diff --git a/examples/1protationsymmetry/.doc_config b/examples/1protationsymmetry/.doc_config new file mode 100644 index 0000000000000000000000000000000000000000..f85531dc677d31a07acbc49cdb5e942ef082049a --- /dev/null +++ b/examples/1protationsymmetry/.doc_config @@ -0,0 +1,35 @@ +{ + "README.md" : [ + "doc/_intro.md" + ], + + "doc/problem.md" : [ + "doc/problem_intro.md", + "properties.hh", + "problem.hh", + "spatialparams.hh" + ], + + "doc/main.md" : [ + "doc/main_intro.md", + "main.cc" + ], + + "doc/paraview.md" : [ + "doc/paraview_doc.md" + ], + + "navigation" : { + "mainpage" : "README.md", + "subpages" : [ + "doc/problem.md", + "doc/main.md", + "doc/paraview.md" + ], + "subtitles" : [ + "Rotation-symmetric one-phase flow simulation setup", + "Main program flow", + "Post-processing with ParaView" + ] + } +} diff --git a/examples/1protationsymmetry/CMakeLists.txt b/examples/1protationsymmetry/CMakeLists.txt new file mode 100644 index 0000000000000000000000000000000000000000..cb926b1fd81026b72820bac100b56f346f7ed5fa --- /dev/null +++ b/examples/1protationsymmetry/CMakeLists.txt @@ -0,0 +1,10 @@ +dune_symlink_to_source_files(FILES "params.input") + +dune_add_test(NAME example_1p_rotationsymmetry + LABELS porousmediumflow 1p + SOURCES main.cc + COMMAND ${CMAKE_SOURCE_DIR}/bin/testing/runtest.py + CMD_ARGS --script fuzzy + --files ${CMAKE_SOURCE_DIR}/test/references/example_rotationsymmetry-reference.vtp + ${CMAKE_CURRENT_BINARY_DIR}/example_rotationsymmetry-00000.vtp + --command "${CMAKE_CURRENT_BINARY_DIR}/example_1p_rotationsymmetry params.input -Problem.Name example_rotationsymmetry") diff --git a/examples/1protationsymmetry/README.md b/examples/1protationsymmetry/README.md new file mode 100644 index 0000000000000000000000000000000000000000..11cb39cdf23508e9db966679fc177f3760919374 --- /dev/null +++ b/examples/1protationsymmetry/README.md @@ -0,0 +1,113 @@ +<!-- Important: This file has been automatically generated by generate_example_docs.py. Do not edit this file directly! --> + +# Rotation-symmetric pressure distribution + +__In this example, you will learn how to__ + +* solve a rotation-symmetric problem one-dimensionally +* perform a convergence test against an analytical solution +* apply the `Rotational Extrusion` filters in [ParaView](https://www.paraview.org/) for a two-dimensional visualization of the one-dimensional results + + +__Result__. With the `Rotational Extrusion` and the `Warp By Scalar` filters in [ParaView](https://www.paraview.org/), +the pressure distribution of this example looks as shown in the following picture: + +<figure> + <center> + <img src="img/result.png" alt="Rotation-symmetric pressure distribution" width="60%"/> + <figcaption> <b> Fig.1 </b> - Rotation-symmetric pressure distribution on a disc (warped to 3D). </figcaption> + </center> +</figure> + + +__Table of contents__. This description is structured as follows: + +[[_TOC_]] + + +## Problem setup + +We consider a single-phase problem that leads to a rotation-symmetric pressure distribution. +The following figure illustrates the setup: + +<figure> + <center> + <img src="img/setup.svg" alt="Rotation-symmetric setup" width="60%"/> + <figcaption> <b> Fig.2 </b> - Setup for the rotation-symmetric problem. The pressure boundary conditions are shown by the colored lines and the simulation domain is depicted in grey.</figcaption> + </center> +</figure> + +This could, for example, represent a cross section of an injection/extraction well in a homogeneous +and isotropic porous medium, where the well with radius $`r_1`$ is cut out and the +injection/extraction pressure $`p_1`$ is prescribed as a Dirichlet boundary condition. At the outer +radius $`r_2`$, we set the pressure $`p_2`$. In the polar coordinates $`r`$ and $`\varphi`$, the +solution to this problem is independent of the angular coordinate $`\varphi`$ and can be reduced to +a one-dimensional problem in the radial coordinate $`r`$. Therefore, in this example, we want to +solve the problem on a one-dimensional computational domain as illustrated by the orange line in +the above figure. + +## Mathematical model + +In this example we are using the single-phase model of DuMu<sup>x</sup>, which considers Darcy's law to relate +the Darcy velocity $`\textbf u`$ to gradients of the pressure $`p`$. In the case of rotational +symmetry, the mass balance equation for the fluid phase can be transformed using polar coordinates: + +```math +-\frac{1}{r} \frac{\partial}{\partial r} \left( r \frac{\varrho k}{\mu} \frac{\partial p}{\partial r} \right) = 0, +``` + +where we identify the Darcy velocity in radial direction $`u_r = -\frac{k}{\mu} \frac{\partial p}{\partial r}`$, +and where $`k`$ is the permeability of the porous medium, $`\mu`$ is the dynamic viscosity of the +fluid, and $`\varrho`$ is the fluid density. + +## Discretization + +We employ a finite-volume scheme to spatially discretize the mass balance equation shown above. +Let us consider a discretization of the one-dimensional domain into control volumes +$`K_i = \left[ r_i, r_{i+1} \right]`$. The discrete equation describing mass conservation inside a control volume +$`K_i`$ is obtained by integration and reads: + +```math + - 2 \pi r_{i+1} \left( \varrho u_r \right)_{r_{i+1}} + + 2 \pi r_i \left( \varrho u_r \right)_{r_i} + = 0. +``` + +For this type of equation, the implementation of the finite-volume schemes in DuMu<sup>x</sup> is based on +the general form: + +```math +\sum_{\sigma \in \mathcal{S}_K} | \sigma | \left( \varrho \textbf u \cdot \textbf n \right)_\sigma = 0, +``` + +where $`\sigma`$ are the faces of the control volume and where the notation +$`( \cdot )_\sigma`$ was used to denote quantities evaluated for a face $`\sigma`$. +The area of a face is denoted with $`| \sigma |`$. Thus, comparing the two equations +we identify $`| \sigma | = 2 \pi r_\sigma`$ for the case of rotational symmetry +on a disc. Here, $`r_\sigma`$ refers to the radius at which the face is situated +in the one-dimensional discretization. + +In DuMu<sup>x</sup>, this is realized in the classes `RotationSymmetricSubControlVolume` and +`RotationSymmetricSubControlVolumeFace`, which implement one-dimensional control +volumes and faces, that take into account the extrusion about the rotation axes +of symmetry in the computations of volumes and areas. This will be discussed in part 1 +of the documentation. + +# Implementation & Post processing + +## Part 1: Rotation-symmetric one-phase flow simulation setup + +| [:arrow_right: Click to continue with part 1 of the documentation](doc/problem.md) | +|---:| + + +## Part 2: Main program flow + +| [:arrow_right: Click to continue with part 2 of the documentation](doc/main.md) | +|---:| + + +## Part 3: Post-processing with ParaView + +| [:arrow_right: Click to continue with part 3 of the documentation](doc/paraview.md) | +|---:| \ No newline at end of file diff --git a/examples/1protationsymmetry/doc/_intro.md b/examples/1protationsymmetry/doc/_intro.md new file mode 100644 index 0000000000000000000000000000000000000000..8c60975f59e6dcf6eaa37d05059b4e139eed3f6c --- /dev/null +++ b/examples/1protationsymmetry/doc/_intro.md @@ -0,0 +1,94 @@ +# Rotation-symmetric pressure distribution + +__In this example, you will learn how to__ + +* solve a rotation-symmetric problem one-dimensionally +* perform a convergence test against an analytical solution +* apply the `Rotational Extrusion` filters in [ParaView](https://www.paraview.org/) for a two-dimensional visualization of the one-dimensional results + + +__Result__. With the `Rotational Extrusion` and the `Warp By Scalar` filters in [ParaView](https://www.paraview.org/), +the pressure distribution of this example looks as shown in the following picture: + +<figure> + <center> + <img src="img/result.png" alt="Rotation-symmetric pressure distribution" width="60%"/> + <figcaption> <b> Fig.1 </b> - Rotation-symmetric pressure distribution on a disc (warped to 3D). </figcaption> + </center> +</figure> + + +__Table of contents__. This description is structured as follows: + +[[_TOC_]] + + +## Problem setup + +We consider a single-phase problem that leads to a rotation-symmetric pressure distribution. +The following figure illustrates the setup: + +<figure> + <center> + <img src="img/setup.svg" alt="Rotation-symmetric setup" width="60%"/> + <figcaption> <b> Fig.2 </b> - Setup for the rotation-symmetric problem. The pressure boundary conditions are shown by the colored lines and the simulation domain is depicted in grey.</figcaption> + </center> +</figure> + +This could, for example, represent a cross section of an injection/extraction well in a homogeneous +and isotropic porous medium, where the well with radius $`r_1`$ is cut out and the +injection/extraction pressure $`p_1`$ is prescribed as a Dirichlet boundary condition. At the outer +radius $`r_2`$, we set the pressure $`p_2`$. In the polar coordinates $`r`$ and $`\varphi`$, the +solution to this problem is independent of the angular coordinate $`\varphi`$ and can be reduced to +a one-dimensional problem in the radial coordinate $`r`$. Therefore, in this example, we want to +solve the problem on a one-dimensional computational domain as illustrated by the orange line in +the above figure. + +## Mathematical model + +In this example we are using the single-phase model of DuMu<sup>x</sup>, which considers Darcy's law to relate +the Darcy velocity $`\textbf u`$ to gradients of the pressure $`p`$. In the case of rotational +symmetry, the mass balance equation for the fluid phase can be transformed using polar coordinates: + +```math +-\frac{1}{r} \frac{\partial}{\partial r} \left( r \frac{\varrho k}{\mu} \frac{\partial p}{\partial r} \right) = 0, +``` + +where we identify the Darcy velocity in radial direction $`u_r = -\frac{k}{\mu} \frac{\partial p}{\partial r}`$, +and where $`k`$ is the permeability of the porous medium, $`\mu`$ is the dynamic viscosity of the +fluid, and $`\varrho`$ is the fluid density. + +## Discretization + +We employ a finite-volume scheme to spatially discretize the mass balance equation shown above. +Let us consider a discretization of the one-dimensional domain into control volumes +$`K_i = \left[ r_i, r_{i+1} \right]`$. The discrete equation describing mass conservation inside a control volume +$`K_i`$ is obtained by integration and reads: + +```math + - 2 \pi r_{i+1} \left( \varrho u_r \right)_{r_{i+1}} + + 2 \pi r_i \left( \varrho u_r \right)_{r_i} + = 0. +``` + +For this type of equation, the implementation of the finite-volume schemes in DuMu<sup>x</sup> is based on +the general form: + +```math +\sum_{\sigma \in \mathcal{S}_K} | \sigma | \left( \varrho \textbf u \cdot \textbf n \right)_\sigma = 0, +``` + +where $`\sigma`$ are the faces of the control volume and where the notation +$`( \cdot )_\sigma`$ was used to denote quantities evaluated for a face $`\sigma`$. +The area of a face is denoted with $`| \sigma |`$. Thus, comparing the two equations +we identify $`| \sigma | = 2 \pi r_\sigma`$ for the case of rotational symmetry +on a disc. Here, $`r_\sigma`$ refers to the radius at which the face is situated +in the one-dimensional discretization. + +In DuMu<sup>x</sup>, this is realized in the classes `RotationSymmetricSubControlVolume` and +`RotationSymmetricSubControlVolumeFace`, which implement one-dimensional control +volumes and faces, that take into account the extrusion about the rotation axes +of symmetry in the computations of volumes and areas. This will be discussed in part 1 +of the documentation. + +# Implementation & Post processing diff --git a/examples/1protationsymmetry/doc/main.md b/examples/1protationsymmetry/doc/main.md new file mode 100644 index 0000000000000000000000000000000000000000..ebb097d694f29f2e3b07f8fc8879dfe7e2c450aa --- /dev/null +++ b/examples/1protationsymmetry/doc/main.md @@ -0,0 +1,253 @@ +<!-- Important: This file has been automatically generated by generate_example_docs.py. Do not edit this file directly! --> + + +| [:arrow_left: Back to the main documentation](../README.md) | [:arrow_left: Go back to part 1](problem.md) | [:arrow_right: Continue with part 3](paraview.md) | +|---|---|---:| + +# Part 2: Main program flow + +We want to solve a rotational symmetric Laplace problem on a disc and +conduct a grid convergence study against an analytical solution. +The main program flow is implemented in file `main.cc` described below. + +The code documentation is structured as follows: + +[[_TOC_]] + + +## The main program (`main.cc`) +This file contains the main program flow. In this example, we solve a stationary +and rotationally symmetric single-phase problem for a sequence of refined grids +and compute the convergence rates. + +<details open> +<summary><b>Click to hide/show the file documentation</b> (or inspect the [source code](../main.cc))</summary> + +### Includes +<details><summary> Click to show includes</summary> + +```cpp +#include <config.h> + +#include <iostream> +#include <dune/common/parallel/mpihelper.hh> + +#include <dumux/common/properties.hh> // for GetPropType +#include <dumux/common/parameters.hh> // for getParam +#include <dumux/common/integrate.hh> // for integrateL2Error + +#include <dumux/linear/seqsolverbackend.hh> // for UMFPackBackend +#include <dumux/linear/pdesolver.hh> // for LinearPDESolver +#include <dumux/assembly/fvassembler.hh> +#include <dumux/assembly/diffmethod.hh> + +#include <dumux/io/vtkoutputmodule.hh> +#include <dumux/io/grid/gridmanager_yasp.hh> + +#include "properties.hh" +``` + +</details> + +### Beginning of the main function + +```cpp +int main(int argc, char** argv) try +{ + using namespace Dumux; + + // We initialize MPI. Finalization is done automatically on exit. + Dune::MPIHelper::instance(argc, argv); + + // We parse the command line arguments. + Parameters::init(argc, argv); + + // Convenience alias for the type tag of the problem. + using TypeTag = Properties::TTag::OnePRotSym; +``` + +### Create the grid and the grid geometry + +```cpp + // The grid manager can be used to create a grid from the input file + using Grid = GetPropType<TypeTag, Properties::Grid>; + GridManager<Grid> gridManager; + gridManager.init(); + + // We compute on the leaf grid view. + const auto& leafGridView = gridManager.grid().leafGridView(); + + // instantiate the grid geometry + using GridGeometry = GetPropType<TypeTag, Properties::GridGeometry>; + auto gridGeometry = std::make_shared<GridGeometry>(leafGridView); + gridGeometry->update(); +``` + +### Initialize the problem and grid variables + +```cpp + using Problem = GetPropType<TypeTag, Properties::Problem>; + auto problem = std::make_shared<Problem>(gridGeometry); + + // We define a function to update the discrete analytical solution vector + // using the exactSolution() function in the problem + const auto updateAnalyticalSolution = [&](auto& pExact) + { + pExact.resize(gridGeometry->numDofs()); + for (const auto& element : elements(gridGeometry->gridView())) + { + auto fvGeometry = localView(*gridGeometry); + fvGeometry.bindElement(element); + for (auto&& scv : scvs(fvGeometry)) + pExact[scv.dofIndex()] = problem->exactSolution(scv.dofPosition()); + } + }; + + // instantiate and initialize the discrete and exact solution vectors + using SolutionVector = GetPropType<TypeTag, Properties::SolutionVector>; + SolutionVector p(gridGeometry->numDofs()); + SolutionVector pExact; updateAnalyticalSolution(pExact); + + // instantiate and initialize the grid variables + using GridVariables = GetPropType<TypeTag, Properties::GridVariables>; + auto gridVariables = std::make_shared<GridVariables>(problem, gridGeometry); + gridVariables->init(p); +``` + +### Initialize VTK output + +```cpp + VtkOutputModule<GridVariables, SolutionVector> vtkWriter(*gridVariables, p, problem->name()); + GetPropType<TypeTag, Properties::IOFields>::initOutputModule(vtkWriter); + vtkWriter.addField(pExact, "pExact"); // add the exact solution to the output fields +``` + +### Instantiate the solver +We use the `LinearPDESolver` class, which is instantiated on the basis +of an assembler and a linear solver. When the `solve` function of the +`LinearPDESolver` is called, it uses the assembler and linear +solver classes to assemble and solve the linear system around the provided +solution and stores the result therein. + +```cpp + using Assembler = FVAssembler<TypeTag, DiffMethod::analytic>; + auto assembler = std::make_shared<Assembler>(problem, gridGeometry, gridVariables); + + using LinearSolver = UMFPackBackend; + auto linearSolver = std::make_shared<LinearSolver>(); + LinearPDESolver<Assembler, LinearSolver> solver(assembler, linearSolver); + solver.setVerbose(false); // suppress output during solve() +``` + +### Solution of the problem and error computation +The problem is solved by calling `solve` on the instance of `LinearPDESolver` +that we have created above. In the following piece of code, we solve the +problem on the initial refinement and compute the corresponding L2 error. +For a convenient way of computing the L2 error, the function `integrateL2Error` +can be used. + +```cpp + solver.solve(p); + + // container to store the L2 errors for the different refinements + const int numRefinements = getParam<int>("Grid.RefinementSteps"); + std::vector<double> l2Errors(numRefinements); + + // use third order error integration + constexpr int orderQuadratureRule = 3; + + // compute initial L2 error + l2Errors[0] = integrateL2Error(*gridGeometry, p, pExact, orderQuadratureRule); +``` + +This procedure is now repeated for the number of refinements as specified +in the input file. + +```cpp + for (int stepIdx = 1; stepIdx < numRefinements; stepIdx++) + { + // Globally refine the grid once + gridManager.grid().globalRefine(1); + + // update the grid geometry, the grid variables and + // the solution vectors now that the grid has been refined + gridGeometry->update(); + gridVariables->updateAfterGridAdaption(p); + + p.resize(gridGeometry->numDofs()); + updateAnalyticalSolution(pExact); + + // this recreates the linear system, i.e. the sizes of + // the right hand side vector and the Jacobian matrix, + // and its sparsity pattern. + assembler->setLinearSystem(); + + // solve problem on refined grid + solver.solve(p); +``` + +#### Post-processing and output +At the end of each refinement step, the convergence +rate is printed to the terminal. + +```cpp + // Calculate the L2 error using the numerical solution + l2Errors[stepIdx] = integrateL2Error(*gridGeometry, p, pExact, orderQuadratureRule); + + // Print the error and convergence rate + const auto rate = std::log(l2Errors[stepIdx]/l2Errors[stepIdx-1])/std::log(0.5); + const auto numDofs = gridGeometry->numDofs(); + std::cout << std::setprecision(8) << std::scientific + << "-- L2 error for " << std::setw(5) << numDofs << " dofs: " << l2Errors[stepIdx] + << ", rate: " << rate + << std::endl; + } +``` + +After the last refinement, we write the solution to VTK file format on the +finest grid and exit the main function. + +```cpp + vtkWriter.write(0.0); + + // program end, return with 0 exit code (success) + return 0; +} +``` + +### Exception handling +In this part of the main file we catch and print possible exceptions that could +occur during the simulation. +<details><summary> Click to show error handler</summary> + +```cpp + +catch (const Dumux::ParameterException &e) +{ + std::cerr << std::endl << e << " ---> Abort!" << std::endl; + return 1; +} +catch (const Dune::DGFException & e) +{ + std::cerr << "DGF exception thrown (" << e << + "). Most likely, the DGF file name is wrong " + "or the DGF file is corrupted, " + "e.g. missing hash at end of file or wrong number (dimensions) of entries." + << " ---> Abort!" << std::endl; + return 2; +} +catch (const Dune::Exception &e) +{ + std::cerr << "Dune reported error: " << e << " ---> Abort!" << std::endl; + return 3; +} +``` + +</details> + +</details> + + +| [:arrow_left: Back to the main documentation](../README.md) | [:arrow_left: Go back to part 1](problem.md) | [:arrow_right: Continue with part 3](paraview.md) | +|---|---|---:| + diff --git a/examples/1protationsymmetry/doc/main_intro.md b/examples/1protationsymmetry/doc/main_intro.md new file mode 100644 index 0000000000000000000000000000000000000000..9909b61a5b87af8896283d54c71e2d771a52e5a2 --- /dev/null +++ b/examples/1protationsymmetry/doc/main_intro.md @@ -0,0 +1,9 @@ +# Part 2: Main program flow + +We want to solve a rotational symmetric Laplace problem on a disc and +conduct a grid convergence study against an analytical solution. +The main program flow is implemented in file `main.cc` described below. + +The code documentation is structured as follows: + +[[_TOC_]] diff --git a/examples/1protationsymmetry/doc/paraview.md b/examples/1protationsymmetry/doc/paraview.md new file mode 100644 index 0000000000000000000000000000000000000000..3cae53afc693e30872b0b9c93cf3625d327149e8 --- /dev/null +++ b/examples/1protationsymmetry/doc/paraview.md @@ -0,0 +1,24 @@ +<!-- Important: This file has been automatically generated by generate_example_docs.py. Do not edit this file directly! --> + + +| [:arrow_left: Back to the main documentation](../README.md) | [:arrow_left: Go back to part 2](main.md) | +|---|---:| + +# Part 3: Post-processing with ParaView + +The result file `example_rotationsymmetry.pvd` can be opened with the software [ParaView](https://www.paraview.org/). +To obtain a visualisation as shown in the introduction of this documented example, after loading +the result file, choose `Filters`>`Alphabetical`>`Rotational Extrusion`. +You might have to reset your view and switch to `3D`. Then apply `Filters`>`Alphabetical`>`Warp By Scalar`. +The result should look like this: + +<figure> + <center> + <img src="../img/result.png" alt="Rotation-symmetric pressure distribution" width="60%"/> + <figcaption> <b> Fig.1 - </b>Rotation-symmetric pressure distribution on a disc (warped to 3D)</figcaption> + </center> +</figure> + +| [:arrow_left: Back to the main documentation](../README.md) | [:arrow_left: Go back to part 2](main.md) | +|---|---:| + diff --git a/examples/1protationsymmetry/doc/paraview_doc.md b/examples/1protationsymmetry/doc/paraview_doc.md new file mode 100644 index 0000000000000000000000000000000000000000..a5c127ee1013c70c45782679867ba491c91e9c2a --- /dev/null +++ b/examples/1protationsymmetry/doc/paraview_doc.md @@ -0,0 +1,14 @@ +# Part 3: Post-processing with ParaView + +The result file `example_rotationsymmetry.pvd` can be opened with the software [ParaView](https://www.paraview.org/). +To obtain a visualisation as shown in the introduction of this documented example, after loading +the result file, choose `Filters`>`Alphabetical`>`Rotational Extrusion`. +You might have to reset your view and switch to `3D`. Then apply `Filters`>`Alphabetical`>`Warp By Scalar`. +The result should look like this: + +<figure> + <center> + <img src="../img/result.png" alt="Rotation-symmetric pressure distribution" width="60%"/> + <figcaption> <b> Fig.1 - </b>Rotation-symmetric pressure distribution on a disc (warped to 3D)</figcaption> + </center> +</figure> diff --git a/examples/1protationsymmetry/doc/problem.md b/examples/1protationsymmetry/doc/problem.md new file mode 100644 index 0000000000000000000000000000000000000000..983554ea601266688fe863e24c913c5107c89d35 --- /dev/null +++ b/examples/1protationsymmetry/doc/problem.md @@ -0,0 +1,376 @@ +<!-- Important: This file has been automatically generated by generate_example_docs.py. Do not edit this file directly! --> + + +| [:arrow_left: Back to the main documentation](../README.md) | [:arrow_right: Continue with part 2](main.md) | +|---|---:| + +# Part 1: Simulation setup + +The code documentation is structured as follows: + +[[_TOC_]] + + +## Compile-time settings (`properties.hh`) +This file defines the `TypeTag` used for the simulation in this example, for +which we specialize a number of compile-time `properties`. + +<details open> +<summary><b>Click to hide/show the file documentation</b> (or inspect the [source code](../properties.hh))</summary> + +### Includes +<details><summary> Click to show includes</summary> + +```cpp + +#include <dune/grid/yaspgrid.hh> // for `Dune::YaspGrid` +#include <dumux/discretization/box.hh> // for `TTag::BoxModel` +``` + +The `OneP` type tag specializes most of the `properties` required for single- +phase flow simulations in DuMu<sup>x</sup>. We will use this in the following to inherit the +respective properties, and subsequently specialize those properties for our +type tag, which we want to modify or for which no meaningful default can be set. + +```cpp +#include <dumux/porousmediumflow/1p/model.hh> // for `TTag::OneP` +``` + +The local residual for incompressible flow is included. +The one-phase flow model (included above) uses a default implementation of the +local residual for single-phase flow. However, in this example we are using an +incompressible fluid phase. Therefore, we are including the specialized local +residual which contains functionality to analytically compute the entries of +the Jacobian matrix. We will use this in the main file. + +```cpp +#include <dumux/porousmediumflow/1p/incompressiblelocalresidual.hh> +``` + +We will use a single liquid phase consisting of a component with constant fluid properties. + +```cpp +#include <dumux/material/components/constant.hh> +#include <dumux/material/fluidsystems/1pliquid.hh> +``` + +As mentioned at the beginning of the documentation of this example, DuMu<sup>x</sup> +provides specialized implementations of control volumes and faces for +rotation-symmetric problems. These take care of adjusting volume and area +computations to account for the extrusion about the symmetry axes. +These implementations are exported by the `RotationSymmetricGridGeometryTraits`. + +```cpp +#include <dumux/discretization/rotationsymmetricgridgeometrytraits.hh> +``` + +The classes that define the problem and parameters used in this simulation + +```cpp +#include "problem.hh" +#include "spatialparams.hh" +``` + +</details> + +### `TypeTag` definition +A `TypeTag` for our simulation is defined, which inherits properties from the +single-phase flow model and the box scheme. + +```cpp +namespace Dumux::Properties { +namespace TTag { +struct OnePRotSym { using InheritsFrom = std::tuple<OneP, BoxModel>; }; +} +``` + +### Property specializations + +In the following piece of code, mandatory `properties` for which no meaningful +default can be set, are specialized for our type tag `OnePRotSym`. + +```cpp +// We use a structured 1D grid with an offset. This allows us to define the +// computational domain to be between the radii $`r_1`$ and $`r_2`$ as illustrated +// in the beginning of the documentation of this example +template<class TypeTag> +struct Grid<TypeTag, TTag::OnePRotSym> +{ using type = Dune::YaspGrid<1, Dune::EquidistantOffsetCoordinates<double, 1>>; }; + +// The problem class specifying initial and boundary conditions: +template<class TypeTag> +struct Problem<TypeTag, TTag::OnePRotSym> +{ using type = RotSymExampleProblem<TypeTag>; }; + +// Our spatial parameters class defining the permeability and porosity of the porous medium: +template<class TypeTag> +struct SpatialParams<TypeTag, TTag::OnePRotSym> +{ +private: + using GridGeometry = GetPropType<TypeTag, Properties::GridGeometry>; + using Scalar = GetPropType<TypeTag, Properties::Scalar>; +public: + using type = RotSymExampleSpatialParams<GridGeometry, Scalar>; +}; + +// We use a single liquid phase consisting of a component with constant fluid properties. +template<class TypeTag> +struct FluidSystem<TypeTag, TTag::OnePRotSym> +{ +private: + using Scalar = GetPropType<TypeTag, Properties::Scalar>; +public: + using type = FluidSystems::OnePLiquid<Scalar, Components::Constant<1, Scalar> >; +}; +``` + +As mentioned before, DuMu<sup>x</sup> provides specialized implementations of sub-control +volumes and faces for rotation-symmetric problems, which are exported by the +`RotationSymmetricGridGeometryTraits`. +Here, we pass these traits to the grid geometry of the box scheme (the scheme +that we use here) and specialize the `GridGeometry` property accordingly. + +```cpp +template<class TypeTag> +struct GridGeometry<TypeTag, TTag::OnePRotSym> +{ +private: + static constexpr bool enableCache = getPropValue<TypeTag, Properties::EnableGridGeometryCache>(); + using Scalar = GetPropType<TypeTag, Properties::Scalar>; + using GridView = typename GetPropType<TypeTag, Properties::Grid>::LeafGridView; + + // The default traits for box grid geometries + using DefaultTraits = BoxDefaultGridGeometryTraits<GridView>; + + // On the basis of the default traits, define the traits for rotational symmetry. + // These will export the corresponding rotation-symmetric sub-control volumes and faces. + using GGTraits = RotationSymmetricGridGeometryTraits<DefaultTraits, RotationPolicy::disc>; + +public: + // Pass the above traits to the box grid geometry such that it uses the + // rotation-symmetric sub-control volumes and faces. + using type = BoxFVGridGeometry<Scalar, GridView, enableCache, GGTraits>; +}; +``` + +Moreover, here we use a local residual specialized for incompressible flow +that contains functionality related to analytic differentiation. + +```cpp +template<class TypeTag> +struct LocalResidual<TypeTag, TTag::OnePRotSym> +{ using type = OnePIncompressibleLocalResidual<TypeTag>; }; + +} // end namespace Dumux::Properties +``` + + +</details> + + + +## The problem class (`problem.hh`) +This file contains the __problem class__ which defines the initial and boundary +conditions for the single-phase flow simulation. + +<details open> +<summary><b>Click to hide/show the file documentation</b> (or inspect the [source code](../problem.hh))</summary> + +### Includes + +```cpp +#include <cmath> // for `std::log` +#include <dumux/common/properties.hh> // for `GetPropType` +#include <dumux/common/parameters.hh> // for `getParam` +#include <dumux/porousmediumflow/problem.hh> // for `PorousMediumFlowProblem` +``` + +### The problem class +We enter the problem class where all necessary boundary conditions and initial conditions are set for our simulation. +As this is a porous medium flow problem, we inherit from the base class `PorousMediumFlowProblem`. + +```cpp +namespace Dumux { + +template<class TypeTag> +class RotSymExampleProblem : public PorousMediumFlowProblem<TypeTag> +{ + using ParentType = PorousMediumFlowProblem<TypeTag>; + using GridGeometry = GetPropType<TypeTag, Properties::GridGeometry>; + using Scalar = GetPropType<TypeTag, Properties::Scalar>; + using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>; + using BoundaryTypes = GetPropType<TypeTag, Properties::BoundaryTypes>; + using Element = typename GridGeometry::GridView::template Codim<0>::Entity; + using GlobalPosition = typename Element::Geometry::GlobalCoordinate; + +public: +``` + +In the constructor, we obtain a number of parameters, related to fluid +properties and boundary conditions, from the input file. + +```cpp + RotSymExampleProblem(std::shared_ptr<const GridGeometry> gridGeometry) + : ParentType(gridGeometry) + { + // fluid properties + k_ = getParam<Scalar>("SpatialParams.Permeability"); + nu_ = getParam<Scalar>("Component.LiquidKinematicViscosity"); + + // The inner radius r1 can be determined from the grid + r1_ = gridGeometry->bBoxMin()[0]; + + // boundary conditions + q1_ = getParam<Scalar>("Problem.Q1"); // mass flux into the domain at r1 in kg/s/m + p1_ = getParam<Scalar>("Problem.P1"); // pressure at the inner boundary at r1 + + } +``` + +We need to specify a constant temperature for our isothermal problem. +Fluid properties that depend on temperature will be calculated with this value. + +```cpp + Scalar temperature() const + { return 283.15; } +``` + +#### Specify the types of boundary conditions +This function is used to define the type of boundary conditions used depending on the location. +Two types of boundary conditions can be specified: Dirichlet or Neumann boundary condition. +On a Dirichlet boundary, the values of the primary variables need to be fixed. On a Neumann +boundary condition, values for derivatives need to be fixed. Here, we use Dirichlet boundary +conditions on all boundaries. + +```cpp + BoundaryTypes boundaryTypesAtPos(const GlobalPosition& globalPos) const + { + BoundaryTypes values; + values.setAllDirichlet(); + return values; + } +``` + +#### Specify Dirichlet boundary condition values +This function is used to specify the values of the primary variables at Dirichlet boundaries. +Here, we evaluate the analytical solution (see below) to define the pressures at the boundaries. + +```cpp + PrimaryVariables dirichletAtPos(const GlobalPosition& globalPos) const + { return exactSolution(globalPos); } +``` + +#### Analytical solution +The analytical solution to the problem of this example reads: + +```math +p = p (r) = p_1 - \frac{q_1 \nu}{2 \pi k} \text{ln} (\frac{r}{r_1}), +``` + +where $`q_1`$ is the mass flux into the domain at the inner radius $`r_1`$ +(in kg/s/m) and $`\nu = \mu/\varrho`$ is the kinematic viscosity. +The following function evaluates this solution depending on the +position in the domain. We use this function here both to specify Dirichlet +boundaries and to evaluate the error of the numerical solutions obtained for +different levels of grid refinement. + +```cpp + PrimaryVariables exactSolution(const GlobalPosition& globalPos) const + { + const auto r = globalPos[0]; + const auto p = p1_ - 1.0/(2*M_PI)*nu_/k_*q1_*std::log(r/r1_); + return p; + } + +private: + // private data members required for the analytical solution + Scalar q1_, k_, nu_, r1_, p1_; +}; + +} // end namespace Dumux +``` + + +</details> + + + +## Parameter distributions (`spatialparams.hh`) + +This file contains the __spatial parameters class__ which defines the +distributions for the porous medium parameters permeability and porosity +over the computational grid. + +<details open> +<summary><b>Click to hide/show the file documentation</b> (or inspect the [source code](../spatialparams.hh))</summary> + +We include the spatial parameters class for single-phase models discretized +by finite volume schemes, from which the spatial parameters defined for this +example inherit. + +```cpp +#include <dumux/material/spatialparams/fv1p.hh> +``` + +### The spatial parameters class + +In the `RotSymExampleSpatialParams` class, we define the functions needed to describe +the porous medium, that is, porosity and permeability. +We inherit from the `FVSpatialParamsOneP` class here, which is the base class +for spatial parameters in the context of single-phase porous medium flow +applications using finite volume discretization schemes. + +```cpp +namespace Dumux { + +template<class GridGeometry, class Scalar> +class RotSymExampleSpatialParams +: public FVSpatialParamsOneP<GridGeometry, Scalar, RotSymExampleSpatialParams<GridGeometry, Scalar>> +{ + using ThisType = RotSymExampleSpatialParams<GridGeometry, Scalar>; + using ParentType = FVSpatialParamsOneP<GridGeometry, Scalar, ThisType>; + using Element = typename GridGeometry::GridView::template Codim<0>::Entity; + using GlobalPosition = typename Element::Geometry::GlobalCoordinate; +public: + // Spatial parameter classes for porous medium flow applications need to + // export the type used for intrinsic permeabilities. + using PermeabilityType = Scalar; + + // In the constructor we obtain the permeability value from the input file. + RotSymExampleSpatialParams(std::shared_ptr<const GridGeometry> gridGeometry) + : ParentType(gridGeometry) + { permeability_ = getParam<Scalar>("SpatialParams.Permeability"); } +``` + +#### Porosity distribution +This function is used to define the porosity distribution in the +computational domain. Here, we use a constant porosity of 1.0. + +```cpp + Scalar porosityAtPos(const GlobalPosition& globalPos) const + { return 1.0; } +``` + +#### Permeability distribution +This function is used to define the permeability distribution in the +computational domain. Here, we use a constant permeability that is +defined in the input file. + +```cpp + PermeabilityType permeabilityAtPos(const GlobalPosition& globalPos) const + { return permeability_; } + +private: + Scalar permeability_; +}; + +} // end namespace Dumux +``` + + +</details> + + +| [:arrow_left: Back to the main documentation](../README.md) | [:arrow_right: Continue with part 2](main.md) | +|---|---:| + diff --git a/examples/1protationsymmetry/doc/problem_intro.md b/examples/1protationsymmetry/doc/problem_intro.md new file mode 100644 index 0000000000000000000000000000000000000000..106967a62fe8ae534317b8a1f643282811c02cab --- /dev/null +++ b/examples/1protationsymmetry/doc/problem_intro.md @@ -0,0 +1,5 @@ +# Part 1: Simulation setup + +The code documentation is structured as follows: + +[[_TOC_]] diff --git a/examples/1protationsymmetry/img/result.png b/examples/1protationsymmetry/img/result.png new file mode 100644 index 0000000000000000000000000000000000000000..7311f787fab3e0e082ae9b39b8808813a6191c0f Binary files /dev/null and b/examples/1protationsymmetry/img/result.png differ diff --git a/examples/1protationsymmetry/img/setup.svg b/examples/1protationsymmetry/img/setup.svg new file mode 100644 index 0000000000000000000000000000000000000000..92a168d7a17fa9b82337ac7695e4c173ca32e559 --- /dev/null +++ b/examples/1protationsymmetry/img/setup.svg @@ -0,0 +1,1042 @@ +<?xml version="1.0" encoding="UTF-8" standalone="no"?> +<!-- Created with Inkscape (http://www.inkscape.org/) --> + +<svg + xmlns:ns1="http://www.iki.fi/pav/software/textext/" + xmlns:dc="http://purl.org/dc/elements/1.1/" + xmlns:cc="http://creativecommons.org/ns#" + xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" + xmlns:svg="http://www.w3.org/2000/svg" + xmlns="http://www.w3.org/2000/svg" + xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd" + xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape" + width="380.52603mm" + height="187.13768mm" + viewBox="0 0 380.52604 187.13768" + version="1.1" + id="svg8" + inkscape:version="0.92.3 (2405546, 2018-03-11)" + sodipodi:docname="setup.svg"> + <sodipodi:namedview + id="base" + pagecolor="#ffffff" + bordercolor="#666666" + borderopacity="1.0" + inkscape:pageopacity="0.0" + inkscape:pageshadow="2" + inkscape:zoom="2.2589224" + inkscape:cx="509.12245" + inkscape:cy="439.60035" + inkscape:document-units="mm" + inkscape:current-layer="layer1" + showgrid="false" + inkscape:window-width="3840" + inkscape:window-height="2049" + inkscape:window-x="0" + inkscape:window-y="55" + inkscape:window-maximized="1"> + <inkscape:grid + originy="-45.604997" + originx="-15.79807" + id="grid910" + type="xygrid" /> + </sodipodi:namedview> + <defs + id="defs2"> + <inkscape:path-effect + effect="bspline" + id="path-effect7435" + is_visible="true" + weight="33.333333" + steps="2" + helper_size="0" + apply_no_weight="true" + apply_with_weight="true" + only_selected="false" /> + <marker + inkscape:stockid="Arrow1Mend" + orient="auto" + refY="0" + refX="0" + id="marker5330" + style="overflow:visible" + inkscape:isstock="true"> + <path + inkscape:connector-curvature="0" + id="path5328" + d="M 0,0 5,-5 -12.5,0 5,5 Z" + style="fill:#293af0;fill-opacity:1;fill-rule:evenodd;stroke:#293af0;stroke-width:1.00000003pt;stroke-opacity:1" + transform="matrix(-0.4,0,0,-0.4,-4,0)" /> + </marker> + <marker + inkscape:isstock="true" + style="overflow:visible" + id="marker3034" + refX="0" + refY="0" + orient="auto" + inkscape:stockid="Arrow1Send"> + <path + inkscape:connector-curvature="0" + transform="matrix(-0.2,0,0,-0.2,-1.2,0)" + style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:1.00000003pt;stroke-opacity:1" + d="M 0,0 5,-5 -12.5,0 5,5 Z" + id="path3032" /> + </marker> + <marker + inkscape:isstock="true" + style="overflow:visible" + id="Arrow2Mend" + refX="0" + refY="0" + orient="auto" + inkscape:stockid="Arrow2Mend"> + <path + inkscape:connector-curvature="0" + transform="scale(-0.6)" + d="M 8.7185878,4.0337352 -2.2072895,0.01601326 8.7185884,-4.0017078 c -1.7454984,2.3720609 -1.7354408,5.6174519 -6e-7,8.035443 z" + style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.625;stroke-linejoin:round;stroke-opacity:1" + id="path941" /> + </marker> + <marker + inkscape:isstock="true" + style="overflow:visible" + id="marker2992" + refX="0" + refY="0" + orient="auto" + inkscape:stockid="Arrow1Mend"> + <path + inkscape:connector-curvature="0" + transform="matrix(-0.4,0,0,-0.4,-4,0)" + style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:1.00000003pt;stroke-opacity:1" + d="M 0,0 5,-5 -12.5,0 5,5 Z" + id="path2990" /> + </marker> + <marker + inkscape:isstock="true" + style="overflow:visible" + id="marker2690" + refX="0" + refY="0" + orient="auto" + inkscape:stockid="Arrow1Mend"> + <path + inkscape:connector-curvature="0" + transform="matrix(-0.4,0,0,-0.4,-4,0)" + style="fill:#9d3a61;fill-opacity:1;fill-rule:evenodd;stroke:#9d3a61;stroke-width:1.00000003pt;stroke-opacity:1" + d="M 0,0 5,-5 -12.5,0 5,5 Z" + id="path2688" /> + </marker> + <inkscape:path-effect + effect="bspline" + id="path-effect1718" + is_visible="true" + weight="33.333333" + steps="2" + helper_size="0" + apply_no_weight="true" + apply_with_weight="true" + only_selected="false" /> + <marker + inkscape:isstock="true" + style="overflow:visible" + id="Arrow1Mend" + refX="0" + refY="0" + orient="auto" + inkscape:stockid="Arrow1Mend"> + <path + inkscape:connector-curvature="0" + transform="matrix(-0.4,0,0,-0.4,-4,0)" + style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:1.00000003pt;stroke-opacity:1" + d="M 0,0 5,-5 -12.5,0 5,5 Z" + id="path923" /> + </marker> + <marker + inkscape:isstock="true" + style="overflow:visible" + id="Arrow1Send" + refX="0" + refY="0" + orient="auto" + inkscape:stockid="Arrow1Send"> + <path + inkscape:connector-curvature="0" + transform="matrix(-0.2,0,0,-0.2,-1.2,0)" + style="fill:#178dad;fill-opacity:1;fill-rule:evenodd;stroke:#178dad;stroke-width:1.00000003pt;stroke-opacity:1" + d="M 0,0 5,-5 -12.5,0 5,5 Z" + id="path929" /> + </marker> + <marker + inkscape:isstock="true" + style="overflow:visible" + id="Arrow2Lend" + refX="0" + refY="0" + orient="auto" + inkscape:stockid="Arrow2Lend"> + <path + inkscape:connector-curvature="0" + transform="matrix(-1.1,0,0,-1.1,-1.1,0)" + d="M 8.7185878,4.0337352 -2.2072895,0.01601326 8.7185884,-4.0017078 c -1.7454984,2.3720609 -1.7354408,5.6174519 -6e-7,8.035443 z" + style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.625;stroke-linejoin:round;stroke-opacity:1" + id="path935" /> + </marker> + <marker + inkscape:isstock="true" + style="overflow:visible" + id="Arrow1Mend-5" + refX="0" + refY="0" + orient="auto" + inkscape:stockid="Arrow1Mend"> + <path + transform="matrix(-0.4,0,0,-0.4,-4,0)" + style="fill:#178dad;fill-opacity:1;fill-rule:evenodd;stroke:#178dad;stroke-width:1.00000003pt;stroke-opacity:1" + d="M 0,0 5,-5 -12.5,0 5,5 Z" + id="path923-5" + inkscape:connector-curvature="0" /> + </marker> + <marker + inkscape:isstock="true" + style="overflow:visible" + id="marker3034-8" + refX="0" + refY="0" + orient="auto" + inkscape:stockid="Arrow1Send"> + <path + transform="matrix(-0.2,0,0,-0.2,-1.2,0)" + style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:1.00000003pt;stroke-opacity:1" + d="M 0,0 5,-5 -12.5,0 5,5 Z" + id="path3032-0" + inkscape:connector-curvature="0" /> + </marker> + <marker + inkscape:isstock="true" + style="overflow:visible" + id="marker3034-9" + refX="0" + refY="0" + orient="auto" + inkscape:stockid="Arrow1Send"> + <path + inkscape:connector-curvature="0" + transform="matrix(-0.2,0,0,-0.2,-1.2,0)" + style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:1.00000003pt;stroke-opacity:1" + d="M 0,0 5,-5 -12.5,0 5,5 Z" + id="path3032-3" /> + </marker> + <inkscape:path-effect + effect="bspline" + id="path-effect1718-0" + is_visible="true" + weight="33.333333" + steps="2" + helper_size="0" + apply_no_weight="true" + apply_with_weight="true" + only_selected="false" /> + <marker + inkscape:isstock="true" + style="overflow:visible" + id="marker2690-7" + refX="0" + refY="0" + orient="auto" + inkscape:stockid="Arrow1Mend"> + <path + inkscape:connector-curvature="0" + transform="matrix(-0.4,0,0,-0.4,-4,0)" + style="fill:#9d3a61;fill-opacity:1;fill-rule:evenodd;stroke:#9d3a61;stroke-width:1.00000003pt;stroke-opacity:1" + d="M 0,0 5,-5 -12.5,0 5,5 Z" + id="path2688-6" /> + </marker> + <marker + inkscape:stockid="Arrow1Mend" + orient="auto" + refY="0" + refX="0" + id="marker5330-3" + style="overflow:visible" + inkscape:isstock="true"> + <path + inkscape:connector-curvature="0" + id="path5328-7" + d="M 0,0 5,-5 -12.5,0 5,5 Z" + style="fill:#293af0;fill-opacity:1;fill-rule:evenodd;stroke:#293af0;stroke-width:1.00000003pt;stroke-opacity:1" + transform="matrix(-0.4,0,0,-0.4,-4,0)" /> + </marker> + </defs> + <metadata + id="metadata5"> + <rdf:RDF> + <cc:Work + rdf:about=""> + <dc:format>image/svg+xml</dc:format> + <dc:type + rdf:resource="http://purl.org/dc/dcmitype/StillImage" /> + <dc:title /> + </cc:Work> + </rdf:RDF> + </metadata> + <g + transform="translate(-15.798071,-64.257315)" + inkscape:label="Layer 1" + inkscape:groupmode="layer" + id="layer1"> + <circle + style="opacity:1;fill:none;fill-opacity:1;fill-rule:evenodd;stroke:#9d3a61;stroke-width:2.27099991;stroke-linecap:round;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" + id="path826" + cx="111.63689" + cy="158.11101" + r="23.346777" /> + <ellipse + style="opacity:1;fill:none;fill-opacity:1;fill-rule:evenodd;stroke:#293af0;stroke-width:2.27099991;stroke-linecap:round;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" + id="path826-1" + cx="111.77235" + cy="157.82616" + rx="94.838776" + ry="92.433342" /> + <path + transform="scale(0.26458333)" + style="opacity:1;fill:#8b8f91;fill-opacity:0.3550725;fill-rule:evenodd;stroke:none;stroke-width:2.89133859;stroke-linecap:round;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" + d="M 405.35002,940.61908 C 329.42924,937.3281 256.29578,909.59447 195.95815,861.21359 182.02112,850.03839 155.65773,823.61784 144.5529,809.69688 126.78954,787.42885 116.40432,770.99531 103.42837,744.6216 84.065795,705.26703 73.402039,666.61745 69.717255,622.43945 68.280453,605.21321 69.166334,570.46377 71.477815,553.37998 81.598649,478.57846 114.7119,411.18334 167.62606,357.69025 c 28.04868,-28.35557 57.20324,-49.44301 93.40736,-67.56141 38.93792,-19.48652 76.15386,-30.57929 121.29678,-36.15432 17.65836,-2.18076 62.37461,-2.19179 79.68401,-0.0197 72.03107,9.03909 131.59053,33.7582 186.37204,77.35044 13.32162,10.60065 41.67879,39.06246 52.41907,52.61252 41.64171,52.53565 65.38005,109.4773 73.41515,176.10249 1.89573,15.71893 2.1643,53.85943 0.48629,69.05948 -6.33279,57.36498 -24.71039,108.63122 -55.52609,154.89591 -35.94894,53.97138 -86.8143,97.2113 -146.41685,124.46687 -52.29321,23.91309 -108.56104,34.72763 -167.4138,32.17651 z m 33.4227,-251.7869 c 54.13474,-10.26919 87.56006,-64.39025 72.29684,-117.06042 -9.75175,-33.65125 -37.341,-58.70334 -72.07518,-65.44699 -8.98959,-1.74532 -26.12729,-1.68 -34.87393,0.13294 -37.40903,7.75387 -65.59965,35.8088 -73.08909,72.7373 -10.23176,50.45013 22.62935,99.52301 73.43328,109.66105 8.04874,1.60615 25.78036,1.5938 34.30808,-0.0239 z" + id="path1928" + inkscape:connector-curvature="0" /> + <g + transform="matrix(2.33363,0,0,2.33363,-173.61823,-236.45366)" + ns1:version="0.9.0" + ns1:texconverter="pdflatex" + ns1:pdfconverter="pdf2svg" + ns1:text="$p_2$" + ns1:preamble="/home/dennis/.config/inkscape/extensions/textext/default_packages.tex" + ns1:scale="6.61501302105" + ns1:alignment="middle center" + ns1:jacobian_sqrt="2.33363" + style="fill:#293af0;fill-opacity:1" + id="g1975"> + <g + id="g1973" + style="fill:#293af0;fill-opacity:1"> + <g + style="fill:#293af0;fill-opacity:1" + id="g1967"> + <path + inkscape:connector-curvature="0" + style="fill:#293af0;fill-opacity:1;stroke:none;stroke-width:0" + d="M 0.453125,1.21875 C 0.375,1.5625 0.34375,1.625 -0.09375,1.625 c -0.109375,0 -0.21875,0 -0.21875,0.1875 0,0.078125 0.046875,0.125 0.125,0.125 0.265625,0 0.5625,-0.03125 0.828125,-0.03125 0.34375,0 0.671875,0.03125 1,0.03125 0.046875,0 0.171875,0 0.171875,-0.203125 C 1.8125,1.625 1.71875,1.625 1.578125,1.625 c -0.5,0 -0.5,-0.0625 -0.5,-0.15625 0,-0.125 0.421875,-1.75 0.484375,-2 0.125,0.296875 0.40625,0.640625 0.921875,0.640625 1.15625,0 2.40625,-1.453125 2.40625,-2.921875 0,-0.9375 -0.578125,-1.59375 -1.328125,-1.59375 -0.5,0 -0.984375,0.359375 -1.3125,0.75 -0.09375,-0.546875 -0.53125,-0.75 -0.890625,-0.75 -0.46875,0 -0.65625,0.390625 -0.734375,0.5625 C 0.4375,-3.5 0.3125,-2.90625 0.3125,-2.875 c 0,0.109375 0.09375,0.109375 0.109375,0.109375 0.109375,0 0.109375,-0.015625 0.171875,-0.234375 0.171875,-0.703125 0.375,-1.1875 0.734375,-1.1875 0.171875,0 0.3125,0.078125 0.3125,0.453125 0,0.234375 -0.03125,0.34375 -0.078125,0.515625 z m 1.75,-4.328125 C 2.265625,-3.375 2.546875,-3.65625 2.71875,-3.8125 c 0.359375,-0.296875 0.640625,-0.375 0.8125,-0.375 0.390625,0 0.640625,0.34375 0.640625,0.9375 0,0.59375 -0.328125,1.734375 -0.515625,2.109375 -0.34375,0.703125 -0.8125,1.03125 -1.1875,1.03125 C 1.8125,-0.109375 1.6875,-0.9375 1.6875,-1 c 0,-0.015625 0,-0.03125 0.03125,-0.15625 z m 0,0" + transform="translate(148.712,134.765)" + id="path1965" /> + </g> + <g + style="fill:#293af0;fill-opacity:1" + id="g1971"> + <path + inkscape:connector-curvature="0" + style="fill:#293af0;fill-opacity:1;stroke:none;stroke-width:0" + d="M 3.515625,-1.265625 H 3.28125 c -0.015625,0.15625 -0.09375,0.5625 -0.1875,0.625 C 3.046875,-0.59375 2.515625,-0.59375 2.40625,-0.59375 H 1.125 c 0.734375,-0.640625 0.984375,-0.84375 1.390625,-1.171875 0.515625,-0.40625 1,-0.84375 1,-1.5 0,-0.84375 -0.734375,-1.359375 -1.625,-1.359375 -0.859375,0 -1.453125,0.609375 -1.453125,1.25 0,0.34375 0.296875,0.390625 0.375,0.390625 0.15625,0 0.359375,-0.125 0.359375,-0.375 0,-0.125 -0.046875,-0.375 -0.40625,-0.375 C 0.984375,-4.21875 1.453125,-4.375 1.78125,-4.375 c 0.703125,0 1.0625,0.546875 1.0625,1.109375 0,0.609375 -0.4375,1.078125 -0.65625,1.328125 L 0.515625,-0.265625 C 0.4375,-0.203125 0.4375,-0.1875 0.4375,0 h 2.875 z m 0,0" + transform="translate(153.725,136.259)" + id="path1969" /> + </g> + </g> + </g> + <g + style="fill:#9d3a61;fill-opacity:1" + transform="matrix(2.33363,0,0,2.33363,-245.32486,-187.27807)" + ns1:version="0.9.0" + ns1:texconverter="pdflatex" + ns1:pdfconverter="pdf2svg" + ns1:text="$p_1$" + ns1:preamble="/home/dennis/.config/inkscape/extensions/textext/default_packages.tex" + ns1:scale="6.61501302105" + ns1:alignment="middle center" + ns1:jacobian_sqrt="2.33363" + id="g858"> + <g + style="fill:#9d3a61;fill-opacity:1" + id="surface1"> + <g + style="fill:#9d3a61;fill-opacity:1" + id="g851"> + <path + inkscape:connector-curvature="0" + style="fill:#9d3a61;fill-opacity:1;stroke:none;stroke-width:0" + d="M 0.453125,1.21875 C 0.375,1.5625 0.34375,1.625 -0.09375,1.625 c -0.109375,0 -0.21875,0 -0.21875,0.1875 0,0.078125 0.046875,0.125 0.125,0.125 0.265625,0 0.5625,-0.03125 0.828125,-0.03125 0.34375,0 0.671875,0.03125 1,0.03125 0.046875,0 0.171875,0 0.171875,-0.203125 C 1.8125,1.625 1.71875,1.625 1.578125,1.625 c -0.5,0 -0.5,-0.0625 -0.5,-0.15625 0,-0.125 0.421875,-1.75 0.484375,-2 0.125,0.296875 0.40625,0.640625 0.921875,0.640625 1.15625,0 2.40625,-1.453125 2.40625,-2.921875 0,-0.9375 -0.578125,-1.59375 -1.328125,-1.59375 -0.5,0 -0.984375,0.359375 -1.3125,0.75 -0.09375,-0.546875 -0.53125,-0.75 -0.890625,-0.75 -0.46875,0 -0.65625,0.390625 -0.734375,0.5625 C 0.4375,-3.5 0.3125,-2.90625 0.3125,-2.875 c 0,0.109375 0.09375,0.109375 0.109375,0.109375 0.109375,0 0.109375,-0.015625 0.171875,-0.234375 0.171875,-0.703125 0.375,-1.1875 0.734375,-1.1875 0.171875,0 0.3125,0.078125 0.3125,0.453125 0,0.234375 -0.03125,0.34375 -0.078125,0.515625 z m 1.75,-4.328125 C 2.265625,-3.375 2.546875,-3.65625 2.71875,-3.8125 c 0.359375,-0.296875 0.640625,-0.375 0.8125,-0.375 0.390625,0 0.640625,0.34375 0.640625,0.9375 0,0.59375 -0.328125,1.734375 -0.515625,2.109375 -0.34375,0.703125 -0.8125,1.03125 -1.1875,1.03125 C 1.8125,-0.109375 1.6875,-0.9375 1.6875,-1 c 0,-0.015625 0,-0.03125 0.03125,-0.15625 z m 0,0" + transform="translate(148.712,134.765)" + id="path849" /> + </g> + <g + style="fill:#9d3a61;fill-opacity:1" + id="g855"> + <path + inkscape:connector-curvature="0" + style="fill:#9d3a61;fill-opacity:1;stroke:none;stroke-width:0" + d="m 2.328125,-4.4375 c 0,-0.1875 0,-0.1875 -0.203125,-0.1875 -0.453125,0.4375 -1.078125,0.4375 -1.359375,0.4375 v 0.25 c 0.15625,0 0.625,0 1,-0.1875 v 3.546875 c 0,0.234375 0,0.328125 -0.6875,0.328125 H 0.8125 V 0 c 0.125,0 0.984375,-0.03125 1.234375,-0.03125 0.21875,0 1.09375,0.03125 1.25,0.03125 V -0.25 H 3.03125 c -0.703125,0 -0.703125,-0.09375 -0.703125,-0.328125 z m 0,0" + transform="translate(153.725,136.259)" + id="path853" /> + </g> + </g> + </g> + <path + inkscape:connector-curvature="0" + id="path912" + d="m 112.09161,158.08607 h 48.90301" + style="fill:none;stroke:#000000;stroke-width:0.76499999;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1" /> + <g + id="g3496" + style="fill:#9d3a61;fill-opacity:1" + ns1:jacobian_sqrt="1.105689" + inkscapeversion="0.92.3" + ns1:alignment="middle center" + ns1:scale="3.13423513913" + ns1:preamble="/home/dennis/.config/inkscape/extensions/textext/default_packages.tex" + ns1:text="$r_1$" + ns1:pdfconverter="pdf2svg" + ns1:texconverter="pdflatex" + ns1:version="0.9.0" + transform="matrix(1.105689,0,0,1.105689,-72.504603,11.742049)"> + <g + style="fill:#9d3a61;fill-opacity:1" + id="g3494"> + <g + id="g3488" + style="fill:#9d3a61;fill-opacity:1"> + <path + id="path3486" + transform="translate(148.712,134.765)" + d="m 0.875,-0.59375 c -0.03125,0.15625 -0.09375,0.390625 -0.09375,0.4375 0,0.171875 0.140625,0.265625 0.296875,0.265625 0.125,0 0.296875,-0.078125 0.375,-0.28125 C 1.46875,-0.203125 1.796875,-1.5625 1.84375,-1.75 c 0.078125,-0.328125 0.265625,-1.015625 0.3125,-1.296875 0.046875,-0.125 0.328125,-0.59375 0.5625,-0.8125 0.078125,-0.0625 0.375,-0.328125 0.796875,-0.328125 0.265625,0 0.40625,0.125 0.421875,0.125 -0.296875,0.046875 -0.515625,0.28125 -0.515625,0.546875 0,0.15625 0.109375,0.34375 0.375,0.34375 0.265625,0 0.546875,-0.234375 0.546875,-0.59375 0,-0.34375 -0.3125,-0.640625 -0.828125,-0.640625 C 2.875,-4.40625 2.4375,-3.921875 2.25,-3.640625 2.15625,-4.09375 1.796875,-4.40625 1.328125,-4.40625 0.875,-4.40625 0.6875,-4.015625 0.59375,-3.84375 0.421875,-3.5 0.296875,-2.90625 0.296875,-2.875 c 0,0.109375 0.09375,0.109375 0.109375,0.109375 0.109375,0 0.109375,-0.015625 0.171875,-0.234375 0.171875,-0.703125 0.375,-1.1875 0.734375,-1.1875 0.15625,0 0.296875,0.078125 0.296875,0.453125 0,0.21875 -0.03125,0.328125 -0.15625,0.84375 z m 0,0" + style="fill:#9d3a61;fill-opacity:1;stroke:none;stroke-width:0" + inkscape:connector-curvature="0" /> + </g> + <g + id="g3492" + style="fill:#9d3a61;fill-opacity:1"> + <path + id="path3490" + transform="translate(153.207,136.259)" + d="m 2.328125,-4.4375 c 0,-0.1875 0,-0.1875 -0.203125,-0.1875 -0.453125,0.4375 -1.078125,0.4375 -1.359375,0.4375 v 0.25 c 0.15625,0 0.625,0 1,-0.1875 v 3.546875 c 0,0.234375 0,0.328125 -0.6875,0.328125 H 0.8125 V 0 c 0.125,0 0.984375,-0.03125 1.234375,-0.03125 0.21875,0 1.09375,0.03125 1.25,0.03125 V -0.25 H 3.03125 c -0.703125,0 -0.703125,-0.09375 -0.703125,-0.328125 z m 0,0" + style="fill:#9d3a61;fill-opacity:1;stroke:none;stroke-width:0" + inkscape:connector-curvature="0" /> + </g> + </g> + </g> + <path + inkscape:connector-curvature="0" + id="path912-2-0-4" + d="M 112.09161,158.08607 25.340148,126.75232" + style="opacity:0.447;fill:#293af0;fill-opacity:1;stroke:#293af0;stroke-width:0.76499999;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1;marker-end:url(#marker5330)" + sodipodi:nodetypes="cc" /> + <path + inkscape:connector-curvature="0" + id="path912-2-0" + d="M 112.09161,158.08607 92.053323,150.84486" + style="opacity:1;fill:none;stroke:#9d3a61;stroke-width:0.76499999;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#marker2690)" + sodipodi:nodetypes="cc" /> + <g + transform="matrix(1.105689,0,0,1.105689,-130.36969,-21.639464)" + ns1:version="0.9.0" + ns1:texconverter="pdflatex" + ns1:pdfconverter="pdf2svg" + ns1:text="$r_2$" + ns1:preamble="/home/dennis/.config/inkscape/extensions/textext/default_packages.tex" + ns1:scale="3.13423513913" + ns1:alignment="middle center" + inkscapeversion="0.92.3" + ns1:jacobian_sqrt="1.105689" + style="fill:#4654d2;fill-opacity:0.64313725" + id="g5577"> + <g + id="g5575" + style="fill:#4654d2;fill-opacity:0.64313725"> + <g + style="fill:#4654d2;fill-opacity:0.64313725" + id="g5569"> + <path + inkscape:connector-curvature="0" + style="fill:#4654d2;fill-opacity:0.64313725;stroke:none;stroke-width:0" + d="m 0.875,-0.59375 c -0.03125,0.15625 -0.09375,0.390625 -0.09375,0.4375 0,0.171875 0.140625,0.265625 0.296875,0.265625 0.125,0 0.296875,-0.078125 0.375,-0.28125 C 1.46875,-0.203125 1.796875,-1.5625 1.84375,-1.75 c 0.078125,-0.328125 0.265625,-1.015625 0.3125,-1.296875 0.046875,-0.125 0.328125,-0.59375 0.5625,-0.8125 0.078125,-0.0625 0.375,-0.328125 0.796875,-0.328125 0.265625,0 0.40625,0.125 0.421875,0.125 -0.296875,0.046875 -0.515625,0.28125 -0.515625,0.546875 0,0.15625 0.109375,0.34375 0.375,0.34375 0.265625,0 0.546875,-0.234375 0.546875,-0.59375 0,-0.34375 -0.3125,-0.640625 -0.828125,-0.640625 C 2.875,-4.40625 2.4375,-3.921875 2.25,-3.640625 2.15625,-4.09375 1.796875,-4.40625 1.328125,-4.40625 0.875,-4.40625 0.6875,-4.015625 0.59375,-3.84375 0.421875,-3.5 0.296875,-2.90625 0.296875,-2.875 c 0,0.109375 0.09375,0.109375 0.109375,0.109375 0.109375,0 0.109375,-0.015625 0.171875,-0.234375 0.171875,-0.703125 0.375,-1.1875 0.734375,-1.1875 0.15625,0 0.296875,0.078125 0.296875,0.453125 0,0.21875 -0.03125,0.328125 -0.15625,0.84375 z m 0,0" + transform="translate(148.712,134.765)" + id="path5567" /> + </g> + <g + style="fill:#4654d2;fill-opacity:0.64313725" + id="g5573"> + <path + inkscape:connector-curvature="0" + style="fill:#4654d2;fill-opacity:0.64313725;stroke:none;stroke-width:0" + d="M 3.515625,-1.265625 H 3.28125 c -0.015625,0.15625 -0.09375,0.5625 -0.1875,0.625 C 3.046875,-0.59375 2.515625,-0.59375 2.40625,-0.59375 H 1.125 c 0.734375,-0.640625 0.984375,-0.84375 1.390625,-1.171875 0.515625,-0.40625 1,-0.84375 1,-1.5 0,-0.84375 -0.734375,-1.359375 -1.625,-1.359375 -0.859375,0 -1.453125,0.609375 -1.453125,1.25 0,0.34375 0.296875,0.390625 0.375,0.390625 0.15625,0 0.359375,-0.125 0.359375,-0.375 0,-0.125 -0.046875,-0.375 -0.40625,-0.375 C 0.984375,-4.21875 1.453125,-4.375 1.78125,-4.375 c 0.703125,0 1.0625,0.546875 1.0625,1.109375 0,0.609375 -0.4375,1.078125 -0.65625,1.328125 L 0.515625,-0.265625 C 0.4375,-0.203125 0.4375,-0.1875 0.4375,0 h 2.875 z m 0,0" + transform="translate(153.207,136.259)" + id="path5571" /> + </g> + </g> + </g> + <path + inkscape:connector-curvature="0" + id="path912-2-5" + d="M 123.93316,138.01517 158.62461,78.839869" + style="opacity:1;fill:none;stroke:#d48d46;stroke-width:1.465;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1" + sodipodi:nodetypes="cc" /> + <path + style="fill:none;stroke:#000000;stroke-width:0.26458332px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1" + d="m 144.44086,137.53471 c 3.27083,2.74827 6.54156,5.49646 7.77155,8.83859 1.23,3.34213 0.41912,7.27905 -0.39187,11.21654" + id="path1716" + inkscape:connector-curvature="0" + inkscape:path-effect="#path-effect1718" + inkscape:original-d="m 144.44086,137.53471 c 3.27136,2.74764 6.54209,5.49583 9.81225,8.24462 -0.81051,3.93614 -1.62138,7.87306 -2.43257,11.81051" + sodipodi:nodetypes="ccc" /> + <path + inkscape:connector-curvature="0" + id="path912-2" + d="m 112.09161,158.08607 36.30083,-23.22001" + style="fill:none;stroke:#178dad;stroke-width:0.76499999;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1" + sodipodi:nodetypes="cc" /> + <circle + transform="scale(-1)" + r="1.5" + cy="-134.6618" + cx="-148.54855" + id="path908-9" + style="opacity:1;fill:#178dad;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:2.27100015;stroke-linecap:round;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" /> + <g + id="g1676-2" + style="fill:#178dad;fill-opacity:1;stroke-width:2.11056685" + ns1:jacobian_sqrt="2.33363" + ns1:alignment="middle center" + ns1:scale="6.61501302105" + ns1:preamble="/home/dennis/.config/inkscape/extensions/textext/default_packages.tex" + ns1:text="$r$" + ns1:pdfconverter="pdf2svg" + ns1:texconverter="pdflatex" + ns1:version="0.9.0" + transform="matrix(1.1056887,0,0,1.1056887,-31.238772,-6.8181916)"> + <g + style="fill:#178dad;fill-opacity:1;stroke-width:2.11056685" + id="g1674-5"> + <g + id="g1672-4" + style="fill:#178dad;fill-opacity:1;stroke-width:2.11056685"> + <path + id="path1670-4" + transform="translate(148.712,134.765)" + d="m 0.875,-0.59375 c -0.03125,0.15625 -0.09375,0.390625 -0.09375,0.4375 0,0.171875 0.140625,0.265625 0.296875,0.265625 0.125,0 0.296875,-0.078125 0.375,-0.28125 C 1.46875,-0.203125 1.796875,-1.5625 1.84375,-1.75 c 0.078125,-0.328125 0.265625,-1.015625 0.3125,-1.296875 0.046875,-0.125 0.328125,-0.59375 0.5625,-0.8125 0.078125,-0.0625 0.375,-0.328125 0.796875,-0.328125 0.265625,0 0.40625,0.125 0.421875,0.125 -0.296875,0.046875 -0.515625,0.28125 -0.515625,0.546875 0,0.15625 0.109375,0.34375 0.375,0.34375 0.265625,0 0.546875,-0.234375 0.546875,-0.59375 0,-0.34375 -0.3125,-0.640625 -0.828125,-0.640625 C 2.875,-4.40625 2.4375,-3.921875 2.25,-3.640625 2.15625,-4.09375 1.796875,-4.40625 1.328125,-4.40625 0.875,-4.40625 0.6875,-4.015625 0.59375,-3.84375 0.421875,-3.5 0.296875,-2.90625 0.296875,-2.875 c 0,0.109375 0.09375,0.109375 0.109375,0.109375 0.109375,0 0.109375,-0.015625 0.171875,-0.234375 0.171875,-0.703125 0.375,-1.1875 0.734375,-1.1875 0.15625,0 0.296875,0.078125 0.296875,0.453125 0,0.21875 -0.03125,0.328125 -0.15625,0.84375 z m 0,0" + style="fill:#178dad;fill-opacity:1;stroke:none;stroke-width:0" + inkscape:connector-curvature="0" /> + </g> + </g> + </g> + <g + id="g1878" + style="fill:#178dad;fill-opacity:1" + ns1:jacobian_sqrt="1.105689" + ns1:alignment="middle center" + ns1:scale="3.13423513913" + ns1:preamble="/home/dennis/.config/inkscape/extensions/textext/default_packages.tex" + ns1:text="$\\varphi$" + ns1:pdfconverter="pdf2svg" + ns1:texconverter="pdflatex" + ns1:version="0.9.0" + transform="matrix(1.105689,0,0,1.105689,-21.20088,2.3554712)"> + <g + style="fill:#178dad;fill-opacity:1" + id="g1876"> + <g + id="g1874" + style="fill:#178dad;fill-opacity:1"> + <path + id="path1872" + transform="translate(148.712,134.765)" + d="M 1.6875,1.6875 C 1.65625,1.828125 1.640625,1.84375 1.640625,1.890625 c 0,0.21875 0.1875,0.28125 0.296875,0.28125 0.046875,0 0.265625,-0.03125 0.359375,-0.265625 C 2.328125,1.828125 2.375,1.5 2.65625,0.09375 c 0.078125,0 0.15625,0.015625 0.328125,0.015625 1.65625,0 3.1875,-1.5625 3.1875,-3.140625 0,-0.78125 -0.390625,-1.375 -1.140625,-1.375 -1.4375,0 -2.046875,1.9375 -2.640625,3.875 C 1.3125,-0.734375 0.75,-1.28125 0.75,-2 c 0,-0.28125 0.234375,-1.375 0.828125,-2.0625 0.09375,-0.09375 0.09375,-0.109375 0.09375,-0.140625 0,-0.03125 -0.03125,-0.09375 -0.125,-0.09375 -0.28125,0 -1.046875,1.453125 -1.046875,2.40625 0,0.9375 0.65625,1.65625 1.71875,1.90625 z m 1.390625,-2.15625 c -0.09375,0 -0.109375,0 -0.1875,-0.015625 -0.125,0 -0.125,0 -0.125,-0.03125 0,-0.015625 0.171875,-0.9375 0.1875,-1.078125 0.3125,-1.28125 1.09375,-2.234375 1.984375,-2.234375 0.6875,0 0.953125,0.53125 0.953125,1.015625 0,1.125 -1.28125,2.34375 -2.8125,2.34375 z m 0,0" + style="fill:#178dad;fill-opacity:1;stroke:none;stroke-width:0" + inkscape:connector-curvature="0" /> + </g> + </g> + </g> + <circle + transform="scale(-1)" + r="1" + cy="-158.00168" + cx="-112.13901" + id="path908" + style="opacity:1;fill:#00002e;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:2.27099991;stroke-linecap:round;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" /> + <circle + transform="scale(-1)" + r="3.8366563" + cy="-77.323669" + cx="-159.26662" + id="path908-99" + style="opacity:1;fill:#293af0;fill-opacity:1;fill-rule:evenodd;stroke:#ffffff;stroke-width:0.30000001;stroke-linecap:round;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" /> + <path + style="opacity:1;fill:#8b8f91;fill-opacity:0.3550725;fill-rule:evenodd;stroke:none;stroke-width:0.76499999;stroke-linecap:round;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" + d="m 243.95198,119.6994 c -4.14512,-0.17968 -8.13804,-1.69388 -11.43234,-4.33538 -0.76094,-0.61013 -2.20032,-2.05265 -2.80662,-2.81271 -0.96984,-1.21579 -1.53685,-2.11303 -2.24531,-3.55299 -1.05716,-2.14868 -1.63938,-4.25888 -1.84056,-6.67092 -0.0784,-0.94052 -0.0301,-2.837769 0.0961,-3.770505 0.55258,-4.084003 2.36048,-7.763631 5.24948,-10.684238 1.53141,-1.548153 3.12318,-2.699481 5.09984,-3.688707 2.12593,-1.063921 4.15784,-1.669563 6.62255,-1.973947 0.9641,-0.119066 3.40551,-0.119668 4.35057,-0.0011 3.93274,0.493515 7.18456,1.843125 10.17551,4.223166 0.72733,0.578773 2.27557,2.132727 2.86197,2.872531 2.27355,2.868332 3.56961,5.977224 4.00831,9.614816 0.10351,0.858218 0.11816,2.940614 0.0266,3.770514 -0.34576,3.13202 -1.34913,5.93106 -3.03161,8.45703 -1.96273,2.94673 -4.73987,5.30755 -7.99404,6.79565 -2.85509,1.3056 -5.9272,1.89606 -9.14043,1.75677 z m 1.82481,-13.74708 c 2.95564,-0.56068 4.78059,-3.51559 3.94725,-6.391276 -0.53243,-1.837285 -2.03874,-3.205074 -3.93515,-3.573263 -0.49081,-0.09529 -1.4265,-0.09172 -1.90405,0.0073 -2.04244,0.423344 -3.5816,1.955083 -3.9905,3.971298 -0.55863,2.754481 1.23551,5.433771 4.0093,5.987291 0.43944,0.0877 1.40755,0.087 1.87315,-0.001 z" + id="path1928-6" + inkscape:connector-curvature="0" /> + <ellipse + style="opacity:0.071;fill:none;fill-opacity:1;fill-rule:evenodd;stroke:#00000b;stroke-width:1.671;stroke-linecap:round;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" + id="path826-6" + cx="244.85802" + cy="157.90849" + rx="4.4703846" + ry="4.4645724" /> + <ellipse + style="opacity:0.071;fill:none;fill-opacity:1;fill-rule:evenodd;stroke:#00000b;stroke-width:1.671;stroke-linecap:round;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" + id="path826-1-1" + cx="244.88396" + cy="157.85402" + rx="18.1595" + ry="17.675903" /> + <path + inkscape:connector-curvature="0" + id="path912-2-5-9" + d="m 246.81082,154.72247 7.04429,-11.97289" + style="opacity:1;fill:none;stroke:#d48d46;stroke-width:1.66499996;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1" + sodipodi:nodetypes="cc" /> + <g + id="g6283" + ns1:jacobian_sqrt="1.105689" + inkscapeversion="0.92.3" + ns1:alignment="middle center" + ns1:scale="3.13423513913" + ns1:preamble="/home/dennis/.config/inkscape/extensions/textext/default_packages.tex" + ns1:text="2d model domain" + ns1:pdfconverter="pdf2svg" + ns1:texconverter="pdflatex" + ns1:version="0.9.0" + transform="matrix(1.105689,0,0,1.105689,108.9306,-44.322136)"> + <g + id="g6281"> + <g + id="g6251" + style="fill:#000000;fill-opacity:1"> + <path + id="path6247" + transform="translate(148.712,134.765)" + d="m 1.265625,-0.765625 1.0625,-1.03125 c 1.546875,-1.375 2.140625,-1.90625 2.140625,-2.90625 0,-1.140625 -0.890625,-1.9375 -2.109375,-1.9375 -1.125,0 -1.859375,0.921875 -1.859375,1.8125 0,0.546875 0.5,0.546875 0.53125,0.546875 0.171875,0 0.515625,-0.109375 0.515625,-0.53125 0,-0.25 -0.1875,-0.515625 -0.53125,-0.515625 -0.078125,0 -0.09375,0 -0.125,0.015625 0.21875,-0.65625 0.765625,-1.015625 1.34375,-1.015625 0.90625,0 1.328125,0.8125 1.328125,1.625 C 3.5625,-3.90625 3.078125,-3.125 2.515625,-2.5 l -1.90625,2.125 C 0.5,-0.265625 0.5,-0.234375 0.5,0 H 4.203125 L 4.46875,-1.734375 H 4.234375 C 4.171875,-1.4375 4.109375,-1 4,-0.84375 3.9375,-0.765625 3.28125,-0.765625 3.0625,-0.765625 Z m 0,0" + style="stroke:none;stroke-width:0" + inkscape:connector-curvature="0" /> + <path + id="path6249" + transform="translate(153.6933,134.765)" + d="m 3.78125,-0.546875 v 0.65625 L 5.25,0 v -0.3125 c -0.6875,0 -0.78125,-0.0625 -0.78125,-0.5625 V -6.921875 L 3.046875,-6.8125 V -6.5 c 0.6875,0 0.765625,0.0625 0.765625,0.5625 v 2.15625 c -0.28125,-0.359375 -0.71875,-0.625 -1.25,-0.625 -1.171875,0 -2.21875,0.984375 -2.21875,2.265625 0,1.265625 0.96875,2.25 2.109375,2.25 0.640625,0 1.078125,-0.34375 1.328125,-0.65625 z m 0,-2.671875 v 2.046875 c 0,0.171875 0,0.1875 -0.109375,0.359375 C 3.375,-0.328125 2.9375,-0.109375 2.5,-0.109375 2.046875,-0.109375 1.6875,-0.375 1.453125,-0.75 1.203125,-1.15625 1.171875,-1.71875 1.171875,-2.140625 1.171875,-2.5 1.1875,-3.09375 1.46875,-3.546875 1.6875,-3.859375 2.0625,-4.1875 2.609375,-4.1875 c 0.34375,0 0.765625,0.15625 1.0625,0.59375 0.109375,0.171875 0.109375,0.1875 0.109375,0.375 z m 0,0" + style="stroke:none;stroke-width:0" + inkscape:connector-curvature="0" /> + </g> + <g + id="g6257" + style="fill:#000000;fill-opacity:1"> + <path + id="path6253" + transform="translate(162.54607,134.765)" + d="M 1.09375,-3.421875 V -0.75 c 0,0.4375 -0.109375,0.4375 -0.78125,0.4375 V 0 c 0.359375,-0.015625 0.859375,-0.03125 1.140625,-0.03125 0.25,0 0.765625,0.015625 1.109375,0.03125 v -0.3125 c -0.671875,0 -0.78125,0 -0.78125,-0.4375 V -2.59375 C 1.78125,-3.625 2.5,-4.1875 3.125,-4.1875 c 0.640625,0 0.75,0.53125 0.75,1.109375 V -0.75 c 0,0.4375 -0.109375,0.4375 -0.78125,0.4375 V 0 c 0.34375,-0.015625 0.859375,-0.03125 1.125,-0.03125 0.25,0 0.78125,0.015625 1.109375,0.03125 v -0.3125 c -0.65625,0 -0.765625,0 -0.765625,-0.4375 v -1.84375 c 0,-1.03125 0.703125,-1.59375 1.34375,-1.59375 0.625,0 0.734375,0.53125 0.734375,1.109375 V -0.75 c 0,0.4375 -0.109375,0.4375 -0.78125,0.4375 V 0 c 0.34375,-0.015625 0.859375,-0.03125 1.125,-0.03125 0.265625,0 0.78125,0.015625 1.125,0.03125 v -0.3125 c -0.515625,0 -0.765625,0 -0.78125,-0.296875 v -1.90625 c 0,-0.859375 0,-1.15625 -0.3125,-1.515625 -0.140625,-0.171875 -0.46875,-0.375 -1.046875,-0.375 -0.828125,0 -1.28125,0.59375 -1.4375,0.984375 C 4.390625,-4.296875 3.65625,-4.40625 3.203125,-4.40625 2.46875,-4.40625 2,-3.984375 1.71875,-3.359375 V -4.40625 L 0.3125,-4.296875 v 0.3125 c 0.703125,0 0.78125,0.0625 0.78125,0.5625 z m 0,0" + style="stroke:none;stroke-width:0" + inkscape:connector-curvature="0" /> + <path + id="path6255" + transform="translate(170.8479,134.765)" + d="M 4.6875,-2.140625 C 4.6875,-3.40625 3.703125,-4.46875 2.5,-4.46875 c -1.25,0 -2.21875,1.09375 -2.21875,2.328125 0,1.296875 1.03125,2.25 2.203125,2.25 1.203125,0 2.203125,-0.984375 2.203125,-2.25 z m -2.1875,2 c -0.4375,0 -0.875,-0.203125 -1.140625,-0.671875 -0.25,-0.4375 -0.25,-1.046875 -0.25,-1.40625 0,-0.390625 0,-0.921875 0.234375,-1.359375 C 1.609375,-4.03125 2.078125,-4.25 2.484375,-4.25 c 0.4375,0 0.859375,0.21875 1.125,0.65625 0.265625,0.421875 0.265625,1 0.265625,1.375 0,0.359375 0,0.90625 -0.21875,1.34375 C 3.421875,-0.421875 2.984375,-0.140625 2.5,-0.140625 Z m 0,0" + style="stroke:none;stroke-width:0" + inkscape:connector-curvature="0" /> + </g> + <g + id="g6265" + style="fill:#000000;fill-opacity:1"> + <path + id="path6259" + transform="translate(176.10815,134.765)" + d="m 3.78125,-0.546875 v 0.65625 L 5.25,0 v -0.3125 c -0.6875,0 -0.78125,-0.0625 -0.78125,-0.5625 V -6.921875 L 3.046875,-6.8125 V -6.5 c 0.6875,0 0.765625,0.0625 0.765625,0.5625 v 2.15625 c -0.28125,-0.359375 -0.71875,-0.625 -1.25,-0.625 -1.171875,0 -2.21875,0.984375 -2.21875,2.265625 0,1.265625 0.96875,2.25 2.109375,2.25 0.640625,0 1.078125,-0.34375 1.328125,-0.65625 z m 0,-2.671875 v 2.046875 c 0,0.171875 0,0.1875 -0.109375,0.359375 C 3.375,-0.328125 2.9375,-0.109375 2.5,-0.109375 2.046875,-0.109375 1.6875,-0.375 1.453125,-0.75 1.203125,-1.15625 1.171875,-1.71875 1.171875,-2.140625 1.171875,-2.5 1.1875,-3.09375 1.46875,-3.546875 1.6875,-3.859375 2.0625,-4.1875 2.609375,-4.1875 c 0.34375,0 0.765625,0.15625 1.0625,0.59375 0.109375,0.171875 0.109375,0.1875 0.109375,0.375 z m 0,0" + style="stroke:none;stroke-width:0" + inkscape:connector-curvature="0" /> + <path + id="path6261" + transform="translate(181.64337,134.765)" + d="M 1.109375,-2.515625 C 1.171875,-4 2.015625,-4.25 2.359375,-4.25 c 1.015625,0 1.125,1.34375 1.125,1.734375 z m 0,0.21875 h 2.78125 c 0.21875,0 0.25,0 0.25,-0.21875 0,-0.984375 -0.546875,-1.953125 -1.78125,-1.953125 -1.15625,0 -2.078125,1.03125 -2.078125,2.28125 0,1.328125 1.046875,2.296875 2.1875,2.296875 C 3.6875,0.109375 4.140625,-1 4.140625,-1.1875 4.140625,-1.28125 4.0625,-1.3125 4,-1.3125 c -0.078125,0 -0.109375,0.0625 -0.125,0.140625 -0.34375,1.03125 -1.25,1.03125 -1.34375,1.03125 -0.5,0 -0.890625,-0.296875 -1.125,-0.671875 -0.296875,-0.46875 -0.296875,-1.125 -0.296875,-1.484375 z m 0,0" + style="stroke:none;stroke-width:0" + inkscape:connector-curvature="0" /> + <path + id="path6263" + transform="translate(186.07075,134.765)" + d="M 1.765625,-6.921875 0.328125,-6.8125 V -6.5 c 0.703125,0 0.78125,0.0625 0.78125,0.5625 V -0.75 c 0,0.4375 -0.109375,0.4375 -0.78125,0.4375 V 0 C 0.65625,-0.015625 1.1875,-0.03125 1.4375,-0.03125 c 0.25,0 0.734375,0.015625 1.109375,0.03125 v -0.3125 c -0.671875,0 -0.78125,0 -0.78125,-0.4375 z m 0,0" + style="stroke:none;stroke-width:0" + inkscape:connector-curvature="0" /> + </g> + <g + id="g6279" + style="fill:#000000;fill-opacity:1"> + <path + id="path6267" + transform="translate(192.15591,134.765)" + d="m 3.78125,-0.546875 v 0.65625 L 5.25,0 v -0.3125 c -0.6875,0 -0.78125,-0.0625 -0.78125,-0.5625 V -6.921875 L 3.046875,-6.8125 V -6.5 c 0.6875,0 0.765625,0.0625 0.765625,0.5625 v 2.15625 c -0.28125,-0.359375 -0.71875,-0.625 -1.25,-0.625 -1.171875,0 -2.21875,0.984375 -2.21875,2.265625 0,1.265625 0.96875,2.25 2.109375,2.25 0.640625,0 1.078125,-0.34375 1.328125,-0.65625 z m 0,-2.671875 v 2.046875 c 0,0.171875 0,0.1875 -0.109375,0.359375 C 3.375,-0.328125 2.9375,-0.109375 2.5,-0.109375 2.046875,-0.109375 1.6875,-0.375 1.453125,-0.75 1.203125,-1.15625 1.171875,-1.71875 1.171875,-2.140625 1.171875,-2.5 1.1875,-3.09375 1.46875,-3.546875 1.6875,-3.859375 2.0625,-4.1875 2.609375,-4.1875 c 0.34375,0 0.765625,0.15625 1.0625,0.59375 0.109375,0.171875 0.109375,0.1875 0.109375,0.375 z m 0,0" + style="stroke:none;stroke-width:0" + inkscape:connector-curvature="0" /> + <path + id="path6269" + transform="translate(197.69113,134.765)" + d="M 4.6875,-2.140625 C 4.6875,-3.40625 3.703125,-4.46875 2.5,-4.46875 c -1.25,0 -2.21875,1.09375 -2.21875,2.328125 0,1.296875 1.03125,2.25 2.203125,2.25 1.203125,0 2.203125,-0.984375 2.203125,-2.25 z m -2.1875,2 c -0.4375,0 -0.875,-0.203125 -1.140625,-0.671875 -0.25,-0.4375 -0.25,-1.046875 -0.25,-1.40625 0,-0.390625 0,-0.921875 0.234375,-1.359375 C 1.609375,-4.03125 2.078125,-4.25 2.484375,-4.25 c 0.4375,0 0.859375,0.21875 1.125,0.65625 0.265625,0.421875 0.265625,1 0.265625,1.375 0,0.359375 0,0.90625 -0.21875,1.34375 C 3.421875,-0.421875 2.984375,-0.140625 2.5,-0.140625 Z m 0,0" + style="stroke:none;stroke-width:0" + inkscape:connector-curvature="0" /> + <path + id="path6271" + transform="translate(202.67243,134.765)" + d="M 1.09375,-3.421875 V -0.75 c 0,0.4375 -0.109375,0.4375 -0.78125,0.4375 V 0 c 0.359375,-0.015625 0.859375,-0.03125 1.140625,-0.03125 0.25,0 0.765625,0.015625 1.109375,0.03125 v -0.3125 c -0.671875,0 -0.78125,0 -0.78125,-0.4375 V -2.59375 C 1.78125,-3.625 2.5,-4.1875 3.125,-4.1875 c 0.640625,0 0.75,0.53125 0.75,1.109375 V -0.75 c 0,0.4375 -0.109375,0.4375 -0.78125,0.4375 V 0 c 0.34375,-0.015625 0.859375,-0.03125 1.125,-0.03125 0.25,0 0.78125,0.015625 1.109375,0.03125 v -0.3125 c -0.65625,0 -0.765625,0 -0.765625,-0.4375 v -1.84375 c 0,-1.03125 0.703125,-1.59375 1.34375,-1.59375 0.625,0 0.734375,0.53125 0.734375,1.109375 V -0.75 c 0,0.4375 -0.109375,0.4375 -0.78125,0.4375 V 0 c 0.34375,-0.015625 0.859375,-0.03125 1.125,-0.03125 0.265625,0 0.78125,0.015625 1.125,0.03125 v -0.3125 c -0.515625,0 -0.765625,0 -0.78125,-0.296875 v -1.90625 c 0,-0.859375 0,-1.15625 -0.3125,-1.515625 -0.140625,-0.171875 -0.46875,-0.375 -1.046875,-0.375 -0.828125,0 -1.28125,0.59375 -1.4375,0.984375 C 4.390625,-4.296875 3.65625,-4.40625 3.203125,-4.40625 2.46875,-4.40625 2,-3.984375 1.71875,-3.359375 V -4.40625 L 0.3125,-4.296875 v 0.3125 c 0.703125,0 0.78125,0.0625 0.78125,0.5625 z m 0,0" + style="stroke:none;stroke-width:0" + inkscape:connector-curvature="0" /> + <path + id="path6273" + transform="translate(210.97426,134.765)" + d="m 3.3125,-0.75 c 0.046875,0.390625 0.3125,0.8125 0.78125,0.8125 0.21875,0 0.828125,-0.140625 0.828125,-0.953125 v -0.5625 h -0.25 v 0.5625 c 0,0.578125 -0.25,0.640625 -0.359375,0.640625 -0.328125,0 -0.375,-0.453125 -0.375,-0.5 v -1.984375 c 0,-0.421875 0,-0.8125 -0.359375,-1.1875 C 3.1875,-4.3125 2.6875,-4.46875 2.21875,-4.46875 c -0.828125,0 -1.515625,0.46875 -1.515625,1.125 0,0.296875 0.203125,0.46875 0.46875,0.46875 0.28125,0 0.453125,-0.203125 0.453125,-0.453125 0,-0.125 -0.046875,-0.453125 -0.515625,-0.453125 C 1.390625,-4.140625 1.875,-4.25 2.1875,-4.25 c 0.5,0 1.0625,0.390625 1.0625,1.28125 v 0.359375 c -0.515625,0.03125 -1.203125,0.0625 -1.828125,0.359375 -0.75,0.34375 -1,0.859375 -1,1.296875 0,0.8125 0.96875,1.0625 1.59375,1.0625 0.65625,0 1.109375,-0.40625 1.296875,-0.859375 z M 3.25,-2.390625 v 1 c 0,0.9375 -0.71875,1.28125 -1.171875,1.28125 -0.484375,0 -0.890625,-0.34375 -0.890625,-0.84375 0,-0.546875 0.421875,-1.375 2.0625,-1.4375 z m 0,0" + style="stroke:none;stroke-width:0" + inkscape:connector-curvature="0" /> + <path + id="path6275" + transform="translate(215.95556,134.765)" + d="M 1.765625,-4.40625 0.375,-4.296875 v 0.3125 c 0.640625,0 0.734375,0.0625 0.734375,0.546875 V -0.75 c 0,0.4375 -0.109375,0.4375 -0.78125,0.4375 V 0 C 0.640625,-0.015625 1.1875,-0.03125 1.421875,-0.03125 1.78125,-0.03125 2.125,-0.015625 2.46875,0 v -0.3125 c -0.671875,0 -0.703125,-0.046875 -0.703125,-0.4375 z m 0.03125,-1.734375 c 0,-0.3125 -0.234375,-0.53125 -0.515625,-0.53125 -0.3125,0 -0.53125,0.265625 -0.53125,0.53125 0,0.265625 0.21875,0.53125 0.53125,0.53125 0.28125,0 0.515625,-0.21875 0.515625,-0.53125 z m 0,0" + style="stroke:none;stroke-width:0" + inkscape:connector-curvature="0" /> + <path + id="path6277" + transform="translate(218.72317,134.765)" + d="M 1.09375,-3.421875 V -0.75 c 0,0.4375 -0.109375,0.4375 -0.78125,0.4375 V 0 c 0.359375,-0.015625 0.859375,-0.03125 1.140625,-0.03125 0.25,0 0.765625,0.015625 1.109375,0.03125 v -0.3125 c -0.671875,0 -0.78125,0 -0.78125,-0.4375 V -2.59375 C 1.78125,-3.625 2.5,-4.1875 3.125,-4.1875 c 0.640625,0 0.75,0.53125 0.75,1.109375 V -0.75 c 0,0.4375 -0.109375,0.4375 -0.78125,0.4375 V 0 c 0.34375,-0.015625 0.859375,-0.03125 1.125,-0.03125 0.25,0 0.78125,0.015625 1.109375,0.03125 v -0.3125 c -0.515625,0 -0.765625,0 -0.765625,-0.296875 v -1.90625 c 0,-0.859375 0,-1.15625 -0.3125,-1.515625 -0.140625,-0.171875 -0.46875,-0.375 -1.046875,-0.375 C 2.46875,-4.40625 2,-3.984375 1.71875,-3.359375 V -4.40625 L 0.3125,-4.296875 v 0.3125 c 0.703125,0 0.78125,0.0625 0.78125,0.5625 z m 0,0" + style="stroke:none;stroke-width:0" + inkscape:connector-curvature="0" /> + </g> + </g> + </g> + <g + transform="matrix(1.105689,0,0,1.105689,108.49869,11.601321)" + ns1:version="0.9.0" + ns1:texconverter="pdflatex" + ns1:pdfconverter="pdf2svg" + ns1:text="1d computational domain" + ns1:preamble="/home/dennis/.config/inkscape/extensions/textext/default_packages.tex" + ns1:scale="3.13423513913" + ns1:alignment="middle center" + inkscapeversion="0.92.3" + ns1:jacobian_sqrt="1.105689" + id="g6610"> + <g + id="g6608"> + <g + style="fill:#000000;fill-opacity:1" + id="g6564"> + <path + inkscape:connector-curvature="0" + style="stroke:none;stroke-width:0" + d="m 2.9375,-6.375 c 0,-0.25 0,-0.265625 -0.234375,-0.265625 C 2.078125,-6 1.203125,-6 0.890625,-6 v 0.3125 c 0.203125,0 0.78125,0 1.296875,-0.265625 v 5.171875 c 0,0.359375 -0.03125,0.46875 -0.921875,0.46875 h -0.3125 V 0 c 0.34375,-0.03125 1.203125,-0.03125 1.609375,-0.03125 0.390625,0 1.265625,0 1.609375,0.03125 v -0.3125 h -0.3125 c -0.90625,0 -0.921875,-0.109375 -0.921875,-0.46875 z m 0,0" + transform="translate(148.712,134.765)" + id="path6560" /> + <path + inkscape:connector-curvature="0" + style="stroke:none;stroke-width:0" + d="m 3.78125,-0.546875 v 0.65625 L 5.25,0 v -0.3125 c -0.6875,0 -0.78125,-0.0625 -0.78125,-0.5625 V -6.921875 L 3.046875,-6.8125 V -6.5 c 0.6875,0 0.765625,0.0625 0.765625,0.5625 v 2.15625 c -0.28125,-0.359375 -0.71875,-0.625 -1.25,-0.625 -1.171875,0 -2.21875,0.984375 -2.21875,2.265625 0,1.265625 0.96875,2.25 2.109375,2.25 0.640625,0 1.078125,-0.34375 1.328125,-0.65625 z m 0,-2.671875 v 2.046875 c 0,0.171875 0,0.1875 -0.109375,0.359375 C 3.375,-0.328125 2.9375,-0.109375 2.5,-0.109375 2.046875,-0.109375 1.6875,-0.375 1.453125,-0.75 1.203125,-1.15625 1.171875,-1.71875 1.171875,-2.140625 1.171875,-2.5 1.1875,-3.09375 1.46875,-3.546875 1.6875,-3.859375 2.0625,-4.1875 2.609375,-4.1875 c 0.34375,0 0.765625,0.15625 1.0625,0.59375 0.109375,0.171875 0.109375,0.1875 0.109375,0.375 z m 0,0" + transform="translate(153.6933,134.765)" + id="path6562" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g6592"> + <path + inkscape:connector-curvature="0" + style="stroke:none;stroke-width:0" + d="m 1.171875,-2.171875 c 0,-1.625 0.8125,-2.046875 1.34375,-2.046875 0.09375,0 0.71875,0.015625 1.0625,0.375 -0.40625,0.03125 -0.46875,0.328125 -0.46875,0.453125 0,0.265625 0.1875,0.453125 0.453125,0.453125 0.265625,0 0.46875,-0.15625 0.46875,-0.46875 0,-0.671875 -0.765625,-1.0625 -1.53125,-1.0625 -1.25,0 -2.15625,1.078125 -2.15625,2.3125 0,1.28125 0.984375,2.265625 2.140625,2.265625 1.328125,0 1.65625,-1.203125 1.65625,-1.296875 0,-0.09375 -0.109375,-0.09375 -0.140625,-0.09375 -0.078125,0 -0.109375,0.03125 -0.125,0.09375 -0.28125,0.921875 -0.9375,1.046875 -1.296875,1.046875 -0.53125,0 -1.40625,-0.421875 -1.40625,-2.03125 z m 0,0" + transform="translate(162.54607,134.765)" + id="path6566" /> + <path + inkscape:connector-curvature="0" + style="stroke:none;stroke-width:0" + d="M 4.6875,-2.140625 C 4.6875,-3.40625 3.703125,-4.46875 2.5,-4.46875 c -1.25,0 -2.21875,1.09375 -2.21875,2.328125 0,1.296875 1.03125,2.25 2.203125,2.25 1.203125,0 2.203125,-0.984375 2.203125,-2.25 z m -2.1875,2 c -0.4375,0 -0.875,-0.203125 -1.140625,-0.671875 -0.25,-0.4375 -0.25,-1.046875 -0.25,-1.40625 0,-0.390625 0,-0.921875 0.234375,-1.359375 C 1.609375,-4.03125 2.078125,-4.25 2.484375,-4.25 c 0.4375,0 0.859375,0.21875 1.125,0.65625 0.265625,0.421875 0.265625,1 0.265625,1.375 0,0.359375 0,0.90625 -0.21875,1.34375 C 3.421875,-0.421875 2.984375,-0.140625 2.5,-0.140625 Z m 0,0" + transform="translate(166.97345,134.765)" + id="path6568" /> + <path + inkscape:connector-curvature="0" + style="stroke:none;stroke-width:0" + d="M 1.09375,-3.421875 V -0.75 c 0,0.4375 -0.109375,0.4375 -0.78125,0.4375 V 0 c 0.359375,-0.015625 0.859375,-0.03125 1.140625,-0.03125 0.25,0 0.765625,0.015625 1.109375,0.03125 v -0.3125 c -0.671875,0 -0.78125,0 -0.78125,-0.4375 V -2.59375 C 1.78125,-3.625 2.5,-4.1875 3.125,-4.1875 c 0.640625,0 0.75,0.53125 0.75,1.109375 V -0.75 c 0,0.4375 -0.109375,0.4375 -0.78125,0.4375 V 0 c 0.34375,-0.015625 0.859375,-0.03125 1.125,-0.03125 0.25,0 0.78125,0.015625 1.109375,0.03125 v -0.3125 c -0.65625,0 -0.765625,0 -0.765625,-0.4375 v -1.84375 c 0,-1.03125 0.703125,-1.59375 1.34375,-1.59375 0.625,0 0.734375,0.53125 0.734375,1.109375 V -0.75 c 0,0.4375 -0.109375,0.4375 -0.78125,0.4375 V 0 c 0.34375,-0.015625 0.859375,-0.03125 1.125,-0.03125 0.265625,0 0.78125,0.015625 1.125,0.03125 v -0.3125 c -0.515625,0 -0.765625,0 -0.78125,-0.296875 v -1.90625 c 0,-0.859375 0,-1.15625 -0.3125,-1.515625 -0.140625,-0.171875 -0.46875,-0.375 -1.046875,-0.375 -0.828125,0 -1.28125,0.59375 -1.4375,0.984375 C 4.390625,-4.296875 3.65625,-4.40625 3.203125,-4.40625 2.46875,-4.40625 2,-3.984375 1.71875,-3.359375 V -4.40625 L 0.3125,-4.296875 v 0.3125 c 0.703125,0 0.78125,0.0625 0.78125,0.5625 z m 0,0" + transform="translate(171.95475,134.765)" + id="path6570" /> + <path + inkscape:connector-curvature="0" + style="stroke:none;stroke-width:0" + d="m 1.71875,-3.75 v -0.65625 l -1.4375,0.109375 v 0.3125 c 0.703125,0 0.78125,0.0625 0.78125,0.5 v 4.65625 C 1.0625,1.625 0.953125,1.625 0.28125,1.625 V 1.9375 C 0.625,1.921875 1.140625,1.90625 1.390625,1.90625 c 0.28125,0 0.78125,0.015625 1.125,0.03125 V 1.625 C 1.859375,1.625 1.75,1.625 1.75,1.171875 V -0.59375 c 0.046875,0.171875 0.46875,0.703125 1.21875,0.703125 1.1875,0 2.21875,-0.984375 2.21875,-2.265625 0,-1.265625 -0.953125,-2.25 -2.078125,-2.25 -0.78125,0 -1.203125,0.4375 -1.390625,0.65625 z M 1.75,-1.140625 v -2.21875 C 2.03125,-3.875 2.515625,-4.15625 3.03125,-4.15625 c 0.734375,0 1.328125,0.875 1.328125,2 0,1.203125 -0.6875,2.046875 -1.421875,2.046875 -0.40625,0 -0.78125,-0.203125 -1.046875,-0.609375 C 1.75,-0.921875 1.75,-0.9375 1.75,-1.140625 Z m 0,0" + transform="translate(180.25658,134.765)" + id="path6572" /> + <path + inkscape:connector-curvature="0" + style="stroke:none;stroke-width:0" + d="M 3.890625,-0.78125 V 0.109375 L 5.328125,0 V -0.3125 C 4.640625,-0.3125 4.5625,-0.375 4.5625,-0.875 v -3.53125 l -1.46875,0.109375 v 0.3125 c 0.6875,0 0.78125,0.0625 0.78125,0.5625 v 1.765625 c 0,0.875 -0.484375,1.546875 -1.21875,1.546875 -0.828125,0 -0.875,-0.46875 -0.875,-0.984375 v -3.3125 L 0.3125,-4.296875 v 0.3125 c 0.78125,0 0.78125,0.03125 0.78125,0.90625 v 1.5 c 0,0.78125 0,1.6875 1.515625,1.6875 0.5625,0 1,-0.28125 1.28125,-0.890625 z m 0,0" + transform="translate(185.7918,134.765)" + id="path6574" /> + <path + inkscape:connector-curvature="0" + style="stroke:none;stroke-width:0" + d="m 1.71875,-3.984375 h 1.4375 v -0.3125 H 1.71875 V -6.125 h -0.25 c 0,0.8125 -0.296875,1.875 -1.28125,1.921875 v 0.21875 h 0.84375 v 2.75 c 0,1.21875 0.9375,1.34375 1.296875,1.34375 0.703125,0 0.984375,-0.703125 0.984375,-1.34375 v -0.5625 h -0.25 V -1.25 c 0,0.734375 -0.296875,1.109375 -0.671875,1.109375 -0.671875,0 -0.671875,-0.90625 -0.671875,-1.078125 z m 0,0" + transform="translate(191.32702,134.765)" + id="path6576" /> + <path + inkscape:connector-curvature="0" + style="stroke:none;stroke-width:0" + d="m 3.3125,-0.75 c 0.046875,0.390625 0.3125,0.8125 0.78125,0.8125 0.21875,0 0.828125,-0.140625 0.828125,-0.953125 v -0.5625 h -0.25 v 0.5625 c 0,0.578125 -0.25,0.640625 -0.359375,0.640625 -0.328125,0 -0.375,-0.453125 -0.375,-0.5 v -1.984375 c 0,-0.421875 0,-0.8125 -0.359375,-1.1875 C 3.1875,-4.3125 2.6875,-4.46875 2.21875,-4.46875 c -0.828125,0 -1.515625,0.46875 -1.515625,1.125 0,0.296875 0.203125,0.46875 0.46875,0.46875 0.28125,0 0.453125,-0.203125 0.453125,-0.453125 0,-0.125 -0.046875,-0.453125 -0.515625,-0.453125 C 1.390625,-4.140625 1.875,-4.25 2.1875,-4.25 c 0.5,0 1.0625,0.390625 1.0625,1.28125 v 0.359375 c -0.515625,0.03125 -1.203125,0.0625 -1.828125,0.359375 -0.75,0.34375 -1,0.859375 -1,1.296875 0,0.8125 0.96875,1.0625 1.59375,1.0625 0.65625,0 1.109375,-0.40625 1.296875,-0.859375 z M 3.25,-2.390625 v 1 c 0,0.9375 -0.71875,1.28125 -1.171875,1.28125 -0.484375,0 -0.890625,-0.34375 -0.890625,-0.84375 0,-0.546875 0.421875,-1.375 2.0625,-1.4375 z m 0,0" + transform="translate(195.20148,134.765)" + id="path6578" /> + <path + inkscape:connector-curvature="0" + style="stroke:none;stroke-width:0" + d="m 1.71875,-3.984375 h 1.4375 v -0.3125 H 1.71875 V -6.125 h -0.25 c 0,0.8125 -0.296875,1.875 -1.28125,1.921875 v 0.21875 h 0.84375 v 2.75 c 0,1.21875 0.9375,1.34375 1.296875,1.34375 0.703125,0 0.984375,-0.703125 0.984375,-1.34375 v -0.5625 h -0.25 V -1.25 c 0,0.734375 -0.296875,1.109375 -0.671875,1.109375 -0.671875,0 -0.671875,-0.90625 -0.671875,-1.078125 z m 0,0" + transform="translate(200.18278,134.765)" + id="path6580" /> + <path + inkscape:connector-curvature="0" + style="stroke:none;stroke-width:0" + d="M 1.765625,-4.40625 0.375,-4.296875 v 0.3125 c 0.640625,0 0.734375,0.0625 0.734375,0.546875 V -0.75 c 0,0.4375 -0.109375,0.4375 -0.78125,0.4375 V 0 C 0.640625,-0.015625 1.1875,-0.03125 1.421875,-0.03125 1.78125,-0.03125 2.125,-0.015625 2.46875,0 v -0.3125 c -0.671875,0 -0.703125,-0.046875 -0.703125,-0.4375 z m 0.03125,-1.734375 c 0,-0.3125 -0.234375,-0.53125 -0.515625,-0.53125 -0.3125,0 -0.53125,0.265625 -0.53125,0.53125 0,0.265625 0.21875,0.53125 0.53125,0.53125 0.28125,0 0.515625,-0.21875 0.515625,-0.53125 z m 0,0" + transform="translate(204.05723,134.765)" + id="path6582" /> + <path + inkscape:connector-curvature="0" + style="stroke:none;stroke-width:0" + d="M 4.6875,-2.140625 C 4.6875,-3.40625 3.703125,-4.46875 2.5,-4.46875 c -1.25,0 -2.21875,1.09375 -2.21875,2.328125 0,1.296875 1.03125,2.25 2.203125,2.25 1.203125,0 2.203125,-0.984375 2.203125,-2.25 z m -2.1875,2 c -0.4375,0 -0.875,-0.203125 -1.140625,-0.671875 -0.25,-0.4375 -0.25,-1.046875 -0.25,-1.40625 0,-0.390625 0,-0.921875 0.234375,-1.359375 C 1.609375,-4.03125 2.078125,-4.25 2.484375,-4.25 c 0.4375,0 0.859375,0.21875 1.125,0.65625 0.265625,0.421875 0.265625,1 0.265625,1.375 0,0.359375 0,0.90625 -0.21875,1.34375 C 3.421875,-0.421875 2.984375,-0.140625 2.5,-0.140625 Z m 0,0" + transform="translate(206.82484,134.765)" + id="path6584" /> + <path + inkscape:connector-curvature="0" + style="stroke:none;stroke-width:0" + d="M 1.09375,-3.421875 V -0.75 c 0,0.4375 -0.109375,0.4375 -0.78125,0.4375 V 0 c 0.359375,-0.015625 0.859375,-0.03125 1.140625,-0.03125 0.25,0 0.765625,0.015625 1.109375,0.03125 v -0.3125 c -0.671875,0 -0.78125,0 -0.78125,-0.4375 V -2.59375 C 1.78125,-3.625 2.5,-4.1875 3.125,-4.1875 c 0.640625,0 0.75,0.53125 0.75,1.109375 V -0.75 c 0,0.4375 -0.109375,0.4375 -0.78125,0.4375 V 0 c 0.34375,-0.015625 0.859375,-0.03125 1.125,-0.03125 0.25,0 0.78125,0.015625 1.109375,0.03125 v -0.3125 c -0.515625,0 -0.765625,0 -0.765625,-0.296875 v -1.90625 c 0,-0.859375 0,-1.15625 -0.3125,-1.515625 -0.140625,-0.171875 -0.46875,-0.375 -1.046875,-0.375 C 2.46875,-4.40625 2,-3.984375 1.71875,-3.359375 V -4.40625 L 0.3125,-4.296875 v 0.3125 c 0.703125,0 0.78125,0.0625 0.78125,0.5625 z m 0,0" + transform="translate(211.80614,134.765)" + id="path6586" /> + <path + inkscape:connector-curvature="0" + style="stroke:none;stroke-width:0" + d="m 3.3125,-0.75 c 0.046875,0.390625 0.3125,0.8125 0.78125,0.8125 0.21875,0 0.828125,-0.140625 0.828125,-0.953125 v -0.5625 h -0.25 v 0.5625 c 0,0.578125 -0.25,0.640625 -0.359375,0.640625 -0.328125,0 -0.375,-0.453125 -0.375,-0.5 v -1.984375 c 0,-0.421875 0,-0.8125 -0.359375,-1.1875 C 3.1875,-4.3125 2.6875,-4.46875 2.21875,-4.46875 c -0.828125,0 -1.515625,0.46875 -1.515625,1.125 0,0.296875 0.203125,0.46875 0.46875,0.46875 0.28125,0 0.453125,-0.203125 0.453125,-0.453125 0,-0.125 -0.046875,-0.453125 -0.515625,-0.453125 C 1.390625,-4.140625 1.875,-4.25 2.1875,-4.25 c 0.5,0 1.0625,0.390625 1.0625,1.28125 v 0.359375 c -0.515625,0.03125 -1.203125,0.0625 -1.828125,0.359375 -0.75,0.34375 -1,0.859375 -1,1.296875 0,0.8125 0.96875,1.0625 1.59375,1.0625 0.65625,0 1.109375,-0.40625 1.296875,-0.859375 z M 3.25,-2.390625 v 1 c 0,0.9375 -0.71875,1.28125 -1.171875,1.28125 -0.484375,0 -0.890625,-0.34375 -0.890625,-0.84375 0,-0.546875 0.421875,-1.375 2.0625,-1.4375 z m 0,0" + transform="translate(217.34136,134.765)" + id="path6588" /> + <path + inkscape:connector-curvature="0" + style="stroke:none;stroke-width:0" + d="M 1.765625,-6.921875 0.328125,-6.8125 V -6.5 c 0.703125,0 0.78125,0.0625 0.78125,0.5625 V -0.75 c 0,0.4375 -0.109375,0.4375 -0.78125,0.4375 V 0 C 0.65625,-0.015625 1.1875,-0.03125 1.4375,-0.03125 c 0.25,0 0.734375,0.015625 1.109375,0.03125 v -0.3125 c -0.671875,0 -0.78125,0 -0.78125,-0.4375 z m 0,0" + transform="translate(222.32266,134.765)" + id="path6590" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g6606"> + <path + inkscape:connector-curvature="0" + style="stroke:none;stroke-width:0" + d="m 3.78125,-0.546875 v 0.65625 L 5.25,0 v -0.3125 c -0.6875,0 -0.78125,-0.0625 -0.78125,-0.5625 V -6.921875 L 3.046875,-6.8125 V -6.5 c 0.6875,0 0.765625,0.0625 0.765625,0.5625 v 2.15625 c -0.28125,-0.359375 -0.71875,-0.625 -1.25,-0.625 -1.171875,0 -2.21875,0.984375 -2.21875,2.265625 0,1.265625 0.96875,2.25 2.109375,2.25 0.640625,0 1.078125,-0.34375 1.328125,-0.65625 z m 0,-2.671875 v 2.046875 c 0,0.171875 0,0.1875 -0.109375,0.359375 C 3.375,-0.328125 2.9375,-0.109375 2.5,-0.109375 2.046875,-0.109375 1.6875,-0.375 1.453125,-0.75 1.203125,-1.15625 1.171875,-1.71875 1.171875,-2.140625 1.171875,-2.5 1.1875,-3.09375 1.46875,-3.546875 1.6875,-3.859375 2.0625,-4.1875 2.609375,-4.1875 c 0.34375,0 0.765625,0.15625 1.0625,0.59375 0.109375,0.171875 0.109375,0.1875 0.109375,0.375 z m 0,0" + transform="translate(228.41778,134.765)" + id="path6594" /> + <path + inkscape:connector-curvature="0" + style="stroke:none;stroke-width:0" + d="M 4.6875,-2.140625 C 4.6875,-3.40625 3.703125,-4.46875 2.5,-4.46875 c -1.25,0 -2.21875,1.09375 -2.21875,2.328125 0,1.296875 1.03125,2.25 2.203125,2.25 1.203125,0 2.203125,-0.984375 2.203125,-2.25 z m -2.1875,2 c -0.4375,0 -0.875,-0.203125 -1.140625,-0.671875 -0.25,-0.4375 -0.25,-1.046875 -0.25,-1.40625 0,-0.390625 0,-0.921875 0.234375,-1.359375 C 1.609375,-4.03125 2.078125,-4.25 2.484375,-4.25 c 0.4375,0 0.859375,0.21875 1.125,0.65625 0.265625,0.421875 0.265625,1 0.265625,1.375 0,0.359375 0,0.90625 -0.21875,1.34375 C 3.421875,-0.421875 2.984375,-0.140625 2.5,-0.140625 Z m 0,0" + transform="translate(233.953,134.765)" + id="path6596" /> + <path + inkscape:connector-curvature="0" + style="stroke:none;stroke-width:0" + d="M 1.09375,-3.421875 V -0.75 c 0,0.4375 -0.109375,0.4375 -0.78125,0.4375 V 0 c 0.359375,-0.015625 0.859375,-0.03125 1.140625,-0.03125 0.25,0 0.765625,0.015625 1.109375,0.03125 v -0.3125 c -0.671875,0 -0.78125,0 -0.78125,-0.4375 V -2.59375 C 1.78125,-3.625 2.5,-4.1875 3.125,-4.1875 c 0.640625,0 0.75,0.53125 0.75,1.109375 V -0.75 c 0,0.4375 -0.109375,0.4375 -0.78125,0.4375 V 0 c 0.34375,-0.015625 0.859375,-0.03125 1.125,-0.03125 0.25,0 0.78125,0.015625 1.109375,0.03125 v -0.3125 c -0.65625,0 -0.765625,0 -0.765625,-0.4375 v -1.84375 c 0,-1.03125 0.703125,-1.59375 1.34375,-1.59375 0.625,0 0.734375,0.53125 0.734375,1.109375 V -0.75 c 0,0.4375 -0.109375,0.4375 -0.78125,0.4375 V 0 c 0.34375,-0.015625 0.859375,-0.03125 1.125,-0.03125 0.265625,0 0.78125,0.015625 1.125,0.03125 v -0.3125 c -0.515625,0 -0.765625,0 -0.78125,-0.296875 v -1.90625 c 0,-0.859375 0,-1.15625 -0.3125,-1.515625 -0.140625,-0.171875 -0.46875,-0.375 -1.046875,-0.375 -0.828125,0 -1.28125,0.59375 -1.4375,0.984375 C 4.390625,-4.296875 3.65625,-4.40625 3.203125,-4.40625 2.46875,-4.40625 2,-3.984375 1.71875,-3.359375 V -4.40625 L 0.3125,-4.296875 v 0.3125 c 0.703125,0 0.78125,0.0625 0.78125,0.5625 z m 0,0" + transform="translate(238.9343,134.765)" + id="path6598" /> + <path + inkscape:connector-curvature="0" + style="stroke:none;stroke-width:0" + d="m 3.3125,-0.75 c 0.046875,0.390625 0.3125,0.8125 0.78125,0.8125 0.21875,0 0.828125,-0.140625 0.828125,-0.953125 v -0.5625 h -0.25 v 0.5625 c 0,0.578125 -0.25,0.640625 -0.359375,0.640625 -0.328125,0 -0.375,-0.453125 -0.375,-0.5 v -1.984375 c 0,-0.421875 0,-0.8125 -0.359375,-1.1875 C 3.1875,-4.3125 2.6875,-4.46875 2.21875,-4.46875 c -0.828125,0 -1.515625,0.46875 -1.515625,1.125 0,0.296875 0.203125,0.46875 0.46875,0.46875 0.28125,0 0.453125,-0.203125 0.453125,-0.453125 0,-0.125 -0.046875,-0.453125 -0.515625,-0.453125 C 1.390625,-4.140625 1.875,-4.25 2.1875,-4.25 c 0.5,0 1.0625,0.390625 1.0625,1.28125 v 0.359375 c -0.515625,0.03125 -1.203125,0.0625 -1.828125,0.359375 -0.75,0.34375 -1,0.859375 -1,1.296875 0,0.8125 0.96875,1.0625 1.59375,1.0625 0.65625,0 1.109375,-0.40625 1.296875,-0.859375 z M 3.25,-2.390625 v 1 c 0,0.9375 -0.71875,1.28125 -1.171875,1.28125 -0.484375,0 -0.890625,-0.34375 -0.890625,-0.84375 0,-0.546875 0.421875,-1.375 2.0625,-1.4375 z m 0,0" + transform="translate(247.23614,134.765)" + id="path6600" /> + <path + inkscape:connector-curvature="0" + style="stroke:none;stroke-width:0" + d="M 1.765625,-4.40625 0.375,-4.296875 v 0.3125 c 0.640625,0 0.734375,0.0625 0.734375,0.546875 V -0.75 c 0,0.4375 -0.109375,0.4375 -0.78125,0.4375 V 0 C 0.640625,-0.015625 1.1875,-0.03125 1.421875,-0.03125 1.78125,-0.03125 2.125,-0.015625 2.46875,0 v -0.3125 c -0.671875,0 -0.703125,-0.046875 -0.703125,-0.4375 z m 0.03125,-1.734375 c 0,-0.3125 -0.234375,-0.53125 -0.515625,-0.53125 -0.3125,0 -0.53125,0.265625 -0.53125,0.53125 0,0.265625 0.21875,0.53125 0.53125,0.53125 0.28125,0 0.515625,-0.21875 0.515625,-0.53125 z m 0,0" + transform="translate(252.21744,134.765)" + id="path6602" /> + <path + inkscape:connector-curvature="0" + style="stroke:none;stroke-width:0" + d="M 1.09375,-3.421875 V -0.75 c 0,0.4375 -0.109375,0.4375 -0.78125,0.4375 V 0 c 0.359375,-0.015625 0.859375,-0.03125 1.140625,-0.03125 0.25,0 0.765625,0.015625 1.109375,0.03125 v -0.3125 c -0.671875,0 -0.78125,0 -0.78125,-0.4375 V -2.59375 C 1.78125,-3.625 2.5,-4.1875 3.125,-4.1875 c 0.640625,0 0.75,0.53125 0.75,1.109375 V -0.75 c 0,0.4375 -0.109375,0.4375 -0.78125,0.4375 V 0 c 0.34375,-0.015625 0.859375,-0.03125 1.125,-0.03125 0.25,0 0.78125,0.015625 1.109375,0.03125 v -0.3125 c -0.515625,0 -0.765625,0 -0.765625,-0.296875 v -1.90625 c 0,-0.859375 0,-1.15625 -0.3125,-1.515625 -0.140625,-0.171875 -0.46875,-0.375 -1.046875,-0.375 C 2.46875,-4.40625 2,-3.984375 1.71875,-3.359375 V -4.40625 L 0.3125,-4.296875 v 0.3125 c 0.703125,0 0.78125,0.0625 0.78125,0.5625 z m 0,0" + transform="translate(254.98505,134.765)" + id="path6604" /> + </g> + </g> + </g> + <ellipse + ry="4.4645724" + rx="4.4703846" + style="opacity:0.163;fill:none;fill-opacity:1;fill-rule:evenodd;stroke:#9d3a61;stroke-width:2.27100015;stroke-linecap:round;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" + id="path826-6-1" + cx="244.85802" + cy="214.85446" /> + <ellipse + style="opacity:0.163;fill:none;fill-opacity:1;fill-rule:evenodd;stroke:#293af0;stroke-width:2.27100015;stroke-linecap:round;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" + id="path826-1-1-3" + cx="244.88396" + cy="214.79999" + rx="18.1595" + ry="17.675903" /> + <g + id="g7046" + ns1:jacobian_sqrt="1.105689" + inkscapeversion="0.92.3" + ns1:alignment="middle center" + ns1:scale="3.13423513913" + ns1:preamble="/home/dennis/.config/inkscape/extensions/textext/default_packages.tex" + ns1:text="Boundary conditions" + ns1:pdfconverter="pdf2svg" + ns1:texconverter="pdflatex" + ns1:version="0.9.0" + transform="matrix(1.105689,0,0,1.105689,109.08609,68.486936)"> + <g + id="g7044"> + <g + id="g7020" + style="fill:#000000;fill-opacity:1"> + <path + id="path7004" + transform="translate(148.712,134.765)" + d="m 2.21875,-3.65625 v -2.4375 C 2.21875,-6.4375 2.234375,-6.5 2.703125,-6.5 H 3.9375 c 0.96875,0 1.3125,0.84375 1.3125,1.375 0,0.640625 -0.484375,1.46875 -1.59375,1.46875 z M 4.5625,-3.5625 C 5.53125,-3.75 6.21875,-4.390625 6.21875,-5.125 6.21875,-5.984375 5.296875,-6.8125 4,-6.8125 H 0.359375 V -6.5 H 0.59375 c 0.765625,0 0.796875,0.109375 0.796875,0.46875 v 5.25 c 0,0.359375 -0.03125,0.46875 -0.796875,0.46875 H 0.359375 V 0 h 3.90625 c 1.328125,0 2.21875,-0.890625 2.21875,-1.828125 0,-0.859375 -0.8125,-1.609375 -1.921875,-1.734375 z m -0.609375,3.25 h -1.25 c -0.46875,0 -0.484375,-0.0625 -0.484375,-0.390625 v -2.71875 h 1.875 C 5.078125,-3.421875 5.5,-2.5 5.5,-1.828125 5.5,-1.125 4.96875,-0.3125 3.953125,-0.3125 Z m 0,0" + style="stroke:none;stroke-width:0" + inkscape:connector-curvature="0" /> + <path + id="path7006" + transform="translate(155.76851,134.765)" + d="M 4.6875,-2.140625 C 4.6875,-3.40625 3.703125,-4.46875 2.5,-4.46875 c -1.25,0 -2.21875,1.09375 -2.21875,2.328125 0,1.296875 1.03125,2.25 2.203125,2.25 1.203125,0 2.203125,-0.984375 2.203125,-2.25 z m -2.1875,2 c -0.4375,0 -0.875,-0.203125 -1.140625,-0.671875 -0.25,-0.4375 -0.25,-1.046875 -0.25,-1.40625 0,-0.390625 0,-0.921875 0.234375,-1.359375 C 1.609375,-4.03125 2.078125,-4.25 2.484375,-4.25 c 0.4375,0 0.859375,0.21875 1.125,0.65625 0.265625,0.421875 0.265625,1 0.265625,1.375 0,0.359375 0,0.90625 -0.21875,1.34375 C 3.421875,-0.421875 2.984375,-0.140625 2.5,-0.140625 Z m 0,0" + style="stroke:none;stroke-width:0" + inkscape:connector-curvature="0" /> + <path + id="path7008" + transform="translate(160.74981,134.765)" + d="M 3.890625,-0.78125 V 0.109375 L 5.328125,0 V -0.3125 C 4.640625,-0.3125 4.5625,-0.375 4.5625,-0.875 v -3.53125 l -1.46875,0.109375 v 0.3125 c 0.6875,0 0.78125,0.0625 0.78125,0.5625 v 1.765625 c 0,0.875 -0.484375,1.546875 -1.21875,1.546875 -0.828125,0 -0.875,-0.46875 -0.875,-0.984375 v -3.3125 L 0.3125,-4.296875 v 0.3125 c 0.78125,0 0.78125,0.03125 0.78125,0.90625 v 1.5 c 0,0.78125 0,1.6875 1.515625,1.6875 0.5625,0 1,-0.28125 1.28125,-0.890625 z m 0,0" + style="stroke:none;stroke-width:0" + inkscape:connector-curvature="0" /> + <path + id="path7010" + transform="translate(166.28503,134.765)" + d="M 1.09375,-3.421875 V -0.75 c 0,0.4375 -0.109375,0.4375 -0.78125,0.4375 V 0 c 0.359375,-0.015625 0.859375,-0.03125 1.140625,-0.03125 0.25,0 0.765625,0.015625 1.109375,0.03125 v -0.3125 c -0.671875,0 -0.78125,0 -0.78125,-0.4375 V -2.59375 C 1.78125,-3.625 2.5,-4.1875 3.125,-4.1875 c 0.640625,0 0.75,0.53125 0.75,1.109375 V -0.75 c 0,0.4375 -0.109375,0.4375 -0.78125,0.4375 V 0 c 0.34375,-0.015625 0.859375,-0.03125 1.125,-0.03125 0.25,0 0.78125,0.015625 1.109375,0.03125 v -0.3125 c -0.515625,0 -0.765625,0 -0.765625,-0.296875 v -1.90625 c 0,-0.859375 0,-1.15625 -0.3125,-1.515625 -0.140625,-0.171875 -0.46875,-0.375 -1.046875,-0.375 C 2.46875,-4.40625 2,-3.984375 1.71875,-3.359375 V -4.40625 L 0.3125,-4.296875 v 0.3125 c 0.703125,0 0.78125,0.0625 0.78125,0.5625 z m 0,0" + style="stroke:none;stroke-width:0" + inkscape:connector-curvature="0" /> + <path + id="path7012" + transform="translate(171.82025,134.765)" + d="m 3.78125,-0.546875 v 0.65625 L 5.25,0 v -0.3125 c -0.6875,0 -0.78125,-0.0625 -0.78125,-0.5625 V -6.921875 L 3.046875,-6.8125 V -6.5 c 0.6875,0 0.765625,0.0625 0.765625,0.5625 v 2.15625 c -0.28125,-0.359375 -0.71875,-0.625 -1.25,-0.625 -1.171875,0 -2.21875,0.984375 -2.21875,2.265625 0,1.265625 0.96875,2.25 2.109375,2.25 0.640625,0 1.078125,-0.34375 1.328125,-0.65625 z m 0,-2.671875 v 2.046875 c 0,0.171875 0,0.1875 -0.109375,0.359375 C 3.375,-0.328125 2.9375,-0.109375 2.5,-0.109375 2.046875,-0.109375 1.6875,-0.375 1.453125,-0.75 1.203125,-1.15625 1.171875,-1.71875 1.171875,-2.140625 1.171875,-2.5 1.1875,-3.09375 1.46875,-3.546875 1.6875,-3.859375 2.0625,-4.1875 2.609375,-4.1875 c 0.34375,0 0.765625,0.15625 1.0625,0.59375 0.109375,0.171875 0.109375,0.1875 0.109375,0.375 z m 0,0" + style="stroke:none;stroke-width:0" + inkscape:connector-curvature="0" /> + <path + id="path7014" + transform="translate(177.35547,134.765)" + d="m 3.3125,-0.75 c 0.046875,0.390625 0.3125,0.8125 0.78125,0.8125 0.21875,0 0.828125,-0.140625 0.828125,-0.953125 v -0.5625 h -0.25 v 0.5625 c 0,0.578125 -0.25,0.640625 -0.359375,0.640625 -0.328125,0 -0.375,-0.453125 -0.375,-0.5 v -1.984375 c 0,-0.421875 0,-0.8125 -0.359375,-1.1875 C 3.1875,-4.3125 2.6875,-4.46875 2.21875,-4.46875 c -0.828125,0 -1.515625,0.46875 -1.515625,1.125 0,0.296875 0.203125,0.46875 0.46875,0.46875 0.28125,0 0.453125,-0.203125 0.453125,-0.453125 0,-0.125 -0.046875,-0.453125 -0.515625,-0.453125 C 1.390625,-4.140625 1.875,-4.25 2.1875,-4.25 c 0.5,0 1.0625,0.390625 1.0625,1.28125 v 0.359375 c -0.515625,0.03125 -1.203125,0.0625 -1.828125,0.359375 -0.75,0.34375 -1,0.859375 -1,1.296875 0,0.8125 0.96875,1.0625 1.59375,1.0625 0.65625,0 1.109375,-0.40625 1.296875,-0.859375 z M 3.25,-2.390625 v 1 c 0,0.9375 -0.71875,1.28125 -1.171875,1.28125 -0.484375,0 -0.890625,-0.34375 -0.890625,-0.84375 0,-0.546875 0.421875,-1.375 2.0625,-1.4375 z m 0,0" + style="stroke:none;stroke-width:0" + inkscape:connector-curvature="0" /> + <path + id="path7016" + transform="translate(182.33677,134.765)" + d="M 1.671875,-3.3125 V -4.40625 L 0.28125,-4.296875 v 0.3125 c 0.703125,0 0.78125,0.0625 0.78125,0.5625 V -0.75 c 0,0.4375 -0.109375,0.4375 -0.78125,0.4375 V 0 c 0.390625,-0.015625 0.859375,-0.03125 1.140625,-0.03125 0.390625,0 0.859375,0 1.265625,0.03125 V -0.3125 H 2.46875 c -0.734375,0 -0.75,-0.109375 -0.75,-0.46875 V -2.3125 c 0,-0.984375 0.421875,-1.875 1.171875,-1.875 0.0625,0 0.09375,0 0.109375,0.015625 -0.03125,0 -0.234375,0.125 -0.234375,0.390625 0,0.265625 0.21875,0.421875 0.4375,0.421875 0.171875,0 0.421875,-0.125 0.421875,-0.4375 0,-0.3125 -0.3125,-0.609375 -0.734375,-0.609375 -0.734375,0 -1.09375,0.671875 -1.21875,1.09375 z m 0,0" + style="stroke:none;stroke-width:0" + inkscape:connector-curvature="0" /> + <path + id="path7018" + transform="translate(186.23912,134.765)" + d="m 4.140625,-3.34375 c 0.25,-0.640625 0.765625,-0.640625 0.921875,-0.640625 v -0.3125 c -0.234375,0.015625 -0.515625,0.03125 -0.75,0.03125 -0.171875,0 -0.640625,-0.015625 -0.859375,-0.03125 v 0.3125 c 0.3125,0 0.46875,0.171875 0.46875,0.421875 0,0.109375 -0.015625,0.125 -0.0625,0.25 L 2.84375,-0.875 1.75,-3.546875 C 1.703125,-3.65625 1.6875,-3.6875 1.6875,-3.734375 c 0,-0.25 0.359375,-0.25 0.5625,-0.25 v -0.3125 c -0.265625,0.015625 -0.921875,0.03125 -1.09375,0.03125 -0.265625,0 -0.671875,-0.015625 -0.96875,-0.03125 v 0.3125 c 0.484375,0 0.671875,0 0.8125,0.34375 L 2.5,0 C 2.4375,0.125 2.296875,0.453125 2.25,0.59375 2.03125,1.140625 1.75,1.828125 1.109375,1.828125 c -0.046875,0 -0.28125,0 -0.46875,-0.1875 0.3125,-0.03125 0.390625,-0.25 0.390625,-0.421875 0,-0.25 -0.1875,-0.40625 -0.421875,-0.40625 -0.203125,0 -0.421875,0.125 -0.421875,0.421875 0,0.453125 0.421875,0.8125 0.921875,0.8125 0.625,0 1.03125,-0.578125 1.265625,-1.140625 z m 0,0" + style="stroke:none;stroke-width:0" + inkscape:connector-curvature="0" /> + </g> + <g + id="g7042" + style="fill:#000000;fill-opacity:1"> + <path + id="path7022" + transform="translate(194.81493,134.765)" + d="m 1.171875,-2.171875 c 0,-1.625 0.8125,-2.046875 1.34375,-2.046875 0.09375,0 0.71875,0.015625 1.0625,0.375 -0.40625,0.03125 -0.46875,0.328125 -0.46875,0.453125 0,0.265625 0.1875,0.453125 0.453125,0.453125 0.265625,0 0.46875,-0.15625 0.46875,-0.46875 0,-0.671875 -0.765625,-1.0625 -1.53125,-1.0625 -1.25,0 -2.15625,1.078125 -2.15625,2.3125 0,1.28125 0.984375,2.265625 2.140625,2.265625 1.328125,0 1.65625,-1.203125 1.65625,-1.296875 0,-0.09375 -0.109375,-0.09375 -0.140625,-0.09375 -0.078125,0 -0.109375,0.03125 -0.125,0.09375 -0.28125,0.921875 -0.9375,1.046875 -1.296875,1.046875 -0.53125,0 -1.40625,-0.421875 -1.40625,-2.03125 z m 0,0" + style="stroke:none;stroke-width:0" + inkscape:connector-curvature="0" /> + <path + id="path7024" + transform="translate(199.24231,134.765)" + d="M 4.6875,-2.140625 C 4.6875,-3.40625 3.703125,-4.46875 2.5,-4.46875 c -1.25,0 -2.21875,1.09375 -2.21875,2.328125 0,1.296875 1.03125,2.25 2.203125,2.25 1.203125,0 2.203125,-0.984375 2.203125,-2.25 z m -2.1875,2 c -0.4375,0 -0.875,-0.203125 -1.140625,-0.671875 -0.25,-0.4375 -0.25,-1.046875 -0.25,-1.40625 0,-0.390625 0,-0.921875 0.234375,-1.359375 C 1.609375,-4.03125 2.078125,-4.25 2.484375,-4.25 c 0.4375,0 0.859375,0.21875 1.125,0.65625 0.265625,0.421875 0.265625,1 0.265625,1.375 0,0.359375 0,0.90625 -0.21875,1.34375 C 3.421875,-0.421875 2.984375,-0.140625 2.5,-0.140625 Z m 0,0" + style="stroke:none;stroke-width:0" + inkscape:connector-curvature="0" /> + <path + id="path7026" + transform="translate(204.22361,134.765)" + d="M 1.09375,-3.421875 V -0.75 c 0,0.4375 -0.109375,0.4375 -0.78125,0.4375 V 0 c 0.359375,-0.015625 0.859375,-0.03125 1.140625,-0.03125 0.25,0 0.765625,0.015625 1.109375,0.03125 v -0.3125 c -0.671875,0 -0.78125,0 -0.78125,-0.4375 V -2.59375 C 1.78125,-3.625 2.5,-4.1875 3.125,-4.1875 c 0.640625,0 0.75,0.53125 0.75,1.109375 V -0.75 c 0,0.4375 -0.109375,0.4375 -0.78125,0.4375 V 0 c 0.34375,-0.015625 0.859375,-0.03125 1.125,-0.03125 0.25,0 0.78125,0.015625 1.109375,0.03125 v -0.3125 c -0.515625,0 -0.765625,0 -0.765625,-0.296875 v -1.90625 c 0,-0.859375 0,-1.15625 -0.3125,-1.515625 -0.140625,-0.171875 -0.46875,-0.375 -1.046875,-0.375 C 2.46875,-4.40625 2,-3.984375 1.71875,-3.359375 V -4.40625 L 0.3125,-4.296875 v 0.3125 c 0.703125,0 0.78125,0.0625 0.78125,0.5625 z m 0,0" + style="stroke:none;stroke-width:0" + inkscape:connector-curvature="0" /> + <path + id="path7028" + transform="translate(209.75883,134.765)" + d="m 3.78125,-0.546875 v 0.65625 L 5.25,0 v -0.3125 c -0.6875,0 -0.78125,-0.0625 -0.78125,-0.5625 V -6.921875 L 3.046875,-6.8125 V -6.5 c 0.6875,0 0.765625,0.0625 0.765625,0.5625 v 2.15625 c -0.28125,-0.359375 -0.71875,-0.625 -1.25,-0.625 -1.171875,0 -2.21875,0.984375 -2.21875,2.265625 0,1.265625 0.96875,2.25 2.109375,2.25 0.640625,0 1.078125,-0.34375 1.328125,-0.65625 z m 0,-2.671875 v 2.046875 c 0,0.171875 0,0.1875 -0.109375,0.359375 C 3.375,-0.328125 2.9375,-0.109375 2.5,-0.109375 2.046875,-0.109375 1.6875,-0.375 1.453125,-0.75 1.203125,-1.15625 1.171875,-1.71875 1.171875,-2.140625 1.171875,-2.5 1.1875,-3.09375 1.46875,-3.546875 1.6875,-3.859375 2.0625,-4.1875 2.609375,-4.1875 c 0.34375,0 0.765625,0.15625 1.0625,0.59375 0.109375,0.171875 0.109375,0.1875 0.109375,0.375 z m 0,0" + style="stroke:none;stroke-width:0" + inkscape:connector-curvature="0" /> + <path + id="path7030" + transform="translate(215.29405,134.765)" + d="M 1.765625,-4.40625 0.375,-4.296875 v 0.3125 c 0.640625,0 0.734375,0.0625 0.734375,0.546875 V -0.75 c 0,0.4375 -0.109375,0.4375 -0.78125,0.4375 V 0 C 0.640625,-0.015625 1.1875,-0.03125 1.421875,-0.03125 1.78125,-0.03125 2.125,-0.015625 2.46875,0 v -0.3125 c -0.671875,0 -0.703125,-0.046875 -0.703125,-0.4375 z m 0.03125,-1.734375 c 0,-0.3125 -0.234375,-0.53125 -0.515625,-0.53125 -0.3125,0 -0.53125,0.265625 -0.53125,0.53125 0,0.265625 0.21875,0.53125 0.53125,0.53125 0.28125,0 0.515625,-0.21875 0.515625,-0.53125 z m 0,0" + style="stroke:none;stroke-width:0" + inkscape:connector-curvature="0" /> + <path + id="path7032" + transform="translate(218.06166,134.765)" + d="m 1.71875,-3.984375 h 1.4375 v -0.3125 H 1.71875 V -6.125 h -0.25 c 0,0.8125 -0.296875,1.875 -1.28125,1.921875 v 0.21875 h 0.84375 v 2.75 c 0,1.21875 0.9375,1.34375 1.296875,1.34375 0.703125,0 0.984375,-0.703125 0.984375,-1.34375 v -0.5625 h -0.25 V -1.25 c 0,0.734375 -0.296875,1.109375 -0.671875,1.109375 -0.671875,0 -0.671875,-0.90625 -0.671875,-1.078125 z m 0,0" + style="stroke:none;stroke-width:0" + inkscape:connector-curvature="0" /> + <path + id="path7034" + transform="translate(221.93611,134.765)" + d="M 1.765625,-4.40625 0.375,-4.296875 v 0.3125 c 0.640625,0 0.734375,0.0625 0.734375,0.546875 V -0.75 c 0,0.4375 -0.109375,0.4375 -0.78125,0.4375 V 0 C 0.640625,-0.015625 1.1875,-0.03125 1.421875,-0.03125 1.78125,-0.03125 2.125,-0.015625 2.46875,0 v -0.3125 c -0.671875,0 -0.703125,-0.046875 -0.703125,-0.4375 z m 0.03125,-1.734375 c 0,-0.3125 -0.234375,-0.53125 -0.515625,-0.53125 -0.3125,0 -0.53125,0.265625 -0.53125,0.53125 0,0.265625 0.21875,0.53125 0.53125,0.53125 0.28125,0 0.515625,-0.21875 0.515625,-0.53125 z m 0,0" + style="stroke:none;stroke-width:0" + inkscape:connector-curvature="0" /> + <path + id="path7036" + transform="translate(224.70372,134.765)" + d="M 4.6875,-2.140625 C 4.6875,-3.40625 3.703125,-4.46875 2.5,-4.46875 c -1.25,0 -2.21875,1.09375 -2.21875,2.328125 0,1.296875 1.03125,2.25 2.203125,2.25 1.203125,0 2.203125,-0.984375 2.203125,-2.25 z m -2.1875,2 c -0.4375,0 -0.875,-0.203125 -1.140625,-0.671875 -0.25,-0.4375 -0.25,-1.046875 -0.25,-1.40625 0,-0.390625 0,-0.921875 0.234375,-1.359375 C 1.609375,-4.03125 2.078125,-4.25 2.484375,-4.25 c 0.4375,0 0.859375,0.21875 1.125,0.65625 0.265625,0.421875 0.265625,1 0.265625,1.375 0,0.359375 0,0.90625 -0.21875,1.34375 C 3.421875,-0.421875 2.984375,-0.140625 2.5,-0.140625 Z m 0,0" + style="stroke:none;stroke-width:0" + inkscape:connector-curvature="0" /> + <path + id="path7038" + transform="translate(229.68502,134.765)" + d="M 1.09375,-3.421875 V -0.75 c 0,0.4375 -0.109375,0.4375 -0.78125,0.4375 V 0 c 0.359375,-0.015625 0.859375,-0.03125 1.140625,-0.03125 0.25,0 0.765625,0.015625 1.109375,0.03125 v -0.3125 c -0.671875,0 -0.78125,0 -0.78125,-0.4375 V -2.59375 C 1.78125,-3.625 2.5,-4.1875 3.125,-4.1875 c 0.640625,0 0.75,0.53125 0.75,1.109375 V -0.75 c 0,0.4375 -0.109375,0.4375 -0.78125,0.4375 V 0 c 0.34375,-0.015625 0.859375,-0.03125 1.125,-0.03125 0.25,0 0.78125,0.015625 1.109375,0.03125 v -0.3125 c -0.515625,0 -0.765625,0 -0.765625,-0.296875 v -1.90625 c 0,-0.859375 0,-1.15625 -0.3125,-1.515625 -0.140625,-0.171875 -0.46875,-0.375 -1.046875,-0.375 C 2.46875,-4.40625 2,-3.984375 1.71875,-3.359375 V -4.40625 L 0.3125,-4.296875 v 0.3125 c 0.703125,0 0.78125,0.0625 0.78125,0.5625 z m 0,0" + style="stroke:none;stroke-width:0" + inkscape:connector-curvature="0" /> + <path + id="path7040" + transform="translate(235.22024,134.765)" + d="m 2.078125,-1.9375 c 0.21875,0.046875 1.03125,0.203125 1.03125,0.921875 0,0.5 -0.34375,0.90625 -1.125,0.90625 -0.84375,0 -1.203125,-0.5625 -1.390625,-1.421875 C 0.5625,-1.65625 0.5625,-1.6875 0.453125,-1.6875 c -0.125,0 -0.125,0.0625 -0.125,0.234375 V -0.125 c 0,0.171875 0,0.234375 0.109375,0.234375 0.046875,0 0.0625,-0.015625 0.25,-0.203125 0.015625,-0.015625 0.015625,-0.03125 0.203125,-0.21875 0.4375,0.40625 0.890625,0.421875 1.09375,0.421875 1.140625,0 1.609375,-0.671875 1.609375,-1.390625 0,-0.515625 -0.296875,-0.828125 -0.421875,-0.9375 C 2.84375,-2.546875 2.453125,-2.625 2.03125,-2.703125 1.46875,-2.8125 0.8125,-2.9375 0.8125,-3.515625 c 0,-0.359375 0.25,-0.765625 1.109375,-0.765625 1.09375,0 1.15625,0.90625 1.171875,1.203125 0,0.09375 0.09375,0.09375 0.109375,0.09375 0.140625,0 0.140625,-0.046875 0.140625,-0.234375 v -1.015625 c 0,-0.15625 0,-0.234375 -0.109375,-0.234375 -0.046875,0 -0.078125,0 -0.203125,0.125 -0.03125,0.03125 -0.125,0.125 -0.171875,0.15625 -0.375,-0.28125 -0.78125,-0.28125 -0.9375,-0.28125 -1.21875,0 -1.59375,0.671875 -1.59375,1.234375 0,0.34375 0.15625,0.625 0.421875,0.84375 0.328125,0.25 0.609375,0.3125 1.328125,0.453125 z m 0,0" + style="stroke:none;stroke-width:0" + inkscape:connector-curvature="0" /> + </g> + </g> + </g> + <path + inkscape:connector-curvature="0" + id="path912-2-5-9-8" + d="m 246.64929,211.70147 7.04429,-11.97289" + style="opacity:0.158;fill:none;stroke:#d48d46;stroke-width:1.66499996;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1" + sodipodi:nodetypes="cc" /> + <ellipse + transform="scale(-1)" + cy="-210.85275" + cx="-247.13177" + id="path908-0-31" + style="opacity:1;fill:#9d3a61;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:2.27100015;stroke-linecap:round;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" + rx="1.509855" + ry="1.507892" /> + <ellipse + transform="scale(-1)" + cy="-199.50725" + cx="-253.97809" + id="path908-0-31-9" + style="opacity:1;fill:#293af0;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:2.27100015;stroke-linecap:round;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" + rx="1.509855" + ry="1.507892" /> + <path + style="fill:none;stroke:#000000;stroke-width:0.26458332;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;stroke-miterlimit:4;stroke-dasharray:0.26458332,0.79374995;stroke-dashoffset:0" + d="m 112.09161,158.08607 c 3.94737,-6.69062 7.89455,-13.38092 11.84155,-20.0709" + id="path7433" + inkscape:connector-curvature="0" + inkscape:path-effect="#path-effect7435" + inkscape:original-d="m 112.09161,158.08607 c 3.94745,-6.69057 7.89463,-13.38087 11.84155,-20.0709" /> + <circle + transform="scale(-1)" + r="3.8366563" + cy="-138.09438" + cx="-123.83949" + id="path908-99-6" + style="opacity:1;fill:#9d3a61;fill-opacity:1;fill-rule:evenodd;stroke:#ffffff;stroke-width:0.30000001;stroke-linecap:round;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" /> + </g> +</svg> diff --git a/examples/1protationsymmetry/main.cc b/examples/1protationsymmetry/main.cc new file mode 100644 index 0000000000000000000000000000000000000000..6db3dcd673af56b49e1ff26f77c30b423f2431e3 --- /dev/null +++ b/examples/1protationsymmetry/main.cc @@ -0,0 +1,225 @@ +// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- +// vi: set et ts=4 sw=4 sts=4: +/***************************************************************************** + * See the file COPYING for full copying permissions. * + * * + * This program is free software: you can redistribute it and/or modify * + * it under the terms of the GNU General Public License as published by * + * the Free Software Foundation, either version 3 of the License, or * + * (at your option) any later version. * + * * + * This program is distributed in the hope that it will be useful, * + * but WITHOUT ANY WARRANTY; without even the implied warranty of * + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * + * GNU General Public License for more details. * + * * + * You should have received a copy of the GNU General Public License * + * along with this program. If not, see <http://www.gnu.org/licenses/>. * + *****************************************************************************/ +// ## The main program (`main.cc`) +// This file contains the main program flow. In this example, we solve a stationary +// and rotationally symmetric single-phase problem for a sequence of refined grids +// and compute the convergence rates. +// [[content]] +// ### Includes +// [[details]] includes +// [[codeblock]] +#include <config.h> + +#include <iostream> +#include <dune/common/parallel/mpihelper.hh> + +#include <dumux/common/properties.hh> // for GetPropType +#include <dumux/common/parameters.hh> // for getParam +#include <dumux/common/integrate.hh> // for integrateL2Error + +#include <dumux/linear/seqsolverbackend.hh> // for UMFPackBackend +#include <dumux/linear/pdesolver.hh> // for LinearPDESolver +#include <dumux/assembly/fvassembler.hh> +#include <dumux/assembly/diffmethod.hh> + +#include <dumux/io/vtkoutputmodule.hh> +#include <dumux/io/grid/gridmanager_yasp.hh> + +#include "properties.hh" +// [[/codeblock]] +// [[/details]] +// +// ### Beginning of the main function +// [[codeblock]] +int main(int argc, char** argv) try +{ + using namespace Dumux; + + // We initialize MPI. Finalization is done automatically on exit. + Dune::MPIHelper::instance(argc, argv); + + // We parse the command line arguments. + Parameters::init(argc, argv); + + // Convenience alias for the type tag of the problem. + using TypeTag = Properties::TTag::OnePRotSym; + // [[/codeblock]] + + // ### Create the grid and the grid geometry + // [[codeblock]] + // The grid manager can be used to create a grid from the input file + using Grid = GetPropType<TypeTag, Properties::Grid>; + GridManager<Grid> gridManager; + gridManager.init(); + + // We compute on the leaf grid view. + const auto& leafGridView = gridManager.grid().leafGridView(); + + // instantiate the grid geometry + using GridGeometry = GetPropType<TypeTag, Properties::GridGeometry>; + auto gridGeometry = std::make_shared<GridGeometry>(leafGridView); + gridGeometry->update(); + // [[/codeblock]] + + // ### Initialize the problem and grid variables + // [[codeblock]] + using Problem = GetPropType<TypeTag, Properties::Problem>; + auto problem = std::make_shared<Problem>(gridGeometry); + + // We define a function to update the discrete analytical solution vector + // using the exactSolution() function in the problem + const auto updateAnalyticalSolution = [&](auto& pExact) + { + pExact.resize(gridGeometry->numDofs()); + for (const auto& element : elements(gridGeometry->gridView())) + { + auto fvGeometry = localView(*gridGeometry); + fvGeometry.bindElement(element); + for (auto&& scv : scvs(fvGeometry)) + pExact[scv.dofIndex()] = problem->exactSolution(scv.dofPosition()); + } + }; + + // instantiate and initialize the discrete and exact solution vectors + using SolutionVector = GetPropType<TypeTag, Properties::SolutionVector>; + SolutionVector p(gridGeometry->numDofs()); + SolutionVector pExact; updateAnalyticalSolution(pExact); + + // instantiate and initialize the grid variables + using GridVariables = GetPropType<TypeTag, Properties::GridVariables>; + auto gridVariables = std::make_shared<GridVariables>(problem, gridGeometry); + gridVariables->init(p); + // [[/codeblock]] + + // ### Initialize VTK output + VtkOutputModule<GridVariables, SolutionVector> vtkWriter(*gridVariables, p, problem->name()); + GetPropType<TypeTag, Properties::IOFields>::initOutputModule(vtkWriter); + vtkWriter.addField(pExact, "pExact"); // add the exact solution to the output fields + + // ### Instantiate the solver + // We use the `LinearPDESolver` class, which is instantiated on the basis + // of an assembler and a linear solver. When the `solve` function of the + // `LinearPDESolver` is called, it uses the assembler and linear + // solver classes to assemble and solve the linear system around the provided + // solution and stores the result therein. + // [[codeblock]] + using Assembler = FVAssembler<TypeTag, DiffMethod::analytic>; + auto assembler = std::make_shared<Assembler>(problem, gridGeometry, gridVariables); + + using LinearSolver = UMFPackBackend; + auto linearSolver = std::make_shared<LinearSolver>(); + LinearPDESolver<Assembler, LinearSolver> solver(assembler, linearSolver); + solver.setVerbose(false); // suppress output during solve() + // [[/codeblock]] + + // ### Solution of the problem and error computation + // The problem is solved by calling `solve` on the instance of `LinearPDESolver` + // that we have created above. In the following piece of code, we solve the + // problem on the initial refinement and compute the corresponding L2 error. + // For a convenient way of computing the L2 error, the function `integrateL2Error` + // can be used. + // [[codeblock]] + solver.solve(p); + + // container to store the L2 errors for the different refinements + const int numRefinements = getParam<int>("Grid.RefinementSteps"); + std::vector<double> l2Errors(numRefinements); + + // use third order error integration + constexpr int orderQuadratureRule = 3; + + // compute initial L2 error + l2Errors[0] = integrateL2Error(*gridGeometry, p, pExact, orderQuadratureRule); + // [[/codeblock]] + + // This procedure is now repeated for the number of refinements as specified + // in the input file. + // [[codeblock]] + for (int stepIdx = 1; stepIdx < numRefinements; stepIdx++) + { + // Globally refine the grid once + gridManager.grid().globalRefine(1); + + // update the grid geometry, the grid variables and + // the solution vectors now that the grid has been refined + gridGeometry->update(); + gridVariables->updateAfterGridAdaption(p); + + p.resize(gridGeometry->numDofs()); + updateAnalyticalSolution(pExact); + + // this recreates the linear system, i.e. the sizes of + // the right hand side vector and the Jacobian matrix, + // and its sparsity pattern. + assembler->setLinearSystem(); + + // solve problem on refined grid + solver.solve(p); + // [[/codeblock]] + // #### Post-processing and output + // At the end of each refinement step, the convergence + // rate is printed to the terminal. + // [[codeblock]] + // Calculate the L2 error using the numerical solution + l2Errors[stepIdx] = integrateL2Error(*gridGeometry, p, pExact, orderQuadratureRule); + + // Print the error and convergence rate + const auto rate = std::log(l2Errors[stepIdx]/l2Errors[stepIdx-1])/std::log(0.5); + const auto numDofs = gridGeometry->numDofs(); + std::cout << std::setprecision(8) << std::scientific + << "-- L2 error for " << std::setw(5) << numDofs << " dofs: " << l2Errors[stepIdx] + << ", rate: " << rate + << std::endl; + } + // [[/codeblock]] + + // After the last refinement, we write the solution to VTK file format on the + // finest grid and exit the main function. + // [[codeblock]] + vtkWriter.write(0.0); + + // program end, return with 0 exit code (success) + return 0; +} +// [[/codeblock]] +// ### Exception handling +// In this part of the main file we catch and print possible exceptions that could +// occur during the simulation. +// [[details]] error handler +catch (const Dumux::ParameterException &e) +{ + std::cerr << std::endl << e << " ---> Abort!" << std::endl; + return 1; +} +catch (const Dune::DGFException & e) +{ + std::cerr << "DGF exception thrown (" << e << + "). Most likely, the DGF file name is wrong " + "or the DGF file is corrupted, " + "e.g. missing hash at end of file or wrong number (dimensions) of entries." + << " ---> Abort!" << std::endl; + return 2; +} +catch (const Dune::Exception &e) +{ + std::cerr << "Dune reported error: " << e << " ---> Abort!" << std::endl; + return 3; +} +// [[/details]] +// [[/content]] diff --git a/examples/1protationsymmetry/params.input b/examples/1protationsymmetry/params.input new file mode 100644 index 0000000000000000000000000000000000000000..8487b511a880355535f04e79f695dc371bade58c --- /dev/null +++ b/examples/1protationsymmetry/params.input @@ -0,0 +1,18 @@ +[Problem] +EnableGravity = 0 # disable gravity +Name = rotationsymmetry +P1 = 1e5 # pressure at the inner boundary at r1 +Q1 = -10.0 # mass flux into the domain at r1 in kg/s/m + +[Grid] +LowerLeft = 0.05 +UpperRight = 1 +Cells = 100 +RefinementSteps = 5 + +[SpatialParams] +Permeability = 1e-10 # [m^2] + +[Component] +LiquidKinematicViscosity = 1e-6 +LiquidDensity = 1e3 diff --git a/examples/1protationsymmetry/problem.hh b/examples/1protationsymmetry/problem.hh new file mode 100644 index 0000000000000000000000000000000000000000..f0e532ec90b0b1a5004733fb374cd23e1f7e6b72 --- /dev/null +++ b/examples/1protationsymmetry/problem.hh @@ -0,0 +1,123 @@ +// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- +// vi: set et ts=4 sw=4 sts=4: +/***************************************************************************** + * See the file COPYING for full copying permissions. * + * * + * This program is free software: you can redistribute it and/or modify * + * it under the terms of the GNU General Public License as published by * + * the Free Software Foundation, either version 3 of the License, or * + * (at your option) any later version. * + * * + * This program is distributed in the hope that it will be useful, * + * but WITHOUT ANY WARRANTY; without even the implied warranty of * + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * + * GNU General Public License for more details. * + * * + * You should have received a copy of the GNU General Public License * + * along with this program. If not, see <http://www.gnu.org/licenses/>. * + *****************************************************************************/ + +#ifndef DUMUX_ONEP_ROTATION_SYMMETRY_PROBLEM_HH +#define DUMUX_ONEP_ROTATION_SYMMETRY_PROBLEM_HH + +// ## The problem class (`problem.hh`) +// This file contains the __problem class__ which defines the initial and boundary +// conditions for the single-phase flow simulation. +// [[content]] +// ### Includes +#include <cmath> // for `std::log` +#include <dumux/common/properties.hh> // for `GetPropType` +#include <dumux/common/parameters.hh> // for `getParam` +#include <dumux/porousmediumflow/problem.hh> // for `PorousMediumFlowProblem` + +// ### The problem class +// We enter the problem class where all necessary boundary conditions and initial conditions are set for our simulation. +// As this is a porous medium flow problem, we inherit from the base class `PorousMediumFlowProblem`. +namespace Dumux { + +template<class TypeTag> +class RotSymExampleProblem : public PorousMediumFlowProblem<TypeTag> +{ + using ParentType = PorousMediumFlowProblem<TypeTag>; + using GridGeometry = GetPropType<TypeTag, Properties::GridGeometry>; + using Scalar = GetPropType<TypeTag, Properties::Scalar>; + using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>; + using BoundaryTypes = GetPropType<TypeTag, Properties::BoundaryTypes>; + using Element = typename GridGeometry::GridView::template Codim<0>::Entity; + using GlobalPosition = typename Element::Geometry::GlobalCoordinate; + +public: + // In the constructor, we obtain a number of parameters, related to fluid + // properties and boundary conditions, from the input file. + // [[codeblock]] + RotSymExampleProblem(std::shared_ptr<const GridGeometry> gridGeometry) + : ParentType(gridGeometry) + { + // fluid properties + k_ = getParam<Scalar>("SpatialParams.Permeability"); + nu_ = getParam<Scalar>("Component.LiquidKinematicViscosity"); + + // The inner radius r1 can be determined from the grid + r1_ = gridGeometry->bBoxMin()[0]; + + // boundary conditions + q1_ = getParam<Scalar>("Problem.Q1"); // mass flux into the domain at r1 in kg/s/m + p1_ = getParam<Scalar>("Problem.P1"); // pressure at the inner boundary at r1 + + } + // [[/codeblock]] + + // We need to specify a constant temperature for our isothermal problem. + // Fluid properties that depend on temperature will be calculated with this value. + Scalar temperature() const + { return 283.15; } + + // #### Specify the types of boundary conditions + // This function is used to define the type of boundary conditions used depending on the location. + // Two types of boundary conditions can be specified: Dirichlet or Neumann boundary condition. + // On a Dirichlet boundary, the values of the primary variables need to be fixed. On a Neumann + // boundary condition, values for derivatives need to be fixed. Here, we use Dirichlet boundary + // conditions on all boundaries. + BoundaryTypes boundaryTypesAtPos(const GlobalPosition& globalPos) const + { + BoundaryTypes values; + values.setAllDirichlet(); + return values; + } + + // #### Specify Dirichlet boundary condition values + // This function is used to specify the values of the primary variables at Dirichlet boundaries. + // Here, we evaluate the analytical solution (see below) to define the pressures at the boundaries. + PrimaryVariables dirichletAtPos(const GlobalPosition& globalPos) const + { return exactSolution(globalPos); } + + // #### Analytical solution + // The analytical solution to the problem of this example reads: + // + // ```math + // p = p (r) = p_1 - \frac{q_1 \nu}{2 \pi k} \text{ln} (\frac{r}{r_1}), + // ``` + // + // where $`q_1`$ is the mass flux into the domain at the inner radius $`r_1`$ + // (in kg/s/m) and $`\nu = \mu/\varrho`$ is the kinematic viscosity. + // The following function evaluates this solution depending on the + // position in the domain. We use this function here both to specify Dirichlet + // boundaries and to evaluate the error of the numerical solutions obtained for + // different levels of grid refinement. + // [[codeblock]] + PrimaryVariables exactSolution(const GlobalPosition& globalPos) const + { + const auto r = globalPos[0]; + const auto p = p1_ - 1.0/(2*M_PI)*nu_/k_*q1_*std::log(r/r1_); + return p; + } + +private: + // private data members required for the analytical solution + Scalar q1_, k_, nu_, r1_, p1_; +}; + +} // end namespace Dumux +// [[/codeblock]] +// [[/content]] +#endif diff --git a/examples/1protationsymmetry/properties.hh b/examples/1protationsymmetry/properties.hh new file mode 100644 index 0000000000000000000000000000000000000000..effaea92a77be2b882215bb0019a6c0126087cb1 --- /dev/null +++ b/examples/1protationsymmetry/properties.hh @@ -0,0 +1,146 @@ +// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- +// vi: set et ts=4 sw=4 sts=4: +/***************************************************************************** + * See the file COPYING for full copying permissions. * + * * + * This program is free software: you can redistribute it and/or modify * + * it under the terms of the GNU General Public License as published by * + * the Free Software Foundation, either version 3 of the License, or * + * (at your option) any later version. * + * * + * This program is distributed in the hope that it will be useful, * + * but WITHOUT ANY WARRANTY; without even the implied warranty of * + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * + * GNU General Public License for more details. * + * * + * You should have received a copy of the GNU General Public License * + * along with this program. If not, see <http://www.gnu.org/licenses/>. * + *****************************************************************************/ + +#ifndef DUMUX_ONEP_ROTATION_SYMMETRY_PROPERTIES_HH +#define DUMUX_ONEP_ROTATION_SYMMETRY_PROPERTIES_HH + +// ## Compile-time settings (`properties.hh`) +// This file defines the `TypeTag` used for the simulation in this example, for +// which we specialize a number of compile-time `properties`. +// [[content]] +// ### Includes +// [[details]] includes +#include <dune/grid/yaspgrid.hh> // for `Dune::YaspGrid` +#include <dumux/discretization/box.hh> // for `TTag::BoxModel` + + +// The `OneP` type tag specializes most of the `properties` required for single- +// phase flow simulations in DuMu<sup>x</sup>. We will use this in the following to inherit the +// respective properties, and subsequently specialize those properties for our +// type tag, which we want to modify or for which no meaningful default can be set. +#include <dumux/porousmediumflow/1p/model.hh> // for `TTag::OneP` + +// The local residual for incompressible flow is included. +// The one-phase flow model (included above) uses a default implementation of the +// local residual for single-phase flow. However, in this example we are using an +// incompressible fluid phase. Therefore, we are including the specialized local +// residual which contains functionality to analytically compute the entries of +// the Jacobian matrix. We will use this in the main file. +#include <dumux/porousmediumflow/1p/incompressiblelocalresidual.hh> + +// We will use a single liquid phase consisting of a component with constant fluid properties. +#include <dumux/material/components/constant.hh> +#include <dumux/material/fluidsystems/1pliquid.hh> + +// As mentioned at the beginning of the documentation of this example, DuMu<sup>x</sup> +// provides specialized implementations of control volumes and faces for +// rotation-symmetric problems. These take care of adjusting volume and area +// computations to account for the extrusion about the symmetry axes. +// These implementations are exported by the `RotationSymmetricGridGeometryTraits`. +#include <dumux/discretization/rotationsymmetricgridgeometrytraits.hh> + +// The classes that define the problem and parameters used in this simulation +#include "problem.hh" +#include "spatialparams.hh" +// [[/details]] +// +// ### `TypeTag` definition +// A `TypeTag` for our simulation is defined, which inherits properties from the +// single-phase flow model and the box scheme. +namespace Dumux::Properties { +namespace TTag { +struct OnePRotSym { using InheritsFrom = std::tuple<OneP, BoxModel>; }; +} + +// ### Property specializations +// +// In the following piece of code, mandatory `properties` for which no meaningful +// default can be set, are specialized for our type tag `OnePRotSym`. +// [[codeblock]] +// We use a structured 1D grid with an offset. This allows us to define the +// computational domain to be between the radii $`r_1`$ and $`r_2`$ as illustrated +// in the beginning of the documentation of this example +template<class TypeTag> +struct Grid<TypeTag, TTag::OnePRotSym> +{ using type = Dune::YaspGrid<1, Dune::EquidistantOffsetCoordinates<double, 1>>; }; + +// The problem class specifying initial and boundary conditions: +template<class TypeTag> +struct Problem<TypeTag, TTag::OnePRotSym> +{ using type = RotSymExampleProblem<TypeTag>; }; + +// Our spatial parameters class defining the permeability and porosity of the porous medium: +template<class TypeTag> +struct SpatialParams<TypeTag, TTag::OnePRotSym> +{ +private: + using GridGeometry = GetPropType<TypeTag, Properties::GridGeometry>; + using Scalar = GetPropType<TypeTag, Properties::Scalar>; +public: + using type = RotSymExampleSpatialParams<GridGeometry, Scalar>; +}; + +// We use a single liquid phase consisting of a component with constant fluid properties. +template<class TypeTag> +struct FluidSystem<TypeTag, TTag::OnePRotSym> +{ +private: + using Scalar = GetPropType<TypeTag, Properties::Scalar>; +public: + using type = FluidSystems::OnePLiquid<Scalar, Components::Constant<1, Scalar> >; +}; +// [[/codeblock]] + +// As mentioned before, DuMu<sup>x</sup> provides specialized implementations of sub-control +// volumes and faces for rotation-symmetric problems, which are exported by the +// `RotationSymmetricGridGeometryTraits`. +// Here, we pass these traits to the grid geometry of the box scheme (the scheme +// that we use here) and specialize the `GridGeometry` property accordingly. +// [[codeblock]] +template<class TypeTag> +struct GridGeometry<TypeTag, TTag::OnePRotSym> +{ +private: + static constexpr bool enableCache = getPropValue<TypeTag, Properties::EnableGridGeometryCache>(); + using Scalar = GetPropType<TypeTag, Properties::Scalar>; + using GridView = typename GetPropType<TypeTag, Properties::Grid>::LeafGridView; + + // The default traits for box grid geometries + using DefaultTraits = BoxDefaultGridGeometryTraits<GridView>; + + // On the basis of the default traits, define the traits for rotational symmetry. + // These will export the corresponding rotation-symmetric sub-control volumes and faces. + using GGTraits = RotationSymmetricGridGeometryTraits<DefaultTraits, RotationPolicy::disc>; + +public: + // Pass the above traits to the box grid geometry such that it uses the + // rotation-symmetric sub-control volumes and faces. + using type = BoxFVGridGeometry<Scalar, GridView, enableCache, GGTraits>; +}; +// [[/codeblock]] + +// Moreover, here we use a local residual specialized for incompressible flow +// that contains functionality related to analytic differentiation. +template<class TypeTag> +struct LocalResidual<TypeTag, TTag::OnePRotSym> +{ using type = OnePIncompressibleLocalResidual<TypeTag>; }; + +} // end namespace Dumux::Properties +// [[/content]] +#endif diff --git a/examples/1protationsymmetry/spatialparams.hh b/examples/1protationsymmetry/spatialparams.hh new file mode 100644 index 0000000000000000000000000000000000000000..cbc60c1904e06db5a176727b3604a3761ad36c87 --- /dev/null +++ b/examples/1protationsymmetry/spatialparams.hh @@ -0,0 +1,82 @@ +// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- +// vi: set et ts=4 sw=4 sts=4: +/***************************************************************************** + * See the file COPYING for full copying permissions. * + * * + * This program is free software: you can redistribute it and/or modify * + * it under the terms of the GNU General Public License as published by * + * the Free Software Foundation, either version 3 of the License, or * + * (at your option) any later version. * + * * + * This program is distributed in the hope that it will be useful, * + * but WITHOUT ANY WARRANTY; without even the implied warranty of * + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * + * GNU General Public License for more details. * + * * + * You should have received a copy of the GNU General Public License * + * along with this program. If not, see <http://www.gnu.org/licenses/>. * + *****************************************************************************/ + +#ifndef DUMUX_ONEP_ROTATION_SYMMETRY_SPATIAL_PARAMS_HH +#define DUMUX_ONEP_ROTATION_SYMMETRY_SPATIAL_PARAMS_HH + +// ## Parameter distributions (`spatialparams.hh`) +// +// This file contains the __spatial parameters class__ which defines the +// distributions for the porous medium parameters permeability and porosity +// over the computational grid. +// [[content]] +// We include the spatial parameters class for single-phase models discretized +// by finite volume schemes, from which the spatial parameters defined for this +// example inherit. +#include <dumux/material/spatialparams/fv1p.hh> + +// ### The spatial parameters class +// +// In the `RotSymExampleSpatialParams` class, we define the functions needed to describe +// the porous medium, that is, porosity and permeability. +// We inherit from the `FVSpatialParamsOneP` class here, which is the base class +// for spatial parameters in the context of single-phase porous medium flow +// applications using finite volume discretization schemes. +// [[codeblock]] +namespace Dumux { + +template<class GridGeometry, class Scalar> +class RotSymExampleSpatialParams +: public FVSpatialParamsOneP<GridGeometry, Scalar, RotSymExampleSpatialParams<GridGeometry, Scalar>> +{ + using ThisType = RotSymExampleSpatialParams<GridGeometry, Scalar>; + using ParentType = FVSpatialParamsOneP<GridGeometry, Scalar, ThisType>; + using Element = typename GridGeometry::GridView::template Codim<0>::Entity; + using GlobalPosition = typename Element::Geometry::GlobalCoordinate; +public: + // Spatial parameter classes for porous medium flow applications need to + // export the type used for intrinsic permeabilities. + using PermeabilityType = Scalar; + + // In the constructor we obtain the permeability value from the input file. + RotSymExampleSpatialParams(std::shared_ptr<const GridGeometry> gridGeometry) + : ParentType(gridGeometry) + { permeability_ = getParam<Scalar>("SpatialParams.Permeability"); } + // [[/codeblock]] + + // #### Porosity distribution + // This function is used to define the porosity distribution in the + // computational domain. Here, we use a constant porosity of 1.0. + Scalar porosityAtPos(const GlobalPosition& globalPos) const + { return 1.0; } + + // #### Permeability distribution + // This function is used to define the permeability distribution in the + // computational domain. Here, we use a constant permeability that is + // defined in the input file. + PermeabilityType permeabilityAtPos(const GlobalPosition& globalPos) const + { return permeability_; } + +private: + Scalar permeability_; +}; + +} // end namespace Dumux +// [[/content]] +#endif diff --git a/examples/CMakeLists.txt b/examples/CMakeLists.txt index 72da3bd43811fb95c5c4d951b5bfa5aabe2e918e..058cc9e2783243b1f0e22b1c45534600883dc666 100644 --- a/examples/CMakeLists.txt +++ b/examples/CMakeLists.txt @@ -2,3 +2,4 @@ add_subdirectory(2pinfiltration) add_subdirectory(1ptracer) add_subdirectory(shallowwaterfriction) add_subdirectory(freeflowchannel) +add_subdirectory(1protationsymmetry) diff --git a/examples/README.md b/examples/README.md index 1c8d47e7d7868c70cf23f28b80c99678b7e8ee09..e4e0e646c5bd4f86a98d5edb4feda385d9d83cff 100644 --- a/examples/README.md +++ b/examples/README.md @@ -74,3 +74,20 @@ You learn how to <figure><img src="freeflowchannel/img/setup.png" alt="freeflow result"/></figure></td> </a></td> </tr></table> + +### [:open_file_folder: Example 5: One-phase flow with rotation-symmetric solution](1protationsymmetry/README.md) + +<table><tr><td> + +In this example, a rotation-symmetric solution for the single-phase flow equation is discussed. +You learn how to + +* solve a rotation-symmetric problem +* perform a convergence test against an analytical solution +* do post-processing in [ParaView](https://www.paraview.org/) + +</td> +<td width="30%"><a href="1protationsymmetry/README.md"> +<figure><img src="1protationsymmetry/img/setup.svg" alt="Rotation-symmetric setup"/></figure></td> +</a></td> +</tr></table> diff --git a/test/references/example_rotationsymmetry-reference.vtp b/test/references/example_rotationsymmetry-reference.vtp new file mode 100644 index 0000000000000000000000000000000000000000..12f4645005e90a394ebe509e8de1b0fd023d5b8d --- /dev/null +++ b/test/references/example_rotationsymmetry-reference.vtp @@ -0,0 +1,1231 @@ +<?xml version="1.0"?> +<VTKFile type="PolyData" version="0.1" byte_order="LittleEndian"> + <PolyData> + <Piece NumberOfLines="1600" NumberOfPoints="1601"> + <PointData Scalars="p"> + <DataArray type="Float32" Name="p" NumberOfComponents="1" format="ascii"> + 100000 100188 100374 100557 100739 100918 101095 101271 101444 101616 101786 101954 + 102120 102285 102448 102609 102769 102927 103083 103238 103391 103543 103694 103843 + 103991 104137 104282 104426 104569 104710 104850 104989 105126 105262 105398 105532 + 105665 105797 105927 106057 106186 106313 106440 106565 106690 106814 106936 107058 + 107179 107299 107418 107536 107653 107770 107885 108000 108114 108227 108339 108451 + 108562 108672 108781 108889 108997 109104 109211 109316 109421 109525 109629 109732 + 109834 109935 110036 110137 110236 110335 110434 110532 110629 110725 110821 110917 + 111012 111106 111200 111293 111386 111478 111570 111661 111751 111841 111931 112020 + 112109 112197 112284 112371 112458 112544 112630 112715 112800 112884 112968 113052 + 113135 113217 113299 113381 113462 113543 113624 113704 113784 113863 113942 114020 + 114098 114176 114254 114331 114407 114483 114559 114635 114710 114785 114859 114933 + 115007 115081 115154 115227 115299 115371 115443 115514 115585 115656 115727 115797 + 115867 115936 116006 116075 116143 116212 116280 116348 116415 116482 116549 116616 + 116683 116749 116814 116880 116945 117010 117075 117140 117204 117268 117332 117395 + 117458 117521 117584 117647 117709 117771 117833 117894 117955 118016 118077 118138 + 118198 118258 118318 118378 118437 118497 118556 118614 118673 118731 118789 118847 + 118905 118963 119020 119077 119134 119191 119247 119303 119359 119415 119471 119527 + 119582 119637 119692 119747 119801 119856 119910 119964 120018 120071 120125 120178 + 120231 120284 120337 120389 120442 120494 120546 120598 120650 120701 120753 120804 + 120855 120906 120957 121007 121058 121108 121158 121208 121258 121307 121357 121406 + 121455 121504 121553 121602 121650 121699 121747 121795 121843 121891 121939 121986 + 122034 122081 122128 122175 122222 122269 122315 122362 122408 122454 122500 122546 + 122592 122637 122683 122728 122774 122819 122864 122909 122953 122998 123042 123087 + 123131 123175 123219 123263 123307 123350 123394 123437 123481 123524 123567 123610 + 123653 123695 123738 123780 123823 123865 123907 123949 123991 124033 124075 124116 + 124158 124199 124240 124281 124322 124363 124404 124445 124486 124526 124567 124607 + 124647 124687 124727 124767 124807 124847 124886 124926 124965 125005 125044 125083 + 125122 125161 125200 125239 125277 125316 125354 125393 125431 125469 125507 125545 + 125583 125621 125659 125696 125734 125771 125809 125846 125883 125920 125957 125994 + 126031 126068 126105 126141 126178 126214 126251 126287 126323 126359 126395 126431 + 126467 126503 126539 126574 126610 126645 126681 126716 126751 126786 126821 126856 + 126891 126926 126961 126996 127030 127065 127099 127134 127168 127202 127236 127271 + 127305 127339 127372 127406 127440 127474 127507 127541 127574 127608 127641 127674 + 127707 127740 127773 127806 127839 127872 127905 127938 127970 128003 128035 128068 + 128100 128132 128165 128197 128229 128261 128293 128325 128357 128389 128420 128452 + 128484 128515 128547 128578 128609 128641 128672 128703 128734 128765 128796 128827 + 128858 128889 128919 128950 128981 129011 129042 129072 129103 129133 129163 129193 + 129224 129254 129284 129314 129344 129374 129403 129433 129463 129492 129522 129552 + 129581 129611 129640 129669 129699 129728 129757 129786 129815 129844 129873 129902 + 129931 129960 129988 130017 130046 130074 130103 130131 130160 130188 130216 130245 + 130273 130301 130329 130357 130385 130413 130441 130469 130497 130525 130553 130580 + 130608 130636 130663 130691 130718 130745 130773 130800 130827 130855 130882 130909 + 130936 130963 130990 131017 131044 131071 131097 131124 131151 131178 131204 131231 + 131257 131284 131310 131337 131363 131389 131416 131442 131468 131494 131520 131546 + 131572 131598 131624 131650 131676 131702 131728 131753 131779 131805 131830 131856 + 131881 131907 131932 131958 131983 132008 132034 132059 132084 132109 132134 132159 + 132184 132209 132234 132259 132284 132309 132334 132359 132383 132408 132433 132457 + 132482 132506 132531 132555 132580 132604 132628 132653 132677 132701 132725 132750 + 132774 132798 132822 132846 132870 132894 132918 132942 132965 132989 133013 133037 + 133060 133084 133108 133131 133155 133178 133202 133225 133249 133272 133295 133319 + 133342 133365 133389 133412 133435 133458 133481 133504 133527 133550 133573 133596 + 133619 133642 133664 133687 133710 133733 133755 133778 133801 133823 133846 133868 + 133891 133913 133936 133958 133980 134003 134025 134047 134070 134092 134114 134136 + 134158 134180 134202 134224 134246 134268 134290 134312 134334 134356 134378 134399 + 134421 134443 134465 134486 134508 134530 134551 134573 134594 134616 134637 134658 + 134680 134701 134723 134744 134765 134786 134808 134829 134850 134871 134892 134913 + 134934 134956 134977 134998 135018 135039 135060 135081 135102 135123 135144 135164 + 135185 135206 135226 135247 135268 135288 135309 135329 135350 135370 135391 135411 + 135432 135452 135472 135493 135513 135533 135554 135574 135594 135614 135634 135655 + 135675 135695 135715 135735 135755 135775 135795 135815 135835 135854 135874 135894 + 135914 135934 135953 135973 135993 136013 136032 136052 136071 136091 136111 136130 + 136150 136169 136189 136208 136227 136247 136266 136286 136305 136324 136343 136363 + 136382 136401 136420 136440 136459 136478 136497 136516 136535 136554 136573 136592 + 136611 136630 136649 136668 136686 136705 136724 136743 136762 136780 136799 136818 + 136837 136855 136874 136893 136911 136930 136948 136967 136985 137004 137022 137041 + 137059 137078 137096 137114 137133 137151 137169 137188 137206 137224 137242 137260 + 137279 137297 137315 137333 137351 137369 137387 137405 137423 137441 137459 137477 + 137495 137513 137531 137549 137567 137584 137602 137620 137638 137656 137673 137691 + 137709 137726 137744 137762 137779 137797 137814 137832 137850 137867 137885 137902 + 137919 137937 137954 137972 137989 138006 138024 138041 138058 138076 138093 138110 + 138127 138145 138162 138179 138196 138213 138230 138248 138265 138282 138299 138316 + 138333 138350 138367 138384 138401 138418 138434 138451 138468 138485 138502 138519 + 138535 138552 138569 138586 138602 138619 138636 138653 138669 138686 138702 138719 + 138736 138752 138769 138785 138802 138818 138835 138851 138868 138884 138901 138917 + 138933 138950 138966 138982 138999 139015 139031 139047 139064 139080 139096 139112 + 139129 139145 139161 139177 139193 139209 139225 139241 139257 139273 139289 139305 + 139321 139337 139353 139369 139385 139401 139417 139433 139449 139465 139480 139496 + 139512 139528 139544 139559 139575 139591 139606 139622 139638 139653 139669 139685 + 139700 139716 139731 139747 139763 139778 139794 139809 139825 139840 139856 139871 + 139886 139902 139917 139933 139948 139963 139979 139994 140009 140025 140040 140055 + 140070 140086 140101 140116 140131 140146 140162 140177 140192 140207 140222 140237 + 140252 140267 140282 140297 140312 140327 140342 140357 140372 140387 140402 140417 + 140432 140447 140462 140477 140492 140506 140521 140536 140551 140566 140580 140595 + 140610 140625 140639 140654 140669 140683 140698 140713 140727 140742 140756 140771 + 140786 140800 140815 140829 140844 140858 140873 140887 140902 140916 140931 140945 + 140960 140974 140988 141003 141017 141031 141046 141060 141074 141089 141103 141117 + 141132 141146 141160 141174 141189 141203 141217 141231 141245 141259 141274 141288 + 141302 141316 141330 141344 141358 141372 141386 141400 141414 141428 141442 141456 + 141470 141484 141498 141512 141526 141540 141554 141568 141581 141595 141609 141623 + 141637 141651 141664 141678 141692 141706 141719 141733 141747 141761 141774 141788 + 141802 141815 141829 141843 141856 141870 141884 141897 141911 141924 141938 141951 + 141965 141978 141992 142005 142019 142032 142046 142059 142073 142086 142100 142113 + 142126 142140 142153 142167 142180 142193 142207 142220 142233 142247 142260 142273 + 142286 142300 142313 142326 142339 142353 142366 142379 142392 142405 142418 142432 + 142445 142458 142471 142484 142497 142510 142523 142536 142549 142562 142575 142588 + 142602 142614 142627 142640 142653 142666 142679 142692 142705 142718 142731 142744 + 142757 142770 142782 142795 142808 142821 142834 142847 142859 142872 142885 142898 + 142910 142923 142936 142949 142961 142974 142987 143000 143012 143025 143037 143050 + 143063 143075 143088 143101 143113 143126 143138 143151 143163 143176 143189 143201 + 143214 143226 143239 143251 143264 143276 143288 143301 143313 143326 143338 143351 + 143363 143375 143388 143400 143413 143425 143437 143450 143462 143474 143486 143499 + 143511 143523 143536 143548 143560 143572 143585 143597 143609 143621 143633 143646 + 143658 143670 143682 143694 143706 143718 143731 143743 143755 143767 143779 143791 + 143803 143815 143827 143839 143851 143863 143875 143887 143899 143911 143923 143935 + 143947 143959 143971 143983 143995 144007 144019 144030 144042 144054 144066 144078 + 144090 144102 144113 144125 144137 144149 144161 144172 144184 144196 144208 144219 + 144231 144243 144255 144266 144278 144290 144301 144313 144325 144336 144348 144360 + 144371 144383 144395 144406 144418 144429 144441 144453 144464 144476 144487 144499 + 144510 144522 144533 144545 144556 144568 144579 144591 144602 144614 144625 144637 + 144648 144660 144671 144682 144694 144705 144717 144728 144739 144751 144762 144773 + 144785 144796 144807 144819 144830 144841 144853 144864 144875 144886 144898 144909 + 144920 144931 144943 144954 144965 144976 144987 144999 145010 145021 145032 145043 + 145054 145066 145077 145088 145099 145110 145121 145132 145143 145154 145166 145177 + 145188 145199 145210 145221 145232 145243 145254 145265 145276 145287 145298 145309 + 145320 145331 145342 145353 145364 145374 145385 145396 145407 145418 145429 145440 + 145451 145462 145472 145483 145494 145505 145516 145527 145537 145548 145559 145570 + 145581 145591 145602 145613 145624 145634 145645 145656 145667 145677 145688 145699 + 145709 145720 145731 145742 145752 145763 145773 145784 145795 145805 145816 145827 + 145837 145848 145858 145869 145880 145890 145901 145911 145922 145932 145943 145954 + 145964 145975 145985 145996 146006 146017 146027 146038 146048 146059 146069 146079 + 146090 146100 146111 146121 146132 146142 146152 146163 146173 146184 146194 146204 + 146215 146225 146235 146246 146256 146266 146277 146287 146297 146308 146318 146328 + 146339 146349 146359 146369 146380 146390 146400 146410 146421 146431 146441 146451 + 146461 146472 146482 146492 146502 146512 146522 146533 146543 146553 146563 146573 + 146583 146593 146604 146614 146624 146634 146644 146654 146664 146674 146684 146694 + 146704 146714 146724 146734 146744 146755 146765 146775 146785 146795 146804 146814 + 146824 146834 146844 146854 146864 146874 146884 146894 146904 146914 146924 146934 + 146944 146954 146963 146973 146983 146993 147003 147013 147023 147032 147042 147052 + 147062 147072 147082 147091 147101 147111 147121 147131 147140 147150 147160 147170 + 147179 147189 147199 147209 147218 147228 147238 147248 147257 147267 147277 147286 + 147296 147306 147315 147325 147335 147344 147354 147364 147373 147383 147393 147402 + 147412 147421 147431 147441 147450 147460 147469 147479 147488 147498 147508 147517 + 147527 147536 147546 147555 147565 147574 147584 147593 147603 147612 147622 147631 + 147641 147650 147660 147669 147679 + </DataArray> + <DataArray type="Float32" Name="pExact" NumberOfComponents="1" format="ascii"> + 100000 100188 100374 100557 100739 100918 101095 101271 101444 101616 101786 101954 + 102120 102285 102448 102609 102769 102927 103083 103238 103391 103543 103694 103843 + 103991 104137 104282 104426 104569 104710 104850 104989 105126 105262 105398 105532 + 105665 105797 105927 106057 106186 106313 106440 106566 106690 106814 106936 107058 + 107179 107299 107418 107536 107653 107770 107885 108000 108114 108227 108340 108451 + 108562 108672 108781 108890 108997 109104 109211 109316 109421 109525 109629 109732 + 109834 109936 110036 110137 110236 110335 110434 110532 110629 110725 110822 110917 + 111012 111106 111200 111293 111386 111478 111570 111661 111751 111841 111931 112020 + 112109 112197 112284 112371 112458 112544 112630 112715 112800 112884 112968 113052 + 113135 113217 113299 113381 113462 113543 113624 113704 113784 113863 113942 114020 + 114098 114176 114254 114331 114407 114483 114559 114635 114710 114785 114859 114933 + 115007 115081 115154 115227 115299 115371 115443 115514 115585 115656 115727 115797 + 115867 115937 116006 116075 116143 116212 116280 116348 116415 116483 116549 116616 + 116683 116749 116815 116880 116945 117010 117075 117140 117204 117268 117332 117395 + 117458 117521 117584 117647 117709 117771 117833 117894 117955 118016 118077 118138 + 118198 118258 118318 118378 118437 118497 118556 118614 118673 118731 118789 118847 + 118905 118963 119020 119077 119134 119191 119247 119303 119360 119415 119471 119527 + 119582 119637 119692 119747 119801 119856 119910 119964 120018 120071 120125 120178 + 120231 120284 120337 120389 120442 120494 120546 120598 120650 120701 120753 120804 + 120855 120906 120957 121007 121058 121108 121158 121208 121258 121307 121357 121406 + 121455 121504 121553 121602 121650 121699 121747 121795 121843 121891 121939 121986 + 122034 122081 122128 122175 122222 122269 122315 122362 122408 122454 122500 122546 + 122592 122637 122683 122728 122774 122819 122864 122909 122953 122998 123042 123087 + 123131 123175 123219 123263 123307 123350 123394 123437 123481 123524 123567 123610 + 123653 123695 123738 123780 123823 123865 123907 123949 123991 124033 124075 124116 + 124158 124199 124240 124281 124322 124363 124404 124445 124486 124526 124567 124607 + 124647 124687 124727 124767 124807 124847 124886 124926 124965 125005 125044 125083 + 125122 125161 125200 125239 125277 125316 125354 125393 125431 125469 125507 125545 + 125583 125621 125659 125696 125734 125771 125809 125846 125883 125920 125957 125994 + 126031 126068 126105 126141 126178 126214 126251 126287 126323 126359 126395 126431 + 126467 126503 126539 126574 126610 126645 126681 126716 126751 126786 126821 126856 + 126891 126926 126961 126996 127030 127065 127099 127134 127168 127202 127236 127271 + 127305 127339 127372 127406 127440 127474 127507 127541 127574 127608 127641 127674 + 127707 127740 127774 127806 127839 127872 127905 127938 127970 128003 128035 128068 + 128100 128132 128165 128197 128229 128261 128293 128325 128357 128389 128420 128452 + 128484 128515 128547 128578 128609 128641 128672 128703 128734 128765 128796 128827 + 128858 128889 128919 128950 128981 129011 129042 129072 129103 129133 129163 129193 + 129224 129254 129284 129314 129344 129374 129403 129433 129463 129493 129522 129552 + 129581 129611 129640 129669 129699 129728 129757 129786 129815 129844 129873 129902 + 129931 129960 129988 130017 130046 130074 130103 130131 130160 130188 130216 130245 + 130273 130301 130329 130357 130385 130413 130441 130469 130497 130525 130553 130580 + 130608 130636 130663 130691 130718 130745 130773 130800 130827 130855 130882 130909 + 130936 130963 130990 131017 131044 131071 131098 131124 131151 131178 131204 131231 + 131257 131284 131310 131337 131363 131389 131416 131442 131468 131494 131520 131546 + 131572 131598 131624 131650 131676 131702 131728 131753 131779 131805 131830 131856 + 131881 131907 131932 131958 131983 132008 132034 132059 132084 132109 132134 132159 + 132184 132209 132234 132259 132284 132309 132334 132359 132383 132408 132433 132457 + 132482 132506 132531 132555 132580 132604 132628 132653 132677 132701 132726 132750 + 132774 132798 132822 132846 132870 132894 132918 132942 132966 132989 133013 133037 + 133060 133084 133108 133131 133155 133178 133202 133225 133249 133272 133296 133319 + 133342 133365 133389 133412 133435 133458 133481 133504 133527 133550 133573 133596 + 133619 133642 133664 133687 133710 133733 133755 133778 133801 133823 133846 133868 + 133891 133913 133936 133958 133980 134003 134025 134047 134070 134092 134114 134136 + 134158 134180 134202 134224 134246 134268 134290 134312 134334 134356 134378 134399 + 134421 134443 134465 134486 134508 134530 134551 134573 134594 134616 134637 134659 + 134680 134701 134723 134744 134765 134786 134808 134829 134850 134871 134892 134913 + 134935 134956 134977 134998 135018 135039 135060 135081 135102 135123 135144 135164 + 135185 135206 135226 135247 135268 135288 135309 135329 135350 135370 135391 135411 + 135432 135452 135473 135493 135513 135533 135554 135574 135594 135614 135634 135655 + 135675 135695 135715 135735 135755 135775 135795 135815 135835 135854 135874 135894 + 135914 135934 135954 135973 135993 136013 136032 136052 136072 136091 136111 136130 + 136150 136169 136189 136208 136228 136247 136266 136286 136305 136324 136344 136363 + 136382 136401 136420 136440 136459 136478 136497 136516 136535 136554 136573 136592 + 136611 136630 136649 136668 136687 136705 136724 136743 136762 136780 136799 136818 + 136837 136855 136874 136893 136911 136930 136948 136967 136985 137004 137022 137041 + 137059 137078 137096 137114 137133 137151 137169 137188 137206 137224 137242 137260 + 137279 137297 137315 137333 137351 137369 137387 137405 137423 137441 137459 137477 + 137495 137513 137531 137549 137567 137584 137602 137620 137638 137656 137673 137691 + 137709 137726 137744 137762 137779 137797 137814 137832 137850 137867 137885 137902 + 137919 137937 137954 137972 137989 138006 138024 138041 138058 138076 138093 138110 + 138127 138145 138162 138179 138196 138213 138230 138248 138265 138282 138299 138316 + 138333 138350 138367 138384 138401 138418 138434 138451 138468 138485 138502 138519 + 138536 138552 138569 138586 138602 138619 138636 138653 138669 138686 138702 138719 + 138736 138752 138769 138785 138802 138818 138835 138851 138868 138884 138901 138917 + 138933 138950 138966 138982 138999 139015 139031 139048 139064 139080 139096 139112 + 139129 139145 139161 139177 139193 139209 139225 139241 139257 139273 139289 139305 + 139321 139337 139353 139369 139385 139401 139417 139433 139449 139465 139480 139496 + 139512 139528 139544 139559 139575 139591 139606 139622 139638 139653 139669 139685 + 139700 139716 139731 139747 139763 139778 139794 139809 139825 139840 139856 139871 + 139886 139902 139917 139933 139948 139963 139979 139994 140009 140025 140040 140055 + 140070 140086 140101 140116 140131 140146 140162 140177 140192 140207 140222 140237 + 140252 140267 140282 140297 140312 140327 140342 140357 140372 140387 140402 140417 + 140432 140447 140462 140477 140492 140506 140521 140536 140551 140566 140580 140595 + 140610 140625 140639 140654 140669 140683 140698 140713 140727 140742 140756 140771 + 140786 140800 140815 140829 140844 140858 140873 140887 140902 140916 140931 140945 + 140960 140974 140988 141003 141017 141031 141046 141060 141074 141089 141103 141117 + 141132 141146 141160 141174 141189 141203 141217 141231 141245 141259 141274 141288 + 141302 141316 141330 141344 141358 141372 141386 141400 141414 141428 141442 141456 + 141470 141484 141498 141512 141526 141540 141554 141568 141581 141595 141609 141623 + 141637 141651 141664 141678 141692 141706 141719 141733 141747 141761 141774 141788 + 141802 141815 141829 141843 141856 141870 141884 141897 141911 141924 141938 141951 + 141965 141978 141992 142005 142019 142032 142046 142059 142073 142086 142100 142113 + 142126 142140 142153 142167 142180 142193 142207 142220 142233 142247 142260 142273 + 142286 142300 142313 142326 142339 142353 142366 142379 142392 142405 142418 142432 + 142445 142458 142471 142484 142497 142510 142523 142536 142549 142562 142575 142588 + 142602 142614 142627 142640 142653 142666 142679 142692 142705 142718 142731 142744 + 142757 142770 142782 142795 142808 142821 142834 142847 142859 142872 142885 142898 + 142910 142923 142936 142949 142961 142974 142987 143000 143012 143025 143038 143050 + 143063 143075 143088 143101 143113 143126 143138 143151 143164 143176 143189 143201 + 143214 143226 143239 143251 143264 143276 143288 143301 143313 143326 143338 143351 + 143363 143375 143388 143400 143413 143425 143437 143450 143462 143474 143486 143499 + 143511 143523 143536 143548 143560 143572 143585 143597 143609 143621 143633 143646 + 143658 143670 143682 143694 143706 143718 143731 143743 143755 143767 143779 143791 + 143803 143815 143827 143839 143851 143863 143875 143887 143899 143911 143923 143935 + 143947 143959 143971 143983 143995 144007 144019 144030 144042 144054 144066 144078 + 144090 144102 144113 144125 144137 144149 144161 144172 144184 144196 144208 144219 + 144231 144243 144255 144266 144278 144290 144301 144313 144325 144336 144348 144360 + 144371 144383 144395 144406 144418 144429 144441 144453 144464 144476 144487 144499 + 144510 144522 144533 144545 144556 144568 144579 144591 144602 144614 144625 144637 + 144648 144660 144671 144682 144694 144705 144717 144728 144739 144751 144762 144773 + 144785 144796 144807 144819 144830 144841 144853 144864 144875 144886 144898 144909 + 144920 144931 144943 144954 144965 144976 144988 144999 145010 145021 145032 145043 + 145054 145066 145077 145088 145099 145110 145121 145132 145143 145154 145166 145177 + 145188 145199 145210 145221 145232 145243 145254 145265 145276 145287 145298 145309 + 145320 145331 145342 145353 145364 145374 145385 145396 145407 145418 145429 145440 + 145451 145462 145472 145483 145494 145505 145516 145527 145537 145548 145559 145570 + 145581 145591 145602 145613 145624 145634 145645 145656 145667 145677 145688 145699 + 145709 145720 145731 145742 145752 145763 145774 145784 145795 145805 145816 145827 + 145837 145848 145858 145869 145880 145890 145901 145911 145922 145932 145943 145954 + 145964 145975 145985 145996 146006 146017 146027 146038 146048 146059 146069 146079 + 146090 146100 146111 146121 146132 146142 146152 146163 146173 146184 146194 146204 + 146215 146225 146235 146246 146256 146266 146277 146287 146297 146308 146318 146328 + 146339 146349 146359 146369 146380 146390 146400 146410 146421 146431 146441 146451 + 146461 146472 146482 146492 146502 146512 146522 146533 146543 146553 146563 146573 + 146583 146593 146604 146614 146624 146634 146644 146654 146664 146674 146684 146694 + 146704 146714 146724 146734 146744 146755 146765 146775 146785 146795 146805 146814 + 146824 146834 146844 146854 146864 146874 146884 146894 146904 146914 146924 146934 + 146944 146954 146963 146973 146983 146993 147003 147013 147023 147032 147042 147052 + 147062 147072 147082 147091 147101 147111 147121 147131 147140 147150 147160 147170 + 147179 147189 147199 147209 147218 147228 147238 147248 147257 147267 147277 147286 + 147296 147306 147315 147325 147335 147344 147354 147364 147373 147383 147393 147402 + 147412 147421 147431 147441 147450 147460 147469 147479 147488 147498 147508 147517 + 147527 147536 147546 147555 147565 147574 147584 147593 147603 147612 147622 147631 + 147641 147650 147660 147669 147679 + </DataArray> + </PointData> + <CellData Scalars="process rank"> + <DataArray type="Float32" Name="process rank" NumberOfComponents="1" format="ascii"> + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 + </DataArray> + </CellData> + <Points> + <DataArray type="Float32" Name="Coordinates" NumberOfComponents="3" format="ascii"> + 0.05 0 0 0.0505937 0 0 0.0511875 0 0 0.0517812 0 0 + 0.052375 0 0 0.0529688 0 0 0.0535625 0 0 0.0541563 0 0 + 0.05475 0 0 0.0553438 0 0 0.0559375 0 0 0.0565313 0 0 + 0.057125 0 0 0.0577188 0 0 0.0583125 0 0 0.0589062 0 0 + 0.0595 0 0 0.0600937 0 0 0.0606875 0 0 0.0612812 0 0 + 0.061875 0 0 0.0624687 0 0 0.0630625 0 0 0.0636562 0 0 + 0.06425 0 0 0.0648438 0 0 0.0654375 0 0 0.0660312 0 0 + 0.066625 0 0 0.0672188 0 0 0.0678125 0 0 0.0684062 0 0 + 0.069 0 0 0.0695937 0 0 0.0701875 0 0 0.0707813 0 0 + 0.071375 0 0 0.0719687 0 0 0.0725625 0 0 0.0731563 0 0 + 0.07375 0 0 0.0743437 0 0 0.0749375 0 0 0.0755313 0 0 + 0.076125 0 0 0.0767187 0 0 0.0773125 0 0 0.0779063 0 0 + 0.0785 0 0 0.0790937 0 0 0.0796875 0 0 0.0802813 0 0 + 0.080875 0 0 0.0814688 0 0 0.0820625 0 0 0.0826562 0 0 + 0.08325 0 0 0.0838438 0 0 0.0844375 0 0 0.0850312 0 0 + 0.085625 0 0 0.0862188 0 0 0.0868125 0 0 0.0874062 0 0 + 0.088 0 0 0.0885938 0 0 0.0891875 0 0 0.0897812 0 0 + 0.090375 0 0 0.0909688 0 0 0.0915625 0 0 0.0921562 0 0 + 0.09275 0 0 0.0933437 0 0 0.0939375 0 0 0.0945313 0 0 + 0.095125 0 0 0.0957187 0 0 0.0963125 0 0 0.0969063 0 0 + 0.0975 0 0 0.0980937 0 0 0.0986875 0 0 0.0992813 0 0 + 0.099875 0 0 0.100469 0 0 0.101062 0 0 0.101656 0 0 + 0.10225 0 0 0.102844 0 0 0.103437 0 0 0.104031 0 0 + 0.104625 0 0 0.105219 0 0 0.105812 0 0 0.106406 0 0 + 0.107 0 0 0.107594 0 0 0.108187 0 0 0.108781 0 0 + 0.109375 0 0 0.109969 0 0 0.110563 0 0 0.111156 0 0 + 0.11175 0 0 0.112344 0 0 0.112938 0 0 0.113531 0 0 + 0.114125 0 0 0.114719 0 0 0.115313 0 0 0.115906 0 0 + 0.1165 0 0 0.117094 0 0 0.117688 0 0 0.118281 0 0 + 0.118875 0 0 0.119469 0 0 0.120063 0 0 0.120656 0 0 + 0.12125 0 0 0.121844 0 0 0.122437 0 0 0.123031 0 0 + 0.123625 0 0 0.124219 0 0 0.124812 0 0 0.125406 0 0 + 0.126 0 0 0.126594 0 0 0.127188 0 0 0.127781 0 0 + 0.128375 0 0 0.128969 0 0 0.129562 0 0 0.130156 0 0 + 0.13075 0 0 0.131344 0 0 0.131938 0 0 0.132531 0 0 + 0.133125 0 0 0.133719 0 0 0.134312 0 0 0.134906 0 0 + 0.1355 0 0 0.136094 0 0 0.136688 0 0 0.137281 0 0 + 0.137875 0 0 0.138469 0 0 0.139062 0 0 0.139656 0 0 + 0.14025 0 0 0.140844 0 0 0.141438 0 0 0.142031 0 0 + 0.142625 0 0 0.143219 0 0 0.143813 0 0 0.144406 0 0 + 0.145 0 0 0.145594 0 0 0.146187 0 0 0.146781 0 0 + 0.147375 0 0 0.147969 0 0 0.148563 0 0 0.149156 0 0 + 0.14975 0 0 0.150344 0 0 0.150937 0 0 0.151531 0 0 + 0.152125 0 0 0.152719 0 0 0.153313 0 0 0.153906 0 0 + 0.1545 0 0 0.155094 0 0 0.155687 0 0 0.156281 0 0 + 0.156875 0 0 0.157469 0 0 0.158063 0 0 0.158656 0 0 + 0.15925 0 0 0.159844 0 0 0.160437 0 0 0.161031 0 0 + 0.161625 0 0 0.162219 0 0 0.162813 0 0 0.163406 0 0 + 0.164 0 0 0.164594 0 0 0.165187 0 0 0.165781 0 0 + 0.166375 0 0 0.166969 0 0 0.167562 0 0 0.168156 0 0 + 0.16875 0 0 0.169344 0 0 0.169938 0 0 0.170531 0 0 + 0.171125 0 0 0.171719 0 0 0.172312 0 0 0.172906 0 0 + 0.1735 0 0 0.174094 0 0 0.174688 0 0 0.175281 0 0 + 0.175875 0 0 0.176469 0 0 0.177062 0 0 0.177656 0 0 + 0.17825 0 0 0.178844 0 0 0.179438 0 0 0.180031 0 0 + 0.180625 0 0 0.181219 0 0 0.181812 0 0 0.182406 0 0 + 0.183 0 0 0.183594 0 0 0.184188 0 0 0.184781 0 0 + 0.185375 0 0 0.185969 0 0 0.186562 0 0 0.187156 0 0 + 0.18775 0 0 0.188344 0 0 0.188938 0 0 0.189531 0 0 + 0.190125 0 0 0.190719 0 0 0.191313 0 0 0.191906 0 0 + 0.1925 0 0 0.193094 0 0 0.193687 0 0 0.194281 0 0 + 0.194875 0 0 0.195469 0 0 0.196063 0 0 0.196656 0 0 + 0.19725 0 0 0.197844 0 0 0.198437 0 0 0.199031 0 0 + 0.199625 0 0 0.200219 0 0 0.200813 0 0 0.201406 0 0 + 0.202 0 0 0.202594 0 0 0.203187 0 0 0.203781 0 0 + 0.204375 0 0 0.204969 0 0 0.205563 0 0 0.206156 0 0 + 0.20675 0 0 0.207344 0 0 0.207937 0 0 0.208531 0 0 + 0.209125 0 0 0.209719 0 0 0.210313 0 0 0.210906 0 0 + 0.2115 0 0 0.212094 0 0 0.212688 0 0 0.213281 0 0 + 0.213875 0 0 0.214469 0 0 0.215062 0 0 0.215656 0 0 + 0.21625 0 0 0.216844 0 0 0.217438 0 0 0.218031 0 0 + 0.218625 0 0 0.219219 0 0 0.219812 0 0 0.220406 0 0 + 0.221 0 0 0.221594 0 0 0.222188 0 0 0.222781 0 0 + 0.223375 0 0 0.223969 0 0 0.224562 0 0 0.225156 0 0 + 0.22575 0 0 0.226344 0 0 0.226938 0 0 0.227531 0 0 + 0.228125 0 0 0.228719 0 0 0.229312 0 0 0.229906 0 0 + 0.2305 0 0 0.231094 0 0 0.231688 0 0 0.232281 0 0 + 0.232875 0 0 0.233469 0 0 0.234062 0 0 0.234656 0 0 + 0.23525 0 0 0.235844 0 0 0.236437 0 0 0.237031 0 0 + 0.237625 0 0 0.238219 0 0 0.238813 0 0 0.239406 0 0 + 0.24 0 0 0.240594 0 0 0.241187 0 0 0.241781 0 0 + 0.242375 0 0 0.242969 0 0 0.243563 0 0 0.244156 0 0 + 0.24475 0 0 0.245344 0 0 0.245937 0 0 0.246531 0 0 + 0.247125 0 0 0.247719 0 0 0.248313 0 0 0.248906 0 0 + 0.2495 0 0 0.250094 0 0 0.250688 0 0 0.251281 0 0 + 0.251875 0 0 0.252469 0 0 0.253062 0 0 0.253656 0 0 + 0.25425 0 0 0.254844 0 0 0.255437 0 0 0.256031 0 0 + 0.256625 0 0 0.257219 0 0 0.257812 0 0 0.258406 0 0 + 0.259 0 0 0.259594 0 0 0.260188 0 0 0.260781 0 0 + 0.261375 0 0 0.261969 0 0 0.262563 0 0 0.263156 0 0 + 0.26375 0 0 0.264344 0 0 0.264937 0 0 0.265531 0 0 + 0.266125 0 0 0.266719 0 0 0.267312 0 0 0.267906 0 0 + 0.2685 0 0 0.269094 0 0 0.269688 0 0 0.270281 0 0 + 0.270875 0 0 0.271469 0 0 0.272063 0 0 0.272656 0 0 + 0.27325 0 0 0.273844 0 0 0.274437 0 0 0.275031 0 0 + 0.275625 0 0 0.276219 0 0 0.276812 0 0 0.277406 0 0 + 0.278 0 0 0.278594 0 0 0.279188 0 0 0.279781 0 0 + 0.280375 0 0 0.280969 0 0 0.281563 0 0 0.282156 0 0 + 0.28275 0 0 0.283344 0 0 0.283938 0 0 0.284531 0 0 + 0.285125 0 0 0.285719 0 0 0.286312 0 0 0.286906 0 0 + 0.2875 0 0 0.288094 0 0 0.288687 0 0 0.289281 0 0 + 0.289875 0 0 0.290469 0 0 0.291063 0 0 0.291656 0 0 + 0.29225 0 0 0.292844 0 0 0.293438 0 0 0.294031 0 0 + 0.294625 0 0 0.295219 0 0 0.295812 0 0 0.296406 0 0 + 0.297 0 0 0.297594 0 0 0.298187 0 0 0.298781 0 0 + 0.299375 0 0 0.299969 0 0 0.300563 0 0 0.301156 0 0 + 0.30175 0 0 0.302344 0 0 0.302938 0 0 0.303531 0 0 + 0.304125 0 0 0.304719 0 0 0.305313 0 0 0.305906 0 0 + 0.3065 0 0 0.307094 0 0 0.307687 0 0 0.308281 0 0 + 0.308875 0 0 0.309469 0 0 0.310062 0 0 0.310656 0 0 + 0.31125 0 0 0.311844 0 0 0.312438 0 0 0.313031 0 0 + 0.313625 0 0 0.314219 0 0 0.314813 0 0 0.315406 0 0 + 0.316 0 0 0.316594 0 0 0.317187 0 0 0.317781 0 0 + 0.318375 0 0 0.318969 0 0 0.319562 0 0 0.320156 0 0 + 0.32075 0 0 0.321344 0 0 0.321938 0 0 0.322531 0 0 + 0.323125 0 0 0.323719 0 0 0.324313 0 0 0.324906 0 0 + 0.3255 0 0 0.326094 0 0 0.326688 0 0 0.327281 0 0 + 0.327875 0 0 0.328469 0 0 0.329062 0 0 0.329656 0 0 + 0.33025 0 0 0.330844 0 0 0.331437 0 0 0.332031 0 0 + 0.332625 0 0 0.333219 0 0 0.333813 0 0 0.334406 0 0 + 0.335 0 0 0.335594 0 0 0.336188 0 0 0.336781 0 0 + 0.337375 0 0 0.337969 0 0 0.338562 0 0 0.339156 0 0 + 0.33975 0 0 0.340344 0 0 0.340937 0 0 0.341531 0 0 + 0.342125 0 0 0.342719 0 0 0.343313 0 0 0.343906 0 0 + 0.3445 0 0 0.345094 0 0 0.345688 0 0 0.346281 0 0 + 0.346875 0 0 0.347469 0 0 0.348062 0 0 0.348656 0 0 + 0.34925 0 0 0.349844 0 0 0.350437 0 0 0.351031 0 0 + 0.351625 0 0 0.352219 0 0 0.352812 0 0 0.353406 0 0 + 0.354 0 0 0.354594 0 0 0.355188 0 0 0.355781 0 0 + 0.356375 0 0 0.356969 0 0 0.357563 0 0 0.358156 0 0 + 0.35875 0 0 0.359344 0 0 0.359937 0 0 0.360531 0 0 + 0.361125 0 0 0.361719 0 0 0.362312 0 0 0.362906 0 0 + 0.3635 0 0 0.364094 0 0 0.364688 0 0 0.365281 0 0 + 0.365875 0 0 0.366469 0 0 0.367063 0 0 0.367656 0 0 + 0.36825 0 0 0.368844 0 0 0.369437 0 0 0.370031 0 0 + 0.370625 0 0 0.371219 0 0 0.371812 0 0 0.372406 0 0 + 0.373 0 0 0.373594 0 0 0.374187 0 0 0.374781 0 0 + 0.375375 0 0 0.375969 0 0 0.376563 0 0 0.377156 0 0 + 0.37775 0 0 0.378344 0 0 0.378938 0 0 0.379531 0 0 + 0.380125 0 0 0.380719 0 0 0.381312 0 0 0.381906 0 0 + 0.3825 0 0 0.383094 0 0 0.383687 0 0 0.384281 0 0 + 0.384875 0 0 0.385469 0 0 0.386063 0 0 0.386656 0 0 + 0.38725 0 0 0.387844 0 0 0.388438 0 0 0.389031 0 0 + 0.389625 0 0 0.390219 0 0 0.390812 0 0 0.391406 0 0 + 0.392 0 0 0.392594 0 0 0.393187 0 0 0.393781 0 0 + 0.394375 0 0 0.394969 0 0 0.395562 0 0 0.396156 0 0 + 0.39675 0 0 0.397344 0 0 0.397938 0 0 0.398531 0 0 + 0.399125 0 0 0.399719 0 0 0.400313 0 0 0.400906 0 0 + 0.4015 0 0 0.402094 0 0 0.402687 0 0 0.403281 0 0 + 0.403875 0 0 0.404469 0 0 0.405062 0 0 0.405656 0 0 + 0.40625 0 0 0.406844 0 0 0.407438 0 0 0.408031 0 0 + 0.408625 0 0 0.409219 0 0 0.409813 0 0 0.410406 0 0 + 0.411 0 0 0.411594 0 0 0.412187 0 0 0.412781 0 0 + 0.413375 0 0 0.413969 0 0 0.414562 0 0 0.415156 0 0 + 0.41575 0 0 0.416344 0 0 0.416938 0 0 0.417531 0 0 + 0.418125 0 0 0.418719 0 0 0.419313 0 0 0.419906 0 0 + 0.4205 0 0 0.421094 0 0 0.421688 0 0 0.422281 0 0 + 0.422875 0 0 0.423469 0 0 0.424062 0 0 0.424656 0 0 + 0.42525 0 0 0.425844 0 0 0.426437 0 0 0.427031 0 0 + 0.427625 0 0 0.428219 0 0 0.428813 0 0 0.429406 0 0 + 0.43 0 0 0.430594 0 0 0.431188 0 0 0.431781 0 0 + 0.432375 0 0 0.432969 0 0 0.433562 0 0 0.434156 0 0 + 0.43475 0 0 0.435344 0 0 0.435937 0 0 0.436531 0 0 + 0.437125 0 0 0.437719 0 0 0.438313 0 0 0.438906 0 0 + 0.4395 0 0 0.440094 0 0 0.440688 0 0 0.441281 0 0 + 0.441875 0 0 0.442469 0 0 0.443063 0 0 0.443656 0 0 + 0.44425 0 0 0.444844 0 0 0.445437 0 0 0.446031 0 0 + 0.446625 0 0 0.447219 0 0 0.447812 0 0 0.448406 0 0 + 0.449 0 0 0.449594 0 0 0.450188 0 0 0.450781 0 0 + 0.451375 0 0 0.451969 0 0 0.452563 0 0 0.453156 0 0 + 0.45375 0 0 0.454344 0 0 0.454937 0 0 0.455531 0 0 + 0.456125 0 0 0.456719 0 0 0.457312 0 0 0.457906 0 0 + 0.4585 0 0 0.459094 0 0 0.459688 0 0 0.460281 0 0 + 0.460875 0 0 0.461469 0 0 0.462063 0 0 0.462656 0 0 + 0.46325 0 0 0.463844 0 0 0.464438 0 0 0.465031 0 0 + 0.465625 0 0 0.466219 0 0 0.466812 0 0 0.467406 0 0 + 0.468 0 0 0.468594 0 0 0.469187 0 0 0.469781 0 0 + 0.470375 0 0 0.470969 0 0 0.471563 0 0 0.472156 0 0 + 0.47275 0 0 0.473344 0 0 0.473938 0 0 0.474531 0 0 + 0.475125 0 0 0.475719 0 0 0.476312 0 0 0.476906 0 0 + 0.4775 0 0 0.478094 0 0 0.478687 0 0 0.479281 0 0 + 0.479875 0 0 0.480469 0 0 0.481063 0 0 0.481656 0 0 + 0.48225 0 0 0.482844 0 0 0.483438 0 0 0.484031 0 0 + 0.484625 0 0 0.485219 0 0 0.485812 0 0 0.486406 0 0 + 0.487 0 0 0.487594 0 0 0.488187 0 0 0.488781 0 0 + 0.489375 0 0 0.489969 0 0 0.490562 0 0 0.491156 0 0 + 0.49175 0 0 0.492344 0 0 0.492938 0 0 0.493531 0 0 + 0.494125 0 0 0.494719 0 0 0.495313 0 0 0.495906 0 0 + 0.4965 0 0 0.497094 0 0 0.497687 0 0 0.498281 0 0 + 0.498875 0 0 0.499469 0 0 0.500063 0 0 0.500656 0 0 + 0.50125 0 0 0.501844 0 0 0.502437 0 0 0.503031 0 0 + 0.503625 0 0 0.504219 0 0 0.504812 0 0 0.505406 0 0 + 0.506 0 0 0.506594 0 0 0.507187 0 0 0.507781 0 0 + 0.508375 0 0 0.508969 0 0 0.509562 0 0 0.510156 0 0 + 0.51075 0 0 0.511344 0 0 0.511937 0 0 0.512531 0 0 + 0.513125 0 0 0.513719 0 0 0.514313 0 0 0.514906 0 0 + 0.5155 0 0 0.516094 0 0 0.516688 0 0 0.517281 0 0 + 0.517875 0 0 0.518469 0 0 0.519063 0 0 0.519656 0 0 + 0.52025 0 0 0.520844 0 0 0.521438 0 0 0.522031 0 0 + 0.522625 0 0 0.523219 0 0 0.523812 0 0 0.524406 0 0 + 0.525 0 0 0.525594 0 0 0.526187 0 0 0.526781 0 0 + 0.527375 0 0 0.527969 0 0 0.528562 0 0 0.529156 0 0 + 0.52975 0 0 0.530344 0 0 0.530937 0 0 0.531531 0 0 + 0.532125 0 0 0.532719 0 0 0.533312 0 0 0.533906 0 0 + 0.5345 0 0 0.535094 0 0 0.535688 0 0 0.536281 0 0 + 0.536875 0 0 0.537469 0 0 0.538063 0 0 0.538656 0 0 + 0.53925 0 0 0.539844 0 0 0.540438 0 0 0.541031 0 0 + 0.541625 0 0 0.542219 0 0 0.542813 0 0 0.543406 0 0 + 0.544 0 0 0.544594 0 0 0.545187 0 0 0.545781 0 0 + 0.546375 0 0 0.546969 0 0 0.547562 0 0 0.548156 0 0 + 0.54875 0 0 0.549344 0 0 0.549937 0 0 0.550531 0 0 + 0.551125 0 0 0.551719 0 0 0.552312 0 0 0.552906 0 0 + 0.5535 0 0 0.554094 0 0 0.554688 0 0 0.555281 0 0 + 0.555875 0 0 0.556469 0 0 0.557063 0 0 0.557656 0 0 + 0.55825 0 0 0.558844 0 0 0.559438 0 0 0.560031 0 0 + 0.560625 0 0 0.561219 0 0 0.561813 0 0 0.562406 0 0 + 0.563 0 0 0.563594 0 0 0.564188 0 0 0.564781 0 0 + 0.565375 0 0 0.565969 0 0 0.566562 0 0 0.567156 0 0 + 0.56775 0 0 0.568344 0 0 0.568937 0 0 0.569531 0 0 + 0.570125 0 0 0.570719 0 0 0.571312 0 0 0.571906 0 0 + 0.5725 0 0 0.573094 0 0 0.573687 0 0 0.574281 0 0 + 0.574875 0 0 0.575469 0 0 0.576063 0 0 0.576656 0 0 + 0.57725 0 0 0.577844 0 0 0.578438 0 0 0.579031 0 0 + 0.579625 0 0 0.580219 0 0 0.580813 0 0 0.581406 0 0 + 0.582 0 0 0.582594 0 0 0.583188 0 0 0.583781 0 0 + 0.584375 0 0 0.584969 0 0 0.585563 0 0 0.586156 0 0 + 0.58675 0 0 0.587344 0 0 0.587937 0 0 0.588531 0 0 + 0.589125 0 0 0.589719 0 0 0.590312 0 0 0.590906 0 0 + 0.5915 0 0 0.592094 0 0 0.592687 0 0 0.593281 0 0 + 0.593875 0 0 0.594469 0 0 0.595062 0 0 0.595656 0 0 + 0.59625 0 0 0.596844 0 0 0.597438 0 0 0.598031 0 0 + 0.598625 0 0 0.599219 0 0 0.599813 0 0 0.600406 0 0 + 0.601 0 0 0.601594 0 0 0.602188 0 0 0.602781 0 0 + 0.603375 0 0 0.603969 0 0 0.604563 0 0 0.605156 0 0 + 0.60575 0 0 0.606344 0 0 0.606938 0 0 0.607531 0 0 + 0.608125 0 0 0.608719 0 0 0.609312 0 0 0.609906 0 0 + 0.6105 0 0 0.611094 0 0 0.611687 0 0 0.612281 0 0 + 0.612875 0 0 0.613469 0 0 0.614062 0 0 0.614656 0 0 + 0.61525 0 0 0.615844 0 0 0.616437 0 0 0.617031 0 0 + 0.617625 0 0 0.618219 0 0 0.618813 0 0 0.619406 0 0 + 0.62 0 0 0.620594 0 0 0.621188 0 0 0.621781 0 0 + 0.622375 0 0 0.622969 0 0 0.623563 0 0 0.624156 0 0 + 0.62475 0 0 0.625344 0 0 0.625938 0 0 0.626531 0 0 + 0.627125 0 0 0.627719 0 0 0.628313 0 0 0.628906 0 0 + 0.6295 0 0 0.630094 0 0 0.630687 0 0 0.631281 0 0 + 0.631875 0 0 0.632469 0 0 0.633062 0 0 0.633656 0 0 + 0.63425 0 0 0.634844 0 0 0.635437 0 0 0.636031 0 0 + 0.636625 0 0 0.637219 0 0 0.637812 0 0 0.638406 0 0 + 0.639 0 0 0.639594 0 0 0.640188 0 0 0.640781 0 0 + 0.641375 0 0 0.641969 0 0 0.642563 0 0 0.643156 0 0 + 0.64375 0 0 0.644344 0 0 0.644938 0 0 0.645531 0 0 + 0.646125 0 0 0.646719 0 0 0.647313 0 0 0.647906 0 0 + 0.6485 0 0 0.649094 0 0 0.649688 0 0 0.650281 0 0 + 0.650875 0 0 0.651469 0 0 0.652062 0 0 0.652656 0 0 + 0.65325 0 0 0.653844 0 0 0.654437 0 0 0.655031 0 0 + 0.655625 0 0 0.656219 0 0 0.656812 0 0 0.657406 0 0 + 0.658 0 0 0.658594 0 0 0.659187 0 0 0.659781 0 0 + 0.660375 0 0 0.660969 0 0 0.661563 0 0 0.662156 0 0 + 0.66275 0 0 0.663344 0 0 0.663938 0 0 0.664531 0 0 + 0.665125 0 0 0.665719 0 0 0.666313 0 0 0.666906 0 0 + 0.6675 0 0 0.668094 0 0 0.668688 0 0 0.669281 0 0 + 0.669875 0 0 0.670469 0 0 0.671063 0 0 0.671656 0 0 + 0.67225 0 0 0.672844 0 0 0.673437 0 0 0.674031 0 0 + 0.674625 0 0 0.675219 0 0 0.675812 0 0 0.676406 0 0 + 0.677 0 0 0.677594 0 0 0.678187 0 0 0.678781 0 0 + 0.679375 0 0 0.679969 0 0 0.680562 0 0 0.681156 0 0 + 0.68175 0 0 0.682344 0 0 0.682938 0 0 0.683531 0 0 + 0.684125 0 0 0.684719 0 0 0.685313 0 0 0.685906 0 0 + 0.6865 0 0 0.687094 0 0 0.687688 0 0 0.688281 0 0 + 0.688875 0 0 0.689469 0 0 0.690063 0 0 0.690656 0 0 + 0.69125 0 0 0.691844 0 0 0.692438 0 0 0.693031 0 0 + 0.693625 0 0 0.694219 0 0 0.694812 0 0 0.695406 0 0 + 0.696 0 0 0.696594 0 0 0.697187 0 0 0.697781 0 0 + 0.698375 0 0 0.698969 0 0 0.699562 0 0 0.700156 0 0 + 0.70075 0 0 0.701344 0 0 0.701937 0 0 0.702531 0 0 + 0.703125 0 0 0.703719 0 0 0.704313 0 0 0.704906 0 0 + 0.7055 0 0 0.706094 0 0 0.706688 0 0 0.707281 0 0 + 0.707875 0 0 0.708469 0 0 0.709063 0 0 0.709656 0 0 + 0.71025 0 0 0.710844 0 0 0.711438 0 0 0.712031 0 0 + 0.712625 0 0 0.713219 0 0 0.713812 0 0 0.714406 0 0 + 0.715 0 0 0.715594 0 0 0.716187 0 0 0.716781 0 0 + 0.717375 0 0 0.717969 0 0 0.718562 0 0 0.719156 0 0 + 0.71975 0 0 0.720344 0 0 0.720937 0 0 0.721531 0 0 + 0.722125 0 0 0.722719 0 0 0.723312 0 0 0.723906 0 0 + 0.7245 0 0 0.725094 0 0 0.725688 0 0 0.726281 0 0 + 0.726875 0 0 0.727469 0 0 0.728063 0 0 0.728656 0 0 + 0.72925 0 0 0.729844 0 0 0.730438 0 0 0.731031 0 0 + 0.731625 0 0 0.732219 0 0 0.732813 0 0 0.733406 0 0 + 0.734 0 0 0.734594 0 0 0.735187 0 0 0.735781 0 0 + 0.736375 0 0 0.736969 0 0 0.737562 0 0 0.738156 0 0 + 0.73875 0 0 0.739344 0 0 0.739937 0 0 0.740531 0 0 + 0.741125 0 0 0.741719 0 0 0.742312 0 0 0.742906 0 0 + 0.7435 0 0 0.744094 0 0 0.744687 0 0 0.745281 0 0 + 0.745875 0 0 0.746469 0 0 0.747063 0 0 0.747656 0 0 + 0.74825 0 0 0.748844 0 0 0.749438 0 0 0.750031 0 0 + 0.750625 0 0 0.751219 0 0 0.751813 0 0 0.752406 0 0 + 0.753 0 0 0.753594 0 0 0.754188 0 0 0.754781 0 0 + 0.755375 0 0 0.755969 0 0 0.756562 0 0 0.757156 0 0 + 0.75775 0 0 0.758344 0 0 0.758937 0 0 0.759531 0 0 + 0.760125 0 0 0.760719 0 0 0.761312 0 0 0.761906 0 0 + 0.7625 0 0 0.763094 0 0 0.763687 0 0 0.764281 0 0 + 0.764875 0 0 0.765469 0 0 0.766062 0 0 0.766656 0 0 + 0.76725 0 0 0.767844 0 0 0.768438 0 0 0.769031 0 0 + 0.769625 0 0 0.770219 0 0 0.770813 0 0 0.771406 0 0 + 0.772 0 0 0.772594 0 0 0.773188 0 0 0.773781 0 0 + 0.774375 0 0 0.774969 0 0 0.775563 0 0 0.776156 0 0 + 0.77675 0 0 0.777344 0 0 0.777937 0 0 0.778531 0 0 + 0.779125 0 0 0.779719 0 0 0.780312 0 0 0.780906 0 0 + 0.7815 0 0 0.782094 0 0 0.782687 0 0 0.783281 0 0 + 0.783875 0 0 0.784469 0 0 0.785062 0 0 0.785656 0 0 + 0.78625 0 0 0.786844 0 0 0.787437 0 0 0.788031 0 0 + 0.788625 0 0 0.789219 0 0 0.789813 0 0 0.790406 0 0 + 0.791 0 0 0.791594 0 0 0.792188 0 0 0.792781 0 0 + 0.793375 0 0 0.793969 0 0 0.794563 0 0 0.795156 0 0 + 0.79575 0 0 0.796344 0 0 0.796938 0 0 0.797531 0 0 + 0.798125 0 0 0.798719 0 0 0.799312 0 0 0.799906 0 0 + 0.8005 0 0 0.801094 0 0 0.801687 0 0 0.802281 0 0 + 0.802875 0 0 0.803469 0 0 0.804062 0 0 0.804656 0 0 + 0.80525 0 0 0.805844 0 0 0.806437 0 0 0.807031 0 0 + 0.807625 0 0 0.808219 0 0 0.808812 0 0 0.809406 0 0 + 0.81 0 0 0.810594 0 0 0.811188 0 0 0.811781 0 0 + 0.812375 0 0 0.812969 0 0 0.813563 0 0 0.814156 0 0 + 0.81475 0 0 0.815344 0 0 0.815938 0 0 0.816531 0 0 + 0.817125 0 0 0.817719 0 0 0.818313 0 0 0.818906 0 0 + 0.8195 0 0 0.820094 0 0 0.820687 0 0 0.821281 0 0 + 0.821875 0 0 0.822469 0 0 0.823062 0 0 0.823656 0 0 + 0.82425 0 0 0.824844 0 0 0.825437 0 0 0.826031 0 0 + 0.826625 0 0 0.827219 0 0 0.827812 0 0 0.828406 0 0 + 0.829 0 0 0.829594 0 0 0.830187 0 0 0.830781 0 0 + 0.831375 0 0 0.831969 0 0 0.832563 0 0 0.833156 0 0 + 0.83375 0 0 0.834344 0 0 0.834938 0 0 0.835531 0 0 + 0.836125 0 0 0.836719 0 0 0.837313 0 0 0.837906 0 0 + 0.8385 0 0 0.839094 0 0 0.839688 0 0 0.840281 0 0 + 0.840875 0 0 0.841469 0 0 0.842062 0 0 0.842656 0 0 + 0.84325 0 0 0.843844 0 0 0.844437 0 0 0.845031 0 0 + 0.845625 0 0 0.846219 0 0 0.846812 0 0 0.847406 0 0 + 0.848 0 0 0.848594 0 0 0.849187 0 0 0.849781 0 0 + 0.850375 0 0 0.850969 0 0 0.851562 0 0 0.852156 0 0 + 0.85275 0 0 0.853344 0 0 0.853938 0 0 0.854531 0 0 + 0.855125 0 0 0.855719 0 0 0.856313 0 0 0.856906 0 0 + 0.8575 0 0 0.858094 0 0 0.858688 0 0 0.859281 0 0 + 0.859875 0 0 0.860469 0 0 0.861063 0 0 0.861656 0 0 + 0.86225 0 0 0.862844 0 0 0.863437 0 0 0.864031 0 0 + 0.864625 0 0 0.865219 0 0 0.865812 0 0 0.866406 0 0 + 0.867 0 0 0.867594 0 0 0.868187 0 0 0.868781 0 0 + 0.869375 0 0 0.869969 0 0 0.870562 0 0 0.871156 0 0 + 0.87175 0 0 0.872344 0 0 0.872938 0 0 0.873531 0 0 + 0.874125 0 0 0.874719 0 0 0.875313 0 0 0.875906 0 0 + 0.8765 0 0 0.877094 0 0 0.877688 0 0 0.878281 0 0 + 0.878875 0 0 0.879469 0 0 0.880063 0 0 0.880656 0 0 + 0.88125 0 0 0.881844 0 0 0.882438 0 0 0.883031 0 0 + 0.883625 0 0 0.884219 0 0 0.884812 0 0 0.885406 0 0 + 0.886 0 0 0.886594 0 0 0.887187 0 0 0.887781 0 0 + 0.888375 0 0 0.888969 0 0 0.889562 0 0 0.890156 0 0 + 0.89075 0 0 0.891344 0 0 0.891937 0 0 0.892531 0 0 + 0.893125 0 0 0.893719 0 0 0.894313 0 0 0.894906 0 0 + 0.8955 0 0 0.896094 0 0 0.896688 0 0 0.897281 0 0 + 0.897875 0 0 0.898469 0 0 0.899063 0 0 0.899656 0 0 + 0.90025 0 0 0.900844 0 0 0.901438 0 0 0.902031 0 0 + 0.902625 0 0 0.903219 0 0 0.903813 0 0 0.904406 0 0 + 0.905 0 0 0.905594 0 0 0.906187 0 0 0.906781 0 0 + 0.907375 0 0 0.907969 0 0 0.908562 0 0 0.909156 0 0 + 0.90975 0 0 0.910344 0 0 0.910937 0 0 0.911531 0 0 + 0.912125 0 0 0.912719 0 0 0.913312 0 0 0.913906 0 0 + 0.9145 0 0 0.915094 0 0 0.915688 0 0 0.916281 0 0 + 0.916875 0 0 0.917469 0 0 0.918063 0 0 0.918656 0 0 + 0.91925 0 0 0.919844 0 0 0.920438 0 0 0.921031 0 0 + 0.921625 0 0 0.922219 0 0 0.922813 0 0 0.923406 0 0 + 0.924 0 0 0.924594 0 0 0.925188 0 0 0.925781 0 0 + 0.926375 0 0 0.926969 0 0 0.927562 0 0 0.928156 0 0 + 0.92875 0 0 0.929344 0 0 0.929937 0 0 0.930531 0 0 + 0.931125 0 0 0.931719 0 0 0.932312 0 0 0.932906 0 0 + 0.9335 0 0 0.934094 0 0 0.934687 0 0 0.935281 0 0 + 0.935875 0 0 0.936469 0 0 0.937063 0 0 0.937656 0 0 + 0.93825 0 0 0.938844 0 0 0.939438 0 0 0.940031 0 0 + 0.940625 0 0 0.941219 0 0 0.941813 0 0 0.942406 0 0 + 0.943 0 0 0.943594 0 0 0.944188 0 0 0.944781 0 0 + 0.945375 0 0 0.945969 0 0 0.946563 0 0 0.947156 0 0 + 0.94775 0 0 0.948344 0 0 0.948937 0 0 0.949531 0 0 + 0.950125 0 0 0.950719 0 0 0.951312 0 0 0.951906 0 0 + 0.9525 0 0 0.953094 0 0 0.953687 0 0 0.954281 0 0 + 0.954875 0 0 0.955469 0 0 0.956062 0 0 0.956656 0 0 + 0.95725 0 0 0.957844 0 0 0.958438 0 0 0.959031 0 0 + 0.959625 0 0 0.960219 0 0 0.960813 0 0 0.961406 0 0 + 0.962 0 0 0.962594 0 0 0.963188 0 0 0.963781 0 0 + 0.964375 0 0 0.964969 0 0 0.965563 0 0 0.966156 0 0 + 0.96675 0 0 0.967344 0 0 0.967938 0 0 0.968531 0 0 + 0.969125 0 0 0.969719 0 0 0.970312 0 0 0.970906 0 0 + 0.9715 0 0 0.972094 0 0 0.972687 0 0 0.973281 0 0 + 0.973875 0 0 0.974469 0 0 0.975062 0 0 0.975656 0 0 + 0.97625 0 0 0.976844 0 0 0.977437 0 0 0.978031 0 0 + 0.978625 0 0 0.979219 0 0 0.979813 0 0 0.980406 0 0 + 0.981 0 0 0.981594 0 0 0.982188 0 0 0.982781 0 0 + 0.983375 0 0 0.983969 0 0 0.984563 0 0 0.985156 0 0 + 0.98575 0 0 0.986344 0 0 0.986938 0 0 0.987531 0 0 + 0.988125 0 0 0.988719 0 0 0.989313 0 0 0.989906 0 0 + 0.9905 0 0 0.991094 0 0 0.991687 0 0 0.992281 0 0 + 0.992875 0 0 0.993469 0 0 0.994062 0 0 0.994656 0 0 + 0.99525 0 0 0.995844 0 0 0.996437 0 0 0.997031 0 0 + 0.997625 0 0 0.998219 0 0 0.998812 0 0 0.999406 0 0 + 1 0 0 + </DataArray> + </Points> + <Lines> + <DataArray type="Int32" Name="connectivity" NumberOfComponents="1" format="ascii"> + 0 1 1 2 2 3 3 4 4 5 5 6 + 6 7 7 8 8 9 9 10 10 11 11 12 + 12 13 13 14 14 15 15 16 16 17 17 18 + 18 19 19 20 20 21 21 22 22 23 23 24 + 24 25 25 26 26 27 27 28 28 29 29 30 + 30 31 31 32 32 33 33 34 34 35 35 36 + 36 37 37 38 38 39 39 40 40 41 41 42 + 42 43 43 44 44 45 45 46 46 47 47 48 + 48 49 49 50 50 51 51 52 52 53 53 54 + 54 55 55 56 56 57 57 58 58 59 59 60 + 60 61 61 62 62 63 63 64 64 65 65 66 + 66 67 67 68 68 69 69 70 70 71 71 72 + 72 73 73 74 74 75 75 76 76 77 77 78 + 78 79 79 80 80 81 81 82 82 83 83 84 + 84 85 85 86 86 87 87 88 88 89 89 90 + 90 91 91 92 92 93 93 94 94 95 95 96 + 96 97 97 98 98 99 99 100 100 101 101 102 + 102 103 103 104 104 105 105 106 106 107 107 108 + 108 109 109 110 110 111 111 112 112 113 113 114 + 114 115 115 116 116 117 117 118 118 119 119 120 + 120 121 121 122 122 123 123 124 124 125 125 126 + 126 127 127 128 128 129 129 130 130 131 131 132 + 132 133 133 134 134 135 135 136 136 137 137 138 + 138 139 139 140 140 141 141 142 142 143 143 144 + 144 145 145 146 146 147 147 148 148 149 149 150 + 150 151 151 152 152 153 153 154 154 155 155 156 + 156 157 157 158 158 159 159 160 160 161 161 162 + 162 163 163 164 164 165 165 166 166 167 167 168 + 168 169 169 170 170 171 171 172 172 173 173 174 + 174 175 175 176 176 177 177 178 178 179 179 180 + 180 181 181 182 182 183 183 184 184 185 185 186 + 186 187 187 188 188 189 189 190 190 191 191 192 + 192 193 193 194 194 195 195 196 196 197 197 198 + 198 199 199 200 200 201 201 202 202 203 203 204 + 204 205 205 206 206 207 207 208 208 209 209 210 + 210 211 211 212 212 213 213 214 214 215 215 216 + 216 217 217 218 218 219 219 220 220 221 221 222 + 222 223 223 224 224 225 225 226 226 227 227 228 + 228 229 229 230 230 231 231 232 232 233 233 234 + 234 235 235 236 236 237 237 238 238 239 239 240 + 240 241 241 242 242 243 243 244 244 245 245 246 + 246 247 247 248 248 249 249 250 250 251 251 252 + 252 253 253 254 254 255 255 256 256 257 257 258 + 258 259 259 260 260 261 261 262 262 263 263 264 + 264 265 265 266 266 267 267 268 268 269 269 270 + 270 271 271 272 272 273 273 274 274 275 275 276 + 276 277 277 278 278 279 279 280 280 281 281 282 + 282 283 283 284 284 285 285 286 286 287 287 288 + 288 289 289 290 290 291 291 292 292 293 293 294 + 294 295 295 296 296 297 297 298 298 299 299 300 + 300 301 301 302 302 303 303 304 304 305 305 306 + 306 307 307 308 308 309 309 310 310 311 311 312 + 312 313 313 314 314 315 315 316 316 317 317 318 + 318 319 319 320 320 321 321 322 322 323 323 324 + 324 325 325 326 326 327 327 328 328 329 329 330 + 330 331 331 332 332 333 333 334 334 335 335 336 + 336 337 337 338 338 339 339 340 340 341 341 342 + 342 343 343 344 344 345 345 346 346 347 347 348 + 348 349 349 350 350 351 351 352 352 353 353 354 + 354 355 355 356 356 357 357 358 358 359 359 360 + 360 361 361 362 362 363 363 364 364 365 365 366 + 366 367 367 368 368 369 369 370 370 371 371 372 + 372 373 373 374 374 375 375 376 376 377 377 378 + 378 379 379 380 380 381 381 382 382 383 383 384 + 384 385 385 386 386 387 387 388 388 389 389 390 + 390 391 391 392 392 393 393 394 394 395 395 396 + 396 397 397 398 398 399 399 400 400 401 401 402 + 402 403 403 404 404 405 405 406 406 407 407 408 + 408 409 409 410 410 411 411 412 412 413 413 414 + 414 415 415 416 416 417 417 418 418 419 419 420 + 420 421 421 422 422 423 423 424 424 425 425 426 + 426 427 427 428 428 429 429 430 430 431 431 432 + 432 433 433 434 434 435 435 436 436 437 437 438 + 438 439 439 440 440 441 441 442 442 443 443 444 + 444 445 445 446 446 447 447 448 448 449 449 450 + 450 451 451 452 452 453 453 454 454 455 455 456 + 456 457 457 458 458 459 459 460 460 461 461 462 + 462 463 463 464 464 465 465 466 466 467 467 468 + 468 469 469 470 470 471 471 472 472 473 473 474 + 474 475 475 476 476 477 477 478 478 479 479 480 + 480 481 481 482 482 483 483 484 484 485 485 486 + 486 487 487 488 488 489 489 490 490 491 491 492 + 492 493 493 494 494 495 495 496 496 497 497 498 + 498 499 499 500 500 501 501 502 502 503 503 504 + 504 505 505 506 506 507 507 508 508 509 509 510 + 510 511 511 512 512 513 513 514 514 515 515 516 + 516 517 517 518 518 519 519 520 520 521 521 522 + 522 523 523 524 524 525 525 526 526 527 527 528 + 528 529 529 530 530 531 531 532 532 533 533 534 + 534 535 535 536 536 537 537 538 538 539 539 540 + 540 541 541 542 542 543 543 544 544 545 545 546 + 546 547 547 548 548 549 549 550 550 551 551 552 + 552 553 553 554 554 555 555 556 556 557 557 558 + 558 559 559 560 560 561 561 562 562 563 563 564 + 564 565 565 566 566 567 567 568 568 569 569 570 + 570 571 571 572 572 573 573 574 574 575 575 576 + 576 577 577 578 578 579 579 580 580 581 581 582 + 582 583 583 584 584 585 585 586 586 587 587 588 + 588 589 589 590 590 591 591 592 592 593 593 594 + 594 595 595 596 596 597 597 598 598 599 599 600 + 600 601 601 602 602 603 603 604 604 605 605 606 + 606 607 607 608 608 609 609 610 610 611 611 612 + 612 613 613 614 614 615 615 616 616 617 617 618 + 618 619 619 620 620 621 621 622 622 623 623 624 + 624 625 625 626 626 627 627 628 628 629 629 630 + 630 631 631 632 632 633 633 634 634 635 635 636 + 636 637 637 638 638 639 639 640 640 641 641 642 + 642 643 643 644 644 645 645 646 646 647 647 648 + 648 649 649 650 650 651 651 652 652 653 653 654 + 654 655 655 656 656 657 657 658 658 659 659 660 + 660 661 661 662 662 663 663 664 664 665 665 666 + 666 667 667 668 668 669 669 670 670 671 671 672 + 672 673 673 674 674 675 675 676 676 677 677 678 + 678 679 679 680 680 681 681 682 682 683 683 684 + 684 685 685 686 686 687 687 688 688 689 689 690 + 690 691 691 692 692 693 693 694 694 695 695 696 + 696 697 697 698 698 699 699 700 700 701 701 702 + 702 703 703 704 704 705 705 706 706 707 707 708 + 708 709 709 710 710 711 711 712 712 713 713 714 + 714 715 715 716 716 717 717 718 718 719 719 720 + 720 721 721 722 722 723 723 724 724 725 725 726 + 726 727 727 728 728 729 729 730 730 731 731 732 + 732 733 733 734 734 735 735 736 736 737 737 738 + 738 739 739 740 740 741 741 742 742 743 743 744 + 744 745 745 746 746 747 747 748 748 749 749 750 + 750 751 751 752 752 753 753 754 754 755 755 756 + 756 757 757 758 758 759 759 760 760 761 761 762 + 762 763 763 764 764 765 765 766 766 767 767 768 + 768 769 769 770 770 771 771 772 772 773 773 774 + 774 775 775 776 776 777 777 778 778 779 779 780 + 780 781 781 782 782 783 783 784 784 785 785 786 + 786 787 787 788 788 789 789 790 790 791 791 792 + 792 793 793 794 794 795 795 796 796 797 797 798 + 798 799 799 800 800 801 801 802 802 803 803 804 + 804 805 805 806 806 807 807 808 808 809 809 810 + 810 811 811 812 812 813 813 814 814 815 815 816 + 816 817 817 818 818 819 819 820 820 821 821 822 + 822 823 823 824 824 825 825 826 826 827 827 828 + 828 829 829 830 830 831 831 832 832 833 833 834 + 834 835 835 836 836 837 837 838 838 839 839 840 + 840 841 841 842 842 843 843 844 844 845 845 846 + 846 847 847 848 848 849 849 850 850 851 851 852 + 852 853 853 854 854 855 855 856 856 857 857 858 + 858 859 859 860 860 861 861 862 862 863 863 864 + 864 865 865 866 866 867 867 868 868 869 869 870 + 870 871 871 872 872 873 873 874 874 875 875 876 + 876 877 877 878 878 879 879 880 880 881 881 882 + 882 883 883 884 884 885 885 886 886 887 887 888 + 888 889 889 890 890 891 891 892 892 893 893 894 + 894 895 895 896 896 897 897 898 898 899 899 900 + 900 901 901 902 902 903 903 904 904 905 905 906 + 906 907 907 908 908 909 909 910 910 911 911 912 + 912 913 913 914 914 915 915 916 916 917 917 918 + 918 919 919 920 920 921 921 922 922 923 923 924 + 924 925 925 926 926 927 927 928 928 929 929 930 + 930 931 931 932 932 933 933 934 934 935 935 936 + 936 937 937 938 938 939 939 940 940 941 941 942 + 942 943 943 944 944 945 945 946 946 947 947 948 + 948 949 949 950 950 951 951 952 952 953 953 954 + 954 955 955 956 956 957 957 958 958 959 959 960 + 960 961 961 962 962 963 963 964 964 965 965 966 + 966 967 967 968 968 969 969 970 970 971 971 972 + 972 973 973 974 974 975 975 976 976 977 977 978 + 978 979 979 980 980 981 981 982 982 983 983 984 + 984 985 985 986 986 987 987 988 988 989 989 990 + 990 991 991 992 992 993 993 994 994 995 995 996 + 996 997 997 998 998 999 999 1000 1000 1001 1001 1002 + 1002 1003 1003 1004 1004 1005 1005 1006 1006 1007 1007 1008 + 1008 1009 1009 1010 1010 1011 1011 1012 1012 1013 1013 1014 + 1014 1015 1015 1016 1016 1017 1017 1018 1018 1019 1019 1020 + 1020 1021 1021 1022 1022 1023 1023 1024 1024 1025 1025 1026 + 1026 1027 1027 1028 1028 1029 1029 1030 1030 1031 1031 1032 + 1032 1033 1033 1034 1034 1035 1035 1036 1036 1037 1037 1038 + 1038 1039 1039 1040 1040 1041 1041 1042 1042 1043 1043 1044 + 1044 1045 1045 1046 1046 1047 1047 1048 1048 1049 1049 1050 + 1050 1051 1051 1052 1052 1053 1053 1054 1054 1055 1055 1056 + 1056 1057 1057 1058 1058 1059 1059 1060 1060 1061 1061 1062 + 1062 1063 1063 1064 1064 1065 1065 1066 1066 1067 1067 1068 + 1068 1069 1069 1070 1070 1071 1071 1072 1072 1073 1073 1074 + 1074 1075 1075 1076 1076 1077 1077 1078 1078 1079 1079 1080 + 1080 1081 1081 1082 1082 1083 1083 1084 1084 1085 1085 1086 + 1086 1087 1087 1088 1088 1089 1089 1090 1090 1091 1091 1092 + 1092 1093 1093 1094 1094 1095 1095 1096 1096 1097 1097 1098 + 1098 1099 1099 1100 1100 1101 1101 1102 1102 1103 1103 1104 + 1104 1105 1105 1106 1106 1107 1107 1108 1108 1109 1109 1110 + 1110 1111 1111 1112 1112 1113 1113 1114 1114 1115 1115 1116 + 1116 1117 1117 1118 1118 1119 1119 1120 1120 1121 1121 1122 + 1122 1123 1123 1124 1124 1125 1125 1126 1126 1127 1127 1128 + 1128 1129 1129 1130 1130 1131 1131 1132 1132 1133 1133 1134 + 1134 1135 1135 1136 1136 1137 1137 1138 1138 1139 1139 1140 + 1140 1141 1141 1142 1142 1143 1143 1144 1144 1145 1145 1146 + 1146 1147 1147 1148 1148 1149 1149 1150 1150 1151 1151 1152 + 1152 1153 1153 1154 1154 1155 1155 1156 1156 1157 1157 1158 + 1158 1159 1159 1160 1160 1161 1161 1162 1162 1163 1163 1164 + 1164 1165 1165 1166 1166 1167 1167 1168 1168 1169 1169 1170 + 1170 1171 1171 1172 1172 1173 1173 1174 1174 1175 1175 1176 + 1176 1177 1177 1178 1178 1179 1179 1180 1180 1181 1181 1182 + 1182 1183 1183 1184 1184 1185 1185 1186 1186 1187 1187 1188 + 1188 1189 1189 1190 1190 1191 1191 1192 1192 1193 1193 1194 + 1194 1195 1195 1196 1196 1197 1197 1198 1198 1199 1199 1200 + 1200 1201 1201 1202 1202 1203 1203 1204 1204 1205 1205 1206 + 1206 1207 1207 1208 1208 1209 1209 1210 1210 1211 1211 1212 + 1212 1213 1213 1214 1214 1215 1215 1216 1216 1217 1217 1218 + 1218 1219 1219 1220 1220 1221 1221 1222 1222 1223 1223 1224 + 1224 1225 1225 1226 1226 1227 1227 1228 1228 1229 1229 1230 + 1230 1231 1231 1232 1232 1233 1233 1234 1234 1235 1235 1236 + 1236 1237 1237 1238 1238 1239 1239 1240 1240 1241 1241 1242 + 1242 1243 1243 1244 1244 1245 1245 1246 1246 1247 1247 1248 + 1248 1249 1249 1250 1250 1251 1251 1252 1252 1253 1253 1254 + 1254 1255 1255 1256 1256 1257 1257 1258 1258 1259 1259 1260 + 1260 1261 1261 1262 1262 1263 1263 1264 1264 1265 1265 1266 + 1266 1267 1267 1268 1268 1269 1269 1270 1270 1271 1271 1272 + 1272 1273 1273 1274 1274 1275 1275 1276 1276 1277 1277 1278 + 1278 1279 1279 1280 1280 1281 1281 1282 1282 1283 1283 1284 + 1284 1285 1285 1286 1286 1287 1287 1288 1288 1289 1289 1290 + 1290 1291 1291 1292 1292 1293 1293 1294 1294 1295 1295 1296 + 1296 1297 1297 1298 1298 1299 1299 1300 1300 1301 1301 1302 + 1302 1303 1303 1304 1304 1305 1305 1306 1306 1307 1307 1308 + 1308 1309 1309 1310 1310 1311 1311 1312 1312 1313 1313 1314 + 1314 1315 1315 1316 1316 1317 1317 1318 1318 1319 1319 1320 + 1320 1321 1321 1322 1322 1323 1323 1324 1324 1325 1325 1326 + 1326 1327 1327 1328 1328 1329 1329 1330 1330 1331 1331 1332 + 1332 1333 1333 1334 1334 1335 1335 1336 1336 1337 1337 1338 + 1338 1339 1339 1340 1340 1341 1341 1342 1342 1343 1343 1344 + 1344 1345 1345 1346 1346 1347 1347 1348 1348 1349 1349 1350 + 1350 1351 1351 1352 1352 1353 1353 1354 1354 1355 1355 1356 + 1356 1357 1357 1358 1358 1359 1359 1360 1360 1361 1361 1362 + 1362 1363 1363 1364 1364 1365 1365 1366 1366 1367 1367 1368 + 1368 1369 1369 1370 1370 1371 1371 1372 1372 1373 1373 1374 + 1374 1375 1375 1376 1376 1377 1377 1378 1378 1379 1379 1380 + 1380 1381 1381 1382 1382 1383 1383 1384 1384 1385 1385 1386 + 1386 1387 1387 1388 1388 1389 1389 1390 1390 1391 1391 1392 + 1392 1393 1393 1394 1394 1395 1395 1396 1396 1397 1397 1398 + 1398 1399 1399 1400 1400 1401 1401 1402 1402 1403 1403 1404 + 1404 1405 1405 1406 1406 1407 1407 1408 1408 1409 1409 1410 + 1410 1411 1411 1412 1412 1413 1413 1414 1414 1415 1415 1416 + 1416 1417 1417 1418 1418 1419 1419 1420 1420 1421 1421 1422 + 1422 1423 1423 1424 1424 1425 1425 1426 1426 1427 1427 1428 + 1428 1429 1429 1430 1430 1431 1431 1432 1432 1433 1433 1434 + 1434 1435 1435 1436 1436 1437 1437 1438 1438 1439 1439 1440 + 1440 1441 1441 1442 1442 1443 1443 1444 1444 1445 1445 1446 + 1446 1447 1447 1448 1448 1449 1449 1450 1450 1451 1451 1452 + 1452 1453 1453 1454 1454 1455 1455 1456 1456 1457 1457 1458 + 1458 1459 1459 1460 1460 1461 1461 1462 1462 1463 1463 1464 + 1464 1465 1465 1466 1466 1467 1467 1468 1468 1469 1469 1470 + 1470 1471 1471 1472 1472 1473 1473 1474 1474 1475 1475 1476 + 1476 1477 1477 1478 1478 1479 1479 1480 1480 1481 1481 1482 + 1482 1483 1483 1484 1484 1485 1485 1486 1486 1487 1487 1488 + 1488 1489 1489 1490 1490 1491 1491 1492 1492 1493 1493 1494 + 1494 1495 1495 1496 1496 1497 1497 1498 1498 1499 1499 1500 + 1500 1501 1501 1502 1502 1503 1503 1504 1504 1505 1505 1506 + 1506 1507 1507 1508 1508 1509 1509 1510 1510 1511 1511 1512 + 1512 1513 1513 1514 1514 1515 1515 1516 1516 1517 1517 1518 + 1518 1519 1519 1520 1520 1521 1521 1522 1522 1523 1523 1524 + 1524 1525 1525 1526 1526 1527 1527 1528 1528 1529 1529 1530 + 1530 1531 1531 1532 1532 1533 1533 1534 1534 1535 1535 1536 + 1536 1537 1537 1538 1538 1539 1539 1540 1540 1541 1541 1542 + 1542 1543 1543 1544 1544 1545 1545 1546 1546 1547 1547 1548 + 1548 1549 1549 1550 1550 1551 1551 1552 1552 1553 1553 1554 + 1554 1555 1555 1556 1556 1557 1557 1558 1558 1559 1559 1560 + 1560 1561 1561 1562 1562 1563 1563 1564 1564 1565 1565 1566 + 1566 1567 1567 1568 1568 1569 1569 1570 1570 1571 1571 1572 + 1572 1573 1573 1574 1574 1575 1575 1576 1576 1577 1577 1578 + 1578 1579 1579 1580 1580 1581 1581 1582 1582 1583 1583 1584 + 1584 1585 1585 1586 1586 1587 1587 1588 1588 1589 1589 1590 + 1590 1591 1591 1592 1592 1593 1593 1594 1594 1595 1595 1596 + 1596 1597 1597 1598 1598 1599 1599 1600 + </DataArray> + <DataArray type="Int32" Name="offsets" NumberOfComponents="1" format="ascii"> + 2 4 6 8 10 12 14 16 18 20 22 24 + 26 28 30 32 34 36 38 40 42 44 46 48 + 50 52 54 56 58 60 62 64 66 68 70 72 + 74 76 78 80 82 84 86 88 90 92 94 96 + 98 100 102 104 106 108 110 112 114 116 118 120 + 122 124 126 128 130 132 134 136 138 140 142 144 + 146 148 150 152 154 156 158 160 162 164 166 168 + 170 172 174 176 178 180 182 184 186 188 190 192 + 194 196 198 200 202 204 206 208 210 212 214 216 + 218 220 222 224 226 228 230 232 234 236 238 240 + 242 244 246 248 250 252 254 256 258 260 262 264 + 266 268 270 272 274 276 278 280 282 284 286 288 + 290 292 294 296 298 300 302 304 306 308 310 312 + 314 316 318 320 322 324 326 328 330 332 334 336 + 338 340 342 344 346 348 350 352 354 356 358 360 + 362 364 366 368 370 372 374 376 378 380 382 384 + 386 388 390 392 394 396 398 400 402 404 406 408 + 410 412 414 416 418 420 422 424 426 428 430 432 + 434 436 438 440 442 444 446 448 450 452 454 456 + 458 460 462 464 466 468 470 472 474 476 478 480 + 482 484 486 488 490 492 494 496 498 500 502 504 + 506 508 510 512 514 516 518 520 522 524 526 528 + 530 532 534 536 538 540 542 544 546 548 550 552 + 554 556 558 560 562 564 566 568 570 572 574 576 + 578 580 582 584 586 588 590 592 594 596 598 600 + 602 604 606 608 610 612 614 616 618 620 622 624 + 626 628 630 632 634 636 638 640 642 644 646 648 + 650 652 654 656 658 660 662 664 666 668 670 672 + 674 676 678 680 682 684 686 688 690 692 694 696 + 698 700 702 704 706 708 710 712 714 716 718 720 + 722 724 726 728 730 732 734 736 738 740 742 744 + 746 748 750 752 754 756 758 760 762 764 766 768 + 770 772 774 776 778 780 782 784 786 788 790 792 + 794 796 798 800 802 804 806 808 810 812 814 816 + 818 820 822 824 826 828 830 832 834 836 838 840 + 842 844 846 848 850 852 854 856 858 860 862 864 + 866 868 870 872 874 876 878 880 882 884 886 888 + 890 892 894 896 898 900 902 904 906 908 910 912 + 914 916 918 920 922 924 926 928 930 932 934 936 + 938 940 942 944 946 948 950 952 954 956 958 960 + 962 964 966 968 970 972 974 976 978 980 982 984 + 986 988 990 992 994 996 998 1000 1002 1004 1006 1008 + 1010 1012 1014 1016 1018 1020 1022 1024 1026 1028 1030 1032 + 1034 1036 1038 1040 1042 1044 1046 1048 1050 1052 1054 1056 + 1058 1060 1062 1064 1066 1068 1070 1072 1074 1076 1078 1080 + 1082 1084 1086 1088 1090 1092 1094 1096 1098 1100 1102 1104 + 1106 1108 1110 1112 1114 1116 1118 1120 1122 1124 1126 1128 + 1130 1132 1134 1136 1138 1140 1142 1144 1146 1148 1150 1152 + 1154 1156 1158 1160 1162 1164 1166 1168 1170 1172 1174 1176 + 1178 1180 1182 1184 1186 1188 1190 1192 1194 1196 1198 1200 + 1202 1204 1206 1208 1210 1212 1214 1216 1218 1220 1222 1224 + 1226 1228 1230 1232 1234 1236 1238 1240 1242 1244 1246 1248 + 1250 1252 1254 1256 1258 1260 1262 1264 1266 1268 1270 1272 + 1274 1276 1278 1280 1282 1284 1286 1288 1290 1292 1294 1296 + 1298 1300 1302 1304 1306 1308 1310 1312 1314 1316 1318 1320 + 1322 1324 1326 1328 1330 1332 1334 1336 1338 1340 1342 1344 + 1346 1348 1350 1352 1354 1356 1358 1360 1362 1364 1366 1368 + 1370 1372 1374 1376 1378 1380 1382 1384 1386 1388 1390 1392 + 1394 1396 1398 1400 1402 1404 1406 1408 1410 1412 1414 1416 + 1418 1420 1422 1424 1426 1428 1430 1432 1434 1436 1438 1440 + 1442 1444 1446 1448 1450 1452 1454 1456 1458 1460 1462 1464 + 1466 1468 1470 1472 1474 1476 1478 1480 1482 1484 1486 1488 + 1490 1492 1494 1496 1498 1500 1502 1504 1506 1508 1510 1512 + 1514 1516 1518 1520 1522 1524 1526 1528 1530 1532 1534 1536 + 1538 1540 1542 1544 1546 1548 1550 1552 1554 1556 1558 1560 + 1562 1564 1566 1568 1570 1572 1574 1576 1578 1580 1582 1584 + 1586 1588 1590 1592 1594 1596 1598 1600 1602 1604 1606 1608 + 1610 1612 1614 1616 1618 1620 1622 1624 1626 1628 1630 1632 + 1634 1636 1638 1640 1642 1644 1646 1648 1650 1652 1654 1656 + 1658 1660 1662 1664 1666 1668 1670 1672 1674 1676 1678 1680 + 1682 1684 1686 1688 1690 1692 1694 1696 1698 1700 1702 1704 + 1706 1708 1710 1712 1714 1716 1718 1720 1722 1724 1726 1728 + 1730 1732 1734 1736 1738 1740 1742 1744 1746 1748 1750 1752 + 1754 1756 1758 1760 1762 1764 1766 1768 1770 1772 1774 1776 + 1778 1780 1782 1784 1786 1788 1790 1792 1794 1796 1798 1800 + 1802 1804 1806 1808 1810 1812 1814 1816 1818 1820 1822 1824 + 1826 1828 1830 1832 1834 1836 1838 1840 1842 1844 1846 1848 + 1850 1852 1854 1856 1858 1860 1862 1864 1866 1868 1870 1872 + 1874 1876 1878 1880 1882 1884 1886 1888 1890 1892 1894 1896 + 1898 1900 1902 1904 1906 1908 1910 1912 1914 1916 1918 1920 + 1922 1924 1926 1928 1930 1932 1934 1936 1938 1940 1942 1944 + 1946 1948 1950 1952 1954 1956 1958 1960 1962 1964 1966 1968 + 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 + 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 + 2018 2020 2022 2024 2026 2028 2030 2032 2034 2036 2038 2040 + 2042 2044 2046 2048 2050 2052 2054 2056 2058 2060 2062 2064 + 2066 2068 2070 2072 2074 2076 2078 2080 2082 2084 2086 2088 + 2090 2092 2094 2096 2098 2100 2102 2104 2106 2108 2110 2112 + 2114 2116 2118 2120 2122 2124 2126 2128 2130 2132 2134 2136 + 2138 2140 2142 2144 2146 2148 2150 2152 2154 2156 2158 2160 + 2162 2164 2166 2168 2170 2172 2174 2176 2178 2180 2182 2184 + 2186 2188 2190 2192 2194 2196 2198 2200 2202 2204 2206 2208 + 2210 2212 2214 2216 2218 2220 2222 2224 2226 2228 2230 2232 + 2234 2236 2238 2240 2242 2244 2246 2248 2250 2252 2254 2256 + 2258 2260 2262 2264 2266 2268 2270 2272 2274 2276 2278 2280 + 2282 2284 2286 2288 2290 2292 2294 2296 2298 2300 2302 2304 + 2306 2308 2310 2312 2314 2316 2318 2320 2322 2324 2326 2328 + 2330 2332 2334 2336 2338 2340 2342 2344 2346 2348 2350 2352 + 2354 2356 2358 2360 2362 2364 2366 2368 2370 2372 2374 2376 + 2378 2380 2382 2384 2386 2388 2390 2392 2394 2396 2398 2400 + 2402 2404 2406 2408 2410 2412 2414 2416 2418 2420 2422 2424 + 2426 2428 2430 2432 2434 2436 2438 2440 2442 2444 2446 2448 + 2450 2452 2454 2456 2458 2460 2462 2464 2466 2468 2470 2472 + 2474 2476 2478 2480 2482 2484 2486 2488 2490 2492 2494 2496 + 2498 2500 2502 2504 2506 2508 2510 2512 2514 2516 2518 2520 + 2522 2524 2526 2528 2530 2532 2534 2536 2538 2540 2542 2544 + 2546 2548 2550 2552 2554 2556 2558 2560 2562 2564 2566 2568 + 2570 2572 2574 2576 2578 2580 2582 2584 2586 2588 2590 2592 + 2594 2596 2598 2600 2602 2604 2606 2608 2610 2612 2614 2616 + 2618 2620 2622 2624 2626 2628 2630 2632 2634 2636 2638 2640 + 2642 2644 2646 2648 2650 2652 2654 2656 2658 2660 2662 2664 + 2666 2668 2670 2672 2674 2676 2678 2680 2682 2684 2686 2688 + 2690 2692 2694 2696 2698 2700 2702 2704 2706 2708 2710 2712 + 2714 2716 2718 2720 2722 2724 2726 2728 2730 2732 2734 2736 + 2738 2740 2742 2744 2746 2748 2750 2752 2754 2756 2758 2760 + 2762 2764 2766 2768 2770 2772 2774 2776 2778 2780 2782 2784 + 2786 2788 2790 2792 2794 2796 2798 2800 2802 2804 2806 2808 + 2810 2812 2814 2816 2818 2820 2822 2824 2826 2828 2830 2832 + 2834 2836 2838 2840 2842 2844 2846 2848 2850 2852 2854 2856 + 2858 2860 2862 2864 2866 2868 2870 2872 2874 2876 2878 2880 + 2882 2884 2886 2888 2890 2892 2894 2896 2898 2900 2902 2904 + 2906 2908 2910 2912 2914 2916 2918 2920 2922 2924 2926 2928 + 2930 2932 2934 2936 2938 2940 2942 2944 2946 2948 2950 2952 + 2954 2956 2958 2960 2962 2964 2966 2968 2970 2972 2974 2976 + 2978 2980 2982 2984 2986 2988 2990 2992 2994 2996 2998 3000 + 3002 3004 3006 3008 3010 3012 3014 3016 3018 3020 3022 3024 + 3026 3028 3030 3032 3034 3036 3038 3040 3042 3044 3046 3048 + 3050 3052 3054 3056 3058 3060 3062 3064 3066 3068 3070 3072 + 3074 3076 3078 3080 3082 3084 3086 3088 3090 3092 3094 3096 + 3098 3100 3102 3104 3106 3108 3110 3112 3114 3116 3118 3120 + 3122 3124 3126 3128 3130 3132 3134 3136 3138 3140 3142 3144 + 3146 3148 3150 3152 3154 3156 3158 3160 3162 3164 3166 3168 + 3170 3172 3174 3176 3178 3180 3182 3184 3186 3188 3190 3192 + 3194 3196 3198 3200 + </DataArray> + </Lines> + </Piece> + </PolyData> +</VTKFile>