diff --git a/dumux/discretization/staggered/freeflow/fourierslaw.hh b/dumux/discretization/staggered/freeflow/fourierslaw.hh index 4b9a63e5cbc88ecd4de075ab3e003c7c159cd01b..a3ec20d548a0021c1b4df9a37a660e97f0f5dc0c 100644 --- a/dumux/discretization/staggered/freeflow/fourierslaw.hh +++ b/dumux/discretization/staggered/freeflow/fourierslaw.hh @@ -85,8 +85,8 @@ public: const auto& outsideVolVars = elemVolVars[scvf.outsideScvIdx()]; // effective conductivity tensors - auto insideLambda = insideVolVars.thermalConductivity(); - auto outsideLambda = outsideVolVars.thermalConductivity(); + auto insideLambda = insideVolVars.effectiveThermalConductivity(); + auto outsideLambda = outsideVolVars.effectiveThermalConductivity(); // scale by extrusion factor insideLambda *= insideVolVars.extrusionFactor(); diff --git a/dumux/freeflow/navierstokes/volumevariables.hh b/dumux/freeflow/navierstokes/volumevariables.hh index 251a932a90317fab4d8fcde575ed71ef914d41f4..7a7cc8fd1f08dcf050984c5dc2d8c3842d74adf2 100644 --- a/dumux/freeflow/navierstokes/volumevariables.hh +++ b/dumux/freeflow/navierstokes/volumevariables.hh @@ -326,6 +326,12 @@ public: Scalar thermalConductivity() const { return FluidSystem::thermalConductivity(this->fluidState_, phaseIdx); } + /*! + * \brief Returns the effective thermal conductivity \f$\mathrm{[W/(m*K)]}\f$. + */ + Scalar effectiveThermalConductivity() const + { return thermalConductivity(); } + //! The temperature is a primary variable for non-isothermal models using ParentType::temperature; template<class ElementSolution> diff --git a/dumux/freeflow/navierstokesnc/model.hh b/dumux/freeflow/navierstokesnc/model.hh index 7e7c89a233fba41b4bf55530de2ce294ccbc9c57..b5badbcf3a5becf1b1f85b9fbb5675059d6d0d5f 100644 --- a/dumux/freeflow/navierstokesnc/model.hh +++ b/dumux/freeflow/navierstokesnc/model.hh @@ -20,20 +20,7 @@ * \file * \ingroup NavierStokesNCModel * - * \brief A single-phase, multi-component isothermal Navier-Stokes model - * - * This model implements a single-phase, multi-component isothermal Navier-Stokes model, solving the <B> momentum balance equation </B> - * \f[ - \frac{\partial (\varrho \textbf{v})}{\partial t} + \nabla \cdot (\varrho \textbf{v} \textbf{v}^{\textup{T}}) = \nabla \cdot (\mu (\nabla \textbf{v} + \nabla \textbf{v}^{\textup{T}})) - - \nabla p + \varrho \textbf{g} - \textbf{f} - * \f] - * By setting the property <code>EnableInertiaTerms</code> to <code>false</code> the Stokes - * equation can be solved. In this case the term - * \f[ - * \nabla \cdot (\varrho \textbf{v} \textbf{v}^{\textup{T}}) - * \f] - * is neglected. - * + * \copydoc Dumux::NavierStokesModel * * The system is closed by a <B> component mass/mole balance equation </B> for each component \f$\kappa\f$: * \f[ diff --git a/dumux/freeflow/nonisothermal/model.hh b/dumux/freeflow/nonisothermal/model.hh index eca4cf004d3740f2e177cfab09838ffa24e3a5b8..dfb04178c8485d36c427f4263e84a2f19b1a2f67 100644 --- a/dumux/freeflow/nonisothermal/model.hh +++ b/dumux/freeflow/nonisothermal/model.hh @@ -26,9 +26,18 @@ * \f[ * \frac{\partial (\varrho v)}{\partial t} * + \nabla \cdot \left( \varrho h {\boldsymbol{v}} - * - \lambda \textbf{grad}\, T \right) - q_T = 0 + * - \lambda_\text{eff} \textbf{grad}\, T \right) - q_T = 0 * \f] * + * + * For laminar Navier-Stokes flow the effective thermal conductivity is the fluid + * thermal conductivity: \f$ \lambda_\text{eff} = \lambda \f$. + * + * For turbulent Reynolds-averaged Navier-Stokes flow the eddy thermal conductivity is added: + * \f$ \lambda_\text{eff} = \lambda + \lambda_\text{t} \f$. + * The eddy thermal conductivity \f$ \lambda_\text{t} \f$ is related to the eddy viscosity \f$ \nu_\text{t} \f$ + * by the turbulent Prandtl number: + * \f[ \lambda_\text{t} = \frac{\nu_\text{t} \varrho c_\text{p}}{\mathrm{Pr}_\text{t}} \f] */ #ifndef DUMUX_STAGGERED_NI_MODEL_HH