diff --git a/dumux/flux/cctpfa/darcyslaw.hh b/dumux/flux/cctpfa/darcyslaw.hh index 10fe394b43f332ce4ffbc0e073e449bc5ef42499..98e6bc3f7a9c74b6ed64ffceace972c4ce4d2dc1 100644 --- a/dumux/flux/cctpfa/darcyslaw.hh +++ b/dumux/flux/cctpfa/darcyslaw.hh @@ -151,7 +151,16 @@ class CCTpfaDarcysLaw<ScalarType, GridGeometry, /*isNetwork*/ false> //! state the type for the corresponding cache using Cache = TpfaDarcysLawCache<ThisType, GridGeometry>; - //! Compute the advective flux + /*! + * \brief Returns the advective flux of a fluid phase + * across the given sub-control volume face. + * \note This assembles the term + * \f$-|\sigma| \mathbf{n}^T \mathbf{K} \left( \nabla p - \rho \mathbf{g} \right)\f$, + * where \f$|\sigma|\f$ is the area of the face and \f$\mathbf{n}\f$ is the outer + * normal vector. Thus, the flux is given in N*m, and can be converted + * into a volume flux (m^3/s) or mass flux (kg/s) by applying an upwind scheme + * for the mobility or the product of density and mobility, respectively. + */ template<class Problem, class ElementVolumeVariables, class ElementFluxVarsCache> static Scalar flux(const Problem& problem, const Element& element, @@ -306,7 +315,16 @@ public: //! state the type for the corresponding cache using Cache = TpfaDarcysLawCache<ThisType, GridGeometry>; - //! Compute the advective flux + /*! + * \brief Returns the advective flux of a fluid phase + * across the given sub-control volume face. + * \note This assembles the term + * \f$-|\sigma| \mathbf{n}^T \mathbf{K} \left( \nabla p - \rho \mathbf{g} \right)\f$, + * where \f$|\sigma|\f$ is the area of the face and \f$\mathbf{n}\f$ is the outer + * normal vector. Thus, the flux is given in N*m, and can be converted + * into a volume flux (m^3/s) or mass flux (kg/s) by applying an upwind scheme + * for the mobility or the product of density and mobility, respectively. + */ template<class Problem, class ElementVolumeVariables, class ElementFluxVarsCache> static Scalar flux(const Problem& problem, const Element& element, diff --git a/dumux/flux/cctpfa/fickslaw.hh b/dumux/flux/cctpfa/fickslaw.hh index f4c2d82c45774501d4063831aa0095a38383ed2c..f9e51fcafb1196d165a9d169e32d88c92841ddc4 100644 --- a/dumux/flux/cctpfa/fickslaw.hh +++ b/dumux/flux/cctpfa/fickslaw.hh @@ -128,7 +128,12 @@ public: using DiffusionCoefficientsContainer = FickianDiffusionCoefficients<Scalar, numPhases, numComponents>; - //! return diffusive fluxes for all components in a phase + /*! + * \brief Returns the diffusive fluxes of all components within + * a fluid phase across the given sub-control volume face. + * The computed fluxes are given in mole/s or kg/s, depending + * on the template parameter ReferenceSystemFormulation. + */ static ComponentFluxVector flux(const Problem& problem, const Element& element, const FVElementGeometry& fvGeometry, diff --git a/dumux/flux/cctpfa/forchheimerslaw.hh b/dumux/flux/cctpfa/forchheimerslaw.hh index 956d7e7ed6b7cd2865f52cd6d6c994ad442b5efb..b0b4efe83598f4bb9d79e0b551cdc4c3624bd105 100644 --- a/dumux/flux/cctpfa/forchheimerslaw.hh +++ b/dumux/flux/cctpfa/forchheimerslaw.hh @@ -166,7 +166,12 @@ class CCTpfaForchheimersLaw<ScalarType, GridGeometry, /*isNetwork*/ false> //! state the type for the corresponding cache using Cache = TpfaForchheimersLawCache<ThisType, GridGeometry>; - /*! \brief Compute the advective flux using the Forchheimer equation + /*! \brief Compute the advective flux of a phase across + * the given sub-control volume face uing the Forchheimer equation. + * + * The flux is given in N*m, and can be converted + * into a volume flux (m^3/s) or mass flux (kg/s) by applying an upwind scheme + * for the mobility or the product of density and mobility, respectively. * * see e.g. Nield & Bejan: Convection in Porous Media \cite nield2006 * diff --git a/dumux/flux/cctpfa/fourierslaw.hh b/dumux/flux/cctpfa/fourierslaw.hh index 6da3f30b15a77a284f55961d48ace05a946e34c5..1c677c94a447a8724c441cf55266269a7a2d2242 100644 --- a/dumux/flux/cctpfa/fourierslaw.hh +++ b/dumux/flux/cctpfa/fourierslaw.hh @@ -108,7 +108,13 @@ public: //! export the type for the corresponding cache using Cache = TpfaFouriersLawCache; - //! Compute the heat condution flux assuming thermal equilibrium + /*! + * \brief Returns the heat flux within the porous medium + * (in J/s) across the given sub-control volume face. + * \note This law assumes thermal equilibrium between the fluid + * and solid phases, and uses an effective thermal conductivity + * for the overall aggregate. + */ static Scalar flux(const Problem& problem, const Element& element, const FVElementGeometry& fvGeometry, diff --git a/dumux/flux/cctpfa/fourierslawnonequilibrium.hh b/dumux/flux/cctpfa/fourierslawnonequilibrium.hh index c524668c5bb526e6a1af21a3595adacce9998465..cf0dc419c7ecfe3fc6398a84d92e936ee26e4c1f 100644 --- a/dumux/flux/cctpfa/fourierslawnonequilibrium.hh +++ b/dumux/flux/cctpfa/fourierslawnonequilibrium.hh @@ -71,7 +71,10 @@ public: using Cache = FluxVariablesCaching::EmptyHeatConductionCache; - //! Compute the heat condution flux assuming thermal equilibrium + /*! + * \brief Returns the heat flux within a fluid or solid + * phase (in J/s) across the given sub-control volume face. + */ static Scalar flux(const Problem& problem, const Element& element, const FVElementGeometry& fvGeometry, diff --git a/dumux/flux/cctpfa/maxwellstefanslaw.hh b/dumux/flux/cctpfa/maxwellstefanslaw.hh index 3f3e3833a30ac009564a47bb45c78bd70e0715cd..87b3fd4717b0a6e69db2633229219068aa3b94cb 100644 --- a/dumux/flux/cctpfa/maxwellstefanslaw.hh +++ b/dumux/flux/cctpfa/maxwellstefanslaw.hh @@ -91,6 +91,11 @@ public: using Cache = FluxVariablesCaching::EmptyDiffusionCache; using CacheFiller = FluxVariablesCaching::EmptyCacheFiller; + /*! + * \brief Returns the diffusive fluxes of all components within + * a fluid phase across the given sub-control volume face. + * The computed fluxes are given in kg/s. + */ static ComponentFluxVector flux(const Problem& problem, const Element& element, const FVElementGeometry& fvGeometry,