpha \boldsymbol{v_\alpha}) = q_\alpha, + * \phi \frac{\partial (\rho_\alpha S_\alpha)}{\partial t} + \textbf{div}\, (\rho_\alpha \boldsymbol{v_\alpha}) = q_\alpha, * \f] * * where \f$ S_\alpha \f$ is the saturation of phase alpha (wetting (\f$ w \f$), non-wetting (\f$ n \f$)) and \f$ \boldsymbol v_\alpha \f$ is the phase velocity defined by the multi-phase Darcy equation. * If a phase velocity is reconstructed from the pressure solution it can be directly inserted in the previous equation. In the incompressible case the equation is further divided by the phase density \f$ \rho_\alpha \f$. If a total velocity is reconstructed the saturation equation is reformulated into: * * \f[ - * \phi \frac{\partial S_w}{\partial t} + f_w \text{div}\, \boldsymbol{v}_{t} + f_w \lambda_n \boldsymbol{K}\left(\text{grad}\, p_c + (\rho_n-\rho_w) g \text{grad} z \right)= q_\alpha, + * \phi \frac{\partial S_w}{\partial t} + f_w \textbf{div}\, \boldsymbol{v}_{t} + f_w \lambda_n \boldsymbol{K}\left(\textbf{grad}\, p_c + (\rho_n-\rho_w) \, g \, \textbf{grad} z \right)= q_\alpha, * \f] * to get a wetting phase saturation or * \f[ - * \phi \frac{\partial S_n}{\partial t} + f_n \text{div}\, \boldsymbol{v}_{t} - f_n \lambda_w \boldsymbol{K}\left(\text{grad}\, p_c + (\rho_n-\rho_w) g \text{grad} z \right)= q_\alpha, + * \phi \frac{\partial S_n}{\partial t} + f_n \textbf{div}\, \boldsymbol{v}_{t} - f_n \lambda_w \boldsymbol{K}\left(\textbf{grad}\, p_c + (\rho_n-\rho_w) \, g \, \textbf{grad} z \right)= q_\alpha, * \f] * if the non-wetting phase saturation is the primary transport variable. *