From 62c142ac70dbf8b4993352e931ab6c76e7213cdb Mon Sep 17 00:00:00 2001 From: Simon Scholz <simon.scholz@iws.uni-stuttgart.de> Date: Wed, 20 Dec 2017 15:10:15 +0100 Subject: [PATCH] [doxygen] fix doxygen in fluidstates --- dumux/material/fluidstates/2p2c.hh | 86 +++++++++++------ dumux/material/fluidstates/CMakeLists.txt | 3 +- dumux/material/fluidstates/compositional.hh | 2 +- dumux/material/fluidstates/immiscible.hh | 89 ++++++++++++++---- .../fluidstates/isothermalimmiscible.hh | 83 ++++++++++++++--- dumux/material/fluidstates/nonequilibrium.hh | 93 +++++++++++++++---- .../fluidstates/nonequilibriumenergy.hh | 20 +++- .../fluidstates/nonequilibriummass.hh | 6 +- dumux/material/fluidstates/pressureoverlay.hh | 92 ++++++++++++++---- dumux/material/fluidstates/pseudo1p2c.hh | 56 ++++++++--- .../material/fluidstates/saturationoverlay.hh | 9 +- .../fluidstates/temperatureoverlay.hh | 2 +- 12 files changed, 428 insertions(+), 113 deletions(-) diff --git a/dumux/material/fluidstates/2p2c.hh b/dumux/material/fluidstates/2p2c.hh index c28847cd58..f69efa5231 100644 --- a/dumux/material/fluidstates/2p2c.hh +++ b/dumux/material/fluidstates/2p2c.hh @@ -18,7 +18,7 @@ *****************************************************************************/ /*! * \file - * + * \ingroup FluidStates * \brief Calculates the 2p2c phase state for compositional models. */ #ifndef DUMUX_2P2C_FLUID_STATE_HH @@ -33,8 +33,7 @@ namespace Dumux * \ingroup FluidStates * \brief Calculates the phase state from the primary variables in the * sequential 2p2c model. - * - * This boils down to so-called "flash calculation", in this case isothermal and isobaric. + * This boils down to so-called "flash calculation", in this case isothermal and isobaric. */ template <class Scalar, class FluidSystem> class TwoPTwoCFluidState @@ -51,10 +50,18 @@ public: public: /*! - * \name acess functions + * \name access functions + * \todo doc me! */ //@{ - /*! @copydoc CompositionalFluidState::saturation() + + /*! + * \brief Returns the saturation \f$S_\alpha\f$ of a fluid phase \f$\alpha\f$ in \f$\mathrm{[-]}\f$. + * + * The saturation is defined as the pore space occupied by the fluid divided by the total pore space: + * \f[S_\alpha := \frac{\phi \mathcal{V}_\alpha}{\phi \mathcal{V}}\f] + * + * \param phaseIdx the index of the phase */ Scalar saturation(int phaseIdx) const { @@ -65,38 +72,63 @@ public: return 1.0 - sw_; } - /*! @copydoc CompositionalFluidState::massFraction() + /*! + * \brief Returns the molar fraction \f$x^\kappa_\alpha\f$ of the component \f$\kappa\f$ in fluid phase \f$\alpha\f$ in \f$\mathrm{[-]}\f$. + * + * The molar fraction \f$x^\kappa_\alpha\f$ is defined as the ratio of the number of molecules + * of component \f$\kappa\f$ and the total number of molecules of the phase \f$\alpha\f$. + * + * \param phaseIdx the index of the phase + * \param compIdx the index of the component */ - Scalar massFraction(int phaseIdx, int compIdx) const + Scalar moleFraction(int phaseIdx, int compIdx) const { - return massFraction_[phaseIdx][compIdx]; + return moleFraction_[phaseIdx][compIdx]; } - /*! @copydoc CompositionalFluidState::moleFraction() + /*! + * \brief Returns the mass fraction \f$X^\kappa_\alpha\f$ of component \f$\kappa\f$ in fluid phase \f$\alpha\f$ in \f$\mathrm{[-]}\f$. + * + * The mass fraction \f$X^\kappa_\alpha\f$ is defined as the weight of all molecules of a + * component divided by the total mass of the fluid phase. It is related with the component's mole fraction by means of the relation + * + * \f[X^\kappa_\alpha = x^\kappa_\alpha \frac{M^\kappa}{\overline M_\alpha}\;,\f] + * + * where \f$M^\kappa\f$ is the molar mass of component \f$\kappa\f$ and + * \f$\overline M_\alpha\f$ is the mean molar mass of a molecule of phase + * \f$\alpha\f$. + * + * \param phaseIdx the index of the phase + * \param compIdx the index of the component */ - Scalar moleFraction(int phaseIdx, int compIdx) const + Scalar massFraction(int phaseIdx, int compIdx) const { - return moleFraction_[phaseIdx][compIdx]; + return massFraction_[phaseIdx][compIdx]; } - /*! @copydoc CompositionalFluidState::density() + /*! + * \brief The mass density \f$\rho_\alpha\f$ of the fluid phase + * \f$\alpha\f$ in \f$\mathrm{[kg/m^3]}\f$ */ Scalar density(int phaseIdx) const { return density_[phaseIdx]; } - /*! @copydoc CompositionalFluidState::viscosity() + /*! + * \brief The dynamic viscosity \f$\mu_\alpha\f$ of fluid phase \f$\alpha\f$ in \f$\mathrm{[Pa s]}\f$ */ Scalar viscosity(int phaseIdx) const { return viscosity_[phaseIdx]; } - /*! @copydoc CompositionalFluidState::partialPressure() + /*! + * \brief The partial pressure of a component in the n-phase \f$\mathrm{[Pa]}\f$ */ Scalar partialPressure(int compIdx) const { return partialPressure(nPhaseIdx, compIdx); } - /*! @copydoc CompositionalFluidState::partialPressure() + /*! + * \brief The partial pressure of a component in a phase \f$\mathrm{[Pa]}\f$ */ Scalar partialPressure(int phaseIdx, int compIdx) const { @@ -104,7 +136,8 @@ public: return pressure(phaseIdx)*moleFraction(phaseIdx, compIdx); } - /*! @copydoc CompositionalFluidState::pressure() + /*! + * \brief The pressure \f$p_\alpha\f$ of a fluid phase \f$\alpha\f$ in \f$\mathrm{[Pa]}\f$ */ Scalar pressure(int phaseIdx) const { return phasePressure_[phaseIdx]; } @@ -115,12 +148,19 @@ public: Scalar capillaryPressure() const { return phasePressure_[nPhaseIdx] - phasePressure_[wPhaseIdx]; } - /*! @copydoc CompositionalFluidState::temperature() + /*! + * \brief The temperature within the domain \f$\mathrm{[K]}\f$ */ Scalar temperature(int phaseIdx = 0) const { return temperature_; } - /*! @copydoc CompositionalFluidState::averageMolarMass() + /*! + * \brief The average molar mass \f$\overline M_\alpha\f$ of phase \f$\alpha\f$ in \f$\mathrm{[kg/mol]}\f$ + * + * The average molar mass is the mean mass of a mole of the + * fluid at current composition. It is defined as the sum of the + * component's molar masses weighted by the current mole fraction: + * \f[\mathrm{ \overline M_\alpha = \sum_\kappa M^\kappa x_\alpha^\kappa}\f] */ Scalar averageMolarMass(int phaseIdx) const { @@ -134,7 +174,6 @@ public: /*! * \brief Returns the phase mass fraction. phase mass per total mass \f$\mathrm{[kg/kg]}\f$. - * * \param phaseIdx the index of the phase */ Scalar phaseMassFraction(int phaseIdx) @@ -148,10 +187,10 @@ public: } return nu_[phaseIdx]; } + /*! * \brief Returns the phase mass fraction \f$ \nu \f$: * phase mass per total mass \f$\mathrm{[kg/kg]}\f$. - * * \param phaseIdx the index of the phase */ Scalar& nu(int phaseIdx) const @@ -165,7 +204,6 @@ public: //@{ /*! * \brief Sets the viscosity of a phase \f$\mathrm{[Pa*s]}\f$. - * * \param phaseIdx the index of the phase * @param value Value to be stored */ @@ -175,7 +213,6 @@ public: /*! * \brief Sets the mass fraction of a component in a phase. - * * \param phaseIdx the index of the phase * \param compIdx the index of the component * @param value Value to be stored @@ -187,7 +224,6 @@ public: /*! * \brief Sets the molar fraction of a component in a fluid phase. - * * \param phaseIdx the index of the phase * \param compIdx the index of the component * @param value Value to be stored @@ -198,7 +234,6 @@ public: } /*! * \brief Sets the density of a phase \f$\mathrm{[kg/m^3]}\f$. - * * \param phaseIdx the index of the phase * @param value Value to be stored */ @@ -220,7 +255,6 @@ public: /*! * \brief Sets the phase mass fraction. phase mass per total mass \f$\mathrm{[kg/kg]}\f$. - * * \param phaseIdx the index of the phase * @param value Value to be stored */ @@ -230,7 +264,6 @@ public: } /*! * \brief Sets the temperature - * * @param value Value to be stored */ void setTemperature(Scalar value) @@ -239,7 +272,6 @@ public: } /*! * \brief Sets phase pressure - * * \param phaseIdx the index of the phase * @param value Value to be stored */ diff --git a/dumux/material/fluidstates/CMakeLists.txt b/dumux/material/fluidstates/CMakeLists.txt index a2ba880bb2..7dfb611501 100644 --- a/dumux/material/fluidstates/CMakeLists.txt +++ b/dumux/material/fluidstates/CMakeLists.txt @@ -1,11 +1,12 @@ #install headers install(FILES +2p2c.hh compositional.hh immiscible.hh isothermalimmiscible.hh -nonequilibriumenergy.hh nonequilibrium.hh +nonequilibriumenergy.hh nonequilibriummass.hh pressureoverlay.hh saturationoverlay.hh diff --git a/dumux/material/fluidstates/compositional.hh b/dumux/material/fluidstates/compositional.hh index 86999c562f..79d5198363 100644 --- a/dumux/material/fluidstates/compositional.hh +++ b/dumux/material/fluidstates/compositional.hh @@ -18,7 +18,7 @@ *****************************************************************************/ /*! * \file - * + * \ingroup FluidStates * \brief Represents all relevant thermodynamic quantities of a * multi-phase, multi-component fluid system assuming * thermodynamic equilibrium. diff --git a/dumux/material/fluidstates/immiscible.hh b/dumux/material/fluidstates/immiscible.hh index 694ce45907..8688eb646f 100644 --- a/dumux/material/fluidstates/immiscible.hh +++ b/dumux/material/fluidstates/immiscible.hh @@ -18,7 +18,7 @@ *****************************************************************************/ /*! * \file - * + * \ingroup FluidStates * \brief Represents all relevant thermodynamic quantities of a * multi-phase fluid system assuming immiscibility and * thermodynamic equilibrium. @@ -60,37 +60,81 @@ public: * on thermodynamic equilibrium required) *****************************************************/ /*! - * @copydoc CompositionalFluidState::saturation() + * \brief Returns the saturation \f$S_\alpha\f$ of a fluid phase \f$\alpha\f$ in \f$\mathrm{[-]}\f$. + * + * The saturation is defined as the pore space occupied by the fluid divided by the total pore space: + * \f[S_\alpha := \frac{\phi \mathcal{V}_\alpha}{\phi \mathcal{V}}\f] + * + * \param phaseIdx the index of the phase */ Scalar saturation(int phaseIdx) const { return saturation_[phaseIdx]; } /*! - * @copydoc CompositionalFluidState::moleFraction() + * \brief Returns the molar fraction \f$x^\kappa_\alpha\f$ of the component \f$\kappa\f$ in fluid phase \f$\alpha\f$ in \f$\mathrm{[-]}\f$. + * + * The molar fraction \f$x^\kappa_\alpha\f$ is defined as the ratio of the number of molecules + * of component \f$\kappa\f$ and the total number of molecules of the phase \f$\alpha\f$. + * They are set either 1 or 0 in a phase since this is an immiscible fluidstate. + * \param phaseIdx the index of the phase + * \param compIdx the index of the component */ Scalar moleFraction(int phaseIdx, int compIdx) const { return (phaseIdx == compIdx)?1.0:0.0; } /*! - * @copydoc CompositionalFluidState::massFraction() + * \brief Returns the mass fraction \f$X^\kappa_\alpha\f$ of component \f$\kappa\f$ in fluid phase \f$\alpha\f$ in \f$\mathrm{[-]}\f$. + * + * They are set either 1 or 0 in a phase since this is an immiscible fluidstate. + * + * \param phaseIdx the index of the phase + * \param compIdx the index of the component */ Scalar massFraction(int phaseIdx, int compIdx) const { return (phaseIdx == compIdx)?1.0:0.0; } /*! - * @copydoc CompositionalFluidState::averageMolarMass() + * \brief The average molar mass \f$\overline M_\alpha\f$ of phase \f$\alpha\f$ in \f$\mathrm{[kg/mol]}\f$ + * + * The average molar mass is the mean mass of a mole of the + * fluid at current composition. It is defined as the sum of the + * component's molar masses weighted by the current mole fraction: + * \f[\mathrm{ \overline M_\alpha = \sum_\kappa M^\kappa x_\alpha^\kappa}\f] + * + * Since this is an immiscible fluidstate we simply consider the molarMass of the + * pure component/phase. */ Scalar averageMolarMass(int phaseIdx) const { return FluidSystem::molarMass(/*compIdx=*/phaseIdx); } /*! - * @copydoc CompositionalFluidState::molarity() + * \brief The molar concentration \f$c^\kappa_\alpha\f$ of component \f$\kappa\f$ in fluid phase \f$\alpha\f$ in \f$\mathrm{[mol/m^3]}\f$ + * + * This quantity is usually called "molar concentration" or just + * "concentration", but there are many other (though less common) + * measures for concentration. + * + * http://en.wikipedia.org/wiki/Concentration */ Scalar molarity(int phaseIdx, int compIdx) const { return molarDensity(phaseIdx)*moleFraction(phaseIdx, compIdx); } /*! - * @copydoc CompositionalFluidState::fugacity() + * \brief The fugacity \f$f^\kappa_\alpha\f$ of component \f$\kappa\f$ + * in fluid phase \f$\alpha\f$ in \f$\mathrm{[Pa]}\f$ + * + * The fugacity is defined as: + * \f$f_\alpha^\kappa := \Phi^\kappa_\alpha x^\kappa_\alpha p_\alpha \;,\f$ + * where \f$\Phi^\kappa_\alpha\f$ is the fugacity coefficient \cite reid1987 . + * The physical meaning of fugacity becomes clear from the equation: + * \f[f_\alpha^\kappa = p_\alpha \exp\left\{\frac{\zeta^\kappa_\alpha}{R T_\alpha} \right\} \;,\f] + * where \f$\zeta^\kappa_\alpha\f$ represents the \f$\kappa\f$'s chemical + * potential in phase \f$\alpha\f$, \f$R\f$ stands for the ideal gas constant, + * and \f$T_\alpha\f$ for the absolute temperature of phase \f$\alpha\f$. Assuming thermal equilibrium, + * there is a one-to-one mapping between a component's chemical potential + * \f$\zeta^\kappa_\alpha\f$ and its fugacity \f$f^\kappa_\alpha\f$. In this + * case chemical equilibrium can thus be expressed by: + * \f[f^\kappa := f^\kappa_\alpha = f^\kappa_\beta\quad\forall \alpha, \beta\f] * * To avoid numerical issues with code that assumes miscibility, * we return a fugacity of 0 for components which do not mix with @@ -107,7 +151,7 @@ public: } /*! - * @copydoc CompositionalFluidState::fugacityCoefficient() + * \brief The fugacity coefficient \f$\Phi^\kappa_\alpha\f$ of component \f$\kappa\f$ in fluid phase \f$\alpha\f$ in \f$\mathrm{[-]}\f$ * * Since we assume immiscibility, the fugacity coefficients for * the components which are not miscible with the phase is @@ -123,7 +167,7 @@ public: } /*! - * @copydoc CompositionalFluidState::partialPressure() + * \brief The partial pressure of a component in a phase \f$\mathrm{[Pa]}\f$ * * To avoid numerical issues with code that assumes miscibility, * we return a partial pressure of 0 for components which do not mix with @@ -138,50 +182,61 @@ public: } /*! - * @copydoc CompositionalFluidState::molarVolume() + * \brief The molar volume \f$v_{mol,\alpha}\f$ of a fluid phase \f$\alpha\f$ in \f$\mathrm{[m^3/mol]}\f$ * + * This quantity is the inverse of the molar density. */ Scalar molarVolume(int phaseIdx) const { return 1/molarDensity(phaseIdx); } /*! - * @copydoc CompositionalFluidState::density() + * \brief The mass density \f$\rho_\alpha\f$ of the fluid phase + * \f$\alpha\f$ in \f$\mathrm{[kg/m^3]}\f$ */ Scalar density(int phaseIdx) const { return density_[phaseIdx]; } /*! - * @copydoc CompositionalFluidState::molarDensity() + * \brief The molar density \f$\rho_{mol,\alpha}\f$ + * of a fluid phase \f$\alpha\f$ in \f$\mathrm{[mol/m^3]}\f$ + * + * The molar density is defined by the mass density \f$\rho_\alpha\f$ and the mean molar mass \f$\overline M_\alpha\f$: + * + * \f[\rho_{mol,\alpha} = \frac{\rho_\alpha}{\overline M_\alpha} \;.\f] */ Scalar molarDensity(int phaseIdx) const { return density_[phaseIdx]/averageMolarMass(phaseIdx); } /*! - * @copydoc CompositionalFluidState::temperature() + * \brief The absolute temperature\f$T_\alpha\f$ of a fluid phase \f$\alpha\f$ in \f$\mathrm{[K]}\f$ */ Scalar temperature(int phaseIdx) const { return temperature_; } /*! - * @copydoc CompositionalFluidState::pressure() + * \brief The pressure \f$p_\alpha\f$ of a fluid phase \f$\alpha\f$ in \f$\mathrm{[Pa]}\f$ */ Scalar pressure(int phaseIdx) const { return pressure_[phaseIdx]; } /*! - * @copydoc CompositionalFluidState::enthalpy() + * \brief The specific enthalpy \f$h_\alpha\f$ of a fluid phase \f$\alpha\f$ in \f$\mathrm{[J/kg]}\f$ */ Scalar enthalpy(int phaseIdx) const { return enthalpy_[phaseIdx]; } /*! - * @copydoc CompositionalFluidState::internalEnergy() + * \brief The specific internal energy \f$u_\alpha\f$ of a fluid phase \f$\alpha\f$ in \f$\mathrm{[J/kg]}\f$ + * + * The specific internal energy is defined by the relation: + * + * \f[u_\alpha = h_\alpha - \frac{p_\alpha}{\rho_\alpha}\f] */ Scalar internalEnergy(int phaseIdx) const { return enthalpy_[phaseIdx] - pressure(phaseIdx)/density(phaseIdx); } /*! - * @copydoc CompositionalFluidState::viscosity() + * \brief The dynamic viscosity \f$\mu_\alpha\f$ of fluid phase \f$\alpha\f$ in \f$\mathrm{[Pa s]}\f$ */ Scalar viscosity(int phaseIdx) const { return viscosity_[phaseIdx]; } diff --git a/dumux/material/fluidstates/isothermalimmiscible.hh b/dumux/material/fluidstates/isothermalimmiscible.hh index a028111d3d..ba5b0e7eae 100644 --- a/dumux/material/fluidstates/isothermalimmiscible.hh +++ b/dumux/material/fluidstates/isothermalimmiscible.hh @@ -18,7 +18,7 @@ *****************************************************************************/ /*! * \file - * + * \ingroup FluidStates * \brief Represents all relevant thermodynamic quantities of a isothermal immiscible * multi-phase fluid system */ @@ -56,37 +56,74 @@ public: * Generic access to fluid properties *****************************************************/ /*! - * @copydoc CompositionalFluidState::saturation() + * \brief Returns the saturation \f$S_\alpha\f$ of a fluid phase \f$\alpha\f$ in \f$\mathrm{[-]}\f$. + * + * The saturation is defined as the pore space occupied by the fluid divided by the total pore space: + * \f[S_\alpha := \frac{\phi \mathcal{V}_\alpha}{\phi \mathcal{V}}\f] + * + * \param phaseIdx the index of the phase */ Scalar saturation(int phaseIdx) const { return saturation_[phaseIdx]; } /*! - * @copydoc CompositionalFluidState::moleFraction() + * \brief Returns the molar fraction \f$x^\kappa_\alpha\f$ of the component \f$\kappa\f$ in fluid phase \f$\alpha\f$ in \f$\mathrm{[-]}\f$. + * + * The molar fraction \f$x^\kappa_\alpha\f$ is defined as the ratio of the number of molecules + * of component \f$\kappa\f$ and the total number of molecules of the phase \f$\alpha\f$. + * They are set either 1 or 0 in a phase since this is an immiscible fluidstate. + * \param phaseIdx the index of the phase + * \param compIdx the index of the component */ Scalar moleFraction(int phaseIdx, int compIdx) const { return (phaseIdx == compIdx)?1.0:0.0; } /*! - * @copydoc CompositionalFluidState::massFraction() + * \brief Returns the mass fraction \f$X^\kappa_\alpha\f$ of component \f$\kappa\f$ in fluid phase \f$\alpha\f$ in \f$\mathrm{[-]}\f$. + * + * They are set either 1 or 0 in a phase since this is an immiscible fluidstate. + * + * \param phaseIdx the index of the phase + * \param compIdx the index of the component */ Scalar massFraction(int phaseIdx, int compIdx) const { return (phaseIdx == compIdx)?1.0:0.0; } /*! - * @copydoc CompositionalFluidState::averageMolarMass() + * \brief The average molar mass \f$\overline M_\alpha\f$ of phase \f$\alpha\f$ in \f$\mathrm{[kg/mol]}\f$ + * + * The average molar mass is the mean mass of a mole of the + * fluid at current composition. It is defined as the sum of the + * component's molar masses weighted by the current mole fraction: + * \f[\mathrm{ \overline M_\alpha = \sum_\kappa M^\kappa x_\alpha^\kappa}\f] + * + * Since this is an immiscible fluidstate we simply consider the molarMass of the + * pure component/phase. */ Scalar averageMolarMass(int phaseIdx) const { return FluidSystem::molarMass(/*compIdx=*/phaseIdx); } /*! - * @copydoc CompositionalFluidState::molarity() + * \brief The molar concentration \f$c^\kappa_\alpha\f$ of component \f$\kappa\f$ in fluid phase \f$\alpha\f$ in \f$\mathrm{[mol/m^3]}\f$ + * + * This quantity is usually called "molar concentration" or just + * "concentration", but there are many other (though less common) + * measures for concentration. + * + * http://en.wikipedia.org/wiki/Concentration */ Scalar molarity(int phaseIdx, int compIdx) const { return molarDensity(phaseIdx)*moleFraction(phaseIdx, compIdx); } /*! + * \brief The fugacity \f$f^\kappa_\alpha\f$ of component \f$\kappa\f$ + * in fluid phase \f$\alpha\f$ in \f$\mathrm{[Pa]}\f$ * @copydoc ImmiscibleFluidState::fugacity() + * To avoid numerical issues with code that assumes miscibility, + * we return a fugacity of 0 for components which do not mix with + * the specified phase. (Actually it is undefined, but for finite + * fugacity coefficients, the only way to get components + * completely out of a phase is 0 to feed it zero fugacity.) */ Scalar fugacity(int phaseIdx, int compIdx) const { @@ -97,7 +134,12 @@ public: } /*! - * @copydoc ImmiscibleFluidState::fugacityCoefficient() + * \brief The fugacity coefficient \f$\Phi^\kappa_\alpha\f$ of component \f$\kappa\f$ in fluid phase \f$\alpha\f$ in \f$\mathrm{[-]}\f$ + * + * Since we assume immiscibility, the fugacity coefficients for + * the components which are not miscible with the phase is + * infinite. Beware that this will very likely break your code if + * you don't keep that in mind. */ Scalar fugacityCoefficient(int phaseIdx, int compIdx) const { @@ -108,19 +150,27 @@ public: } /*! - * @copydoc CompositionalFluidState::molarVolume() + * \brief The molar volume \f$v_{mol,\alpha}\f$ of a fluid phase \f$\alpha\f$ in \f$\mathrm{[m^3/mol]}\f$ + * + * This quantity is the inverse of the molar density. */ Scalar molarVolume(int phaseIdx) const { return 1/molarDensity(phaseIdx); } /*! - * @copydoc CompositionalFluidState::density() + * \brief The mass density \f$\rho_\alpha\f$ of the fluid phase + * \f$\alpha\f$ in \f$\mathrm{[kg/m^3]}\f$ */ Scalar density(int phaseIdx) const { return density_[phaseIdx]; } /*! - * @copydoc CompositionalFluidState::molarDensity() + * \brief The molar density \f$\rho_{mol,\alpha}\f$ + * of a fluid phase \f$\alpha\f$ in \f$\mathrm{[mol/m^3]}\f$ + * + * The molar density is defined by the mass density \f$\rho_\alpha\f$ and the mean molar mass \f$\overline M_\alpha\f$: + * + * \f[\rho_{mol,\alpha} = \frac{\rho_\alpha}{\overline M_\alpha} \;.\f] */ Scalar molarDensity(int phaseIdx) const { return density_[phaseIdx]/averageMolarMass(phaseIdx); } @@ -138,25 +188,30 @@ public: { return temperature_; } /*! - * @copydoc CompositionalFluidState::pressure() + * \brief The pressure \f$p_\alpha\f$ of a fluid phase \f$\alpha\f$ in \f$\mathrm{[Pa]}\f$ */ Scalar pressure(int phaseIdx) const { return pressure_[phaseIdx]; } /*! - * @copydoc CompositionalFluidState::enthalpy() + * \brief The specific enthalpy \f$h_\alpha\f$ of a fluid phase \f$\alpha\f$ in \f$\mathrm{[J/kg]}\f$ + * This is not defined for an isothermal fluidstate. */ Scalar enthalpy(int phaseIdx) const { DUNE_THROW(Dune::NotImplemented,"No enthalpy() function defined for isothermal systems!"); } /*! - * @copydoc CompositionalFluidState::internalEnergy() + * \brief The specific internal energy \f$u_\alpha\f$ of a fluid phase \f$\alpha\f$ in \f$\mathrm{[J/kg]}\f$ + * + * The specific internal energy is defined by the relation: + * \f[u_\alpha = h_\alpha - \frac{p_\alpha}{\rho_\alpha}\f] + * This is not defined for an isothermal fluidstate. */ Scalar internalEnergy(int phaseIdx) const { DUNE_THROW(Dune::NotImplemented,"No internalEnergy() function defined for isothermal systems!"); } /*! - * @copydoc CompositionalFluidState::viscosity() + * \brief The dynamic viscosity \f$\mu_\alpha\f$ of fluid phase \f$\alpha\f$ in \f$\mathrm{[Pa s]}\f$ */ Scalar viscosity(int phaseIdx) const { return viscosity_[phaseIdx]; } diff --git a/dumux/material/fluidstates/nonequilibrium.hh b/dumux/material/fluidstates/nonequilibrium.hh index 330206ae02..2b659ec139 100644 --- a/dumux/material/fluidstates/nonequilibrium.hh +++ b/dumux/material/fluidstates/nonequilibrium.hh @@ -18,7 +18,7 @@ *****************************************************************************/ /*! * \file - * + * \ingroup FluidStates * \brief Represents all relevant thermodynamic quantities of a * multi-phase, multi-component fluid system without using * any assumptions. @@ -68,20 +68,43 @@ public: * on thermodynamic equilibrium required) *****************************************************/ /*! - * @copydoc Dumux::CompositionalFluidState::saturation() + * \brief Returns the saturation \f$S_\alpha\f$ of a fluid phase \f$\alpha\f$ in \f$\mathrm{[-]}\f$. + * + * The saturation is defined as the pore space occupied by the fluid divided by the total pore space: + * \f[S_\alpha := \frac{\phi \mathcal{V}_\alpha}{\phi \mathcal{V}}\f] + * + * \param phaseIdx the index of the phase */ Scalar saturation(int phaseIdx) const { return saturation_[phaseIdx]; } /*! - * @copydoc Dumux::CompositionalFluidState::moleFraction() + * \brief Returns the molar fraction \f$x^\kappa_\alpha\f$ of the component \f$\kappa\f$ in fluid phase \f$\alpha\f$ in \f$\mathrm{[-]}\f$. + * + * The molar fraction \f$x^\kappa_\alpha\f$ is defined as the ratio of the number of molecules + * of component \f$\kappa\f$ and the total number of molecules of the phase \f$\alpha\f$. + * + * \param phaseIdx the index of the phase + * \param compIdx the index of the component */ Scalar moleFraction(int phaseIdx, int compIdx) const { return moleFraction_[phaseIdx][compIdx]; } /*! - * @copydoc Dumux::CompositionalFluidState::massFraction() + * \brief Returns the mass fraction \f$X^\kappa_\alpha\f$ of component \f$\kappa\f$ in fluid phase \f$\alpha\f$ in \f$\mathrm{[-]}\f$. + * + * The mass fraction \f$X^\kappa_\alpha\f$ is defined as the weight of all molecules of a + * component divided by the total mass of the fluid phase. It is related with the component's mole fraction by means of the relation + * + * \f[X^\kappa_\alpha = x^\kappa_\alpha \frac{M^\kappa}{\overline M_\alpha}\;,\f] + * + * where \f$M^\kappa\f$ is the molar mass of component \f$\kappa\f$ and + * \f$\overline M_\alpha\f$ is the mean molar mass of a molecule of phase + * \f$\alpha\f$. + * + * \param phaseIdx the index of the phase + * \param compIdx the index of the component */ Scalar massFraction(int phaseIdx, int compIdx) const { @@ -95,67 +118,105 @@ public: } /*! - * @copydoc Dumux::CompositionalFluidState::averageMolarMass() + * \brief The average molar mass \f$\overline M_\alpha\f$ of phase \f$\alpha\f$ in \f$\mathrm{[kg/mol]}\f$ + * + * The average molar mass is the mean mass of a mole of the + * fluid at current composition. It is defined as the sum of the + * component's molar masses weighted by the current mole fraction: + * \f[\mathrm{ \overline M_\alpha = \sum_\kappa M^\kappa x_\alpha^\kappa}\f] */ Scalar averageMolarMass(int phaseIdx) const { return averageMolarMass_[phaseIdx]; } /*! - * @copydoc Dumux::CompositionalFluidState::molarity() + * \brief The molar concentration \f$c^\kappa_\alpha\f$ of component \f$\kappa\f$ in fluid phase \f$\alpha\f$ in \f$\mathrm{[mol/m^3]}\f$ + * + * This quantity is usually called "molar concentration" or just + * "concentration", but there are many other (though less common) + * measures for concentration. + * + * http://en.wikipedia.org/wiki/Concentration */ Scalar molarity(int phaseIdx, int compIdx) const { return molarDensity(phaseIdx)*moleFraction(phaseIdx, compIdx); } /*! - * @copydoc Dumux::CompositionalFluidState::fugacityCoefficient() + * \brief The fugacity coefficient \f$\Phi^\kappa_\alpha\f$ of component \f$\kappa\f$ in fluid phase \f$\alpha\f$ in \f$\mathrm{[-]}\f$ */ Scalar fugacityCoefficient(int phaseIdx, int compIdx) const { return fugacityCoefficient_[phaseIdx][compIdx]; } /*! - * @copydoc Dumux::CompositionalFluidState::fugacity() + * \brief The fugacity \f$f^\kappa_\alpha\f$ of component \f$\kappa\f$ + * in fluid phase \f$\alpha\f$ in \f$\mathrm{[Pa]}\f$ + * + * The fugacity is defined as: + * \f$f_\alpha^\kappa := \Phi^\kappa_\alpha x^\kappa_\alpha p_\alpha \;,\f$ + * where \f$\Phi^\kappa_\alpha\f$ is the fugacity coefficient \cite reid1987 . + * The physical meaning of fugacity becomes clear from the equation: + * \f[f_\alpha^\kappa = p_\alpha \exp\left\{\frac{\zeta^\kappa_\alpha}{R T_\alpha} \right\} \;,\f] + * where \f$\zeta^\kappa_\alpha\f$ represents the \f$\kappa\f$'s chemical + * potential in phase \f$\alpha\f$, \f$R\f$ stands for the ideal gas constant, + * and \f$T_\alpha\f$ for the absolute temperature of phase \f$\alpha\f$. Assuming thermal equilibrium, + * there is a one-to-one mapping between a component's chemical potential + * \f$\zeta^\kappa_\alpha\f$ and its fugacity \f$f^\kappa_\alpha\f$. In this + * case chemical equilibrium can thus be expressed by: + * \f[f^\kappa := f^\kappa_\alpha = f^\kappa_\beta\quad\forall \alpha, \beta\f] */ Scalar fugacity(int phaseIdx, int compIdx) const { return pressure_[phaseIdx]*fugacityCoefficient_[phaseIdx][compIdx]*moleFraction_[phaseIdx][compIdx]; } /*! - * @copydoc Dumux::CompositionalFluidState::molarVolume() + * \brief The molar volume \f$v_{mol,\alpha}\f$ of a fluid phase \f$\alpha\f$ in \f$\mathrm{[m^3/mol]}\f$ + * + * This quantity is the inverse of the molar density. */ Scalar molarVolume(int phaseIdx) const { return 1/molarDensity(phaseIdx); } /*! - * @copydoc Dumux::CompositionalFluidState::density() + * \brief The mass density \f$\rho_\alpha\f$ of the fluid phase + * \f$\alpha\f$ in \f$\mathrm{[kg/m^3]}\f$ */ Scalar density(int phaseIdx) const { return density_[phaseIdx]; } /*! - * @copydoc Dumux::CompositionalFluidState::molarDensity() + * \brief The molar density \f$\rho_{mol,\alpha}\f$ + * of a fluid phase \f$\alpha\f$ in \f$\mathrm{[mol/m^3]}\f$ + * + * The molar density is defined by the mass density \f$\rho_\alpha\f$ and the mean molar mass \f$\overline M_\alpha\f$: + * + * \f[\rho_{mol,\alpha} = \frac{\rho_\alpha}{\overline M_\alpha} \;.\f] */ Scalar molarDensity(int phaseIdx) const { return density_[phaseIdx]/averageMolarMass(phaseIdx); } /*! - * @copydoc Dumux::CompositionalFluidState::temperature() + * \brief The absolute temperature\f$T_\alpha\f$ of a fluid phase \f$\alpha\f$ in \f$\mathrm{[K]}\f$ */ Scalar temperature(int phaseIdx) const { return temperature_[phaseIdx]; } /*! - * @copydoc Dumux::CompositionalFluidState::pressure() + * \brief The pressure \f$p_\alpha\f$ of a fluid phase \f$\alpha\f$ in \f$\mathrm{[Pa]}\f$ */ Scalar pressure(int phaseIdx) const { return pressure_[phaseIdx]; } + /*! - * @copydoc Dumux::CompositionalFluidState::enthalpy() + * \brief The specific enthalpy \f$h_\alpha\f$ of a fluid phase \f$\alpha\f$ in \f$\mathrm{[J/kg]}\f$ */ Scalar enthalpy(int phaseIdx) const { return enthalpy_[phaseIdx]; } /*! - * @copydoc Dumux::CompositionalFluidState::internalEnergy() + * \brief The specific internal energy \f$u_\alpha\f$ of a fluid phase \f$\alpha\f$ in \f$\mathrm{[J/kg]}\f$ + * + * The specific internal energy is defined by the relation: + * + * \f[u_\alpha = h_\alpha - \frac{p_\alpha}{\rho_\alpha}\f] */ Scalar internalEnergy(int phaseIdx) const { @@ -164,7 +225,7 @@ public: } /*! - * @copydoc Dumux::CompositionalFluidState::viscosity() + * \brief The dynamic viscosity \f$\mu_\alpha\f$ of fluid phase \f$\alpha\f$ in \f$\mathrm{[Pa s]}\f$ */ Scalar viscosity(int phaseIdx) const { return viscosity_[phaseIdx]; } diff --git a/dumux/material/fluidstates/nonequilibriumenergy.hh b/dumux/material/fluidstates/nonequilibriumenergy.hh index 3dd5b3a0ec..7ae3cc7ff1 100644 --- a/dumux/material/fluidstates/nonequilibriumenergy.hh +++ b/dumux/material/fluidstates/nonequilibriumenergy.hh @@ -18,7 +18,7 @@ *****************************************************************************/ /*! * \file - * + * \ingroup FluidStates * \brief Represents all relevant thermodynamic quantities of a * multi-phase, multi-component fluid system without using * any assumptions. @@ -70,8 +70,22 @@ public: { return fugacity(0, compIdx); } /*! - * @copydoc NonEquilibriumFluidState::fugacity() - */ + * \brief The fugacity \f$f^\kappa_\alpha\f$ of component \f$\kappa\f$ + * in fluid phase \f$\alpha\f$ in \f$\mathrm{[Pa]}\f$ + * + * The fugacity is defined as: + * \f$f_\alpha^\kappa := \Phi^\kappa_\alpha x^\kappa_\alpha p_\alpha \;,\f$ + * where \f$\Phi^\kappa_\alpha\f$ is the fugacity coefficient \cite reid1987 . + * The physical meaning of fugacity becomes clear from the equation: + * \f[f_\alpha^\kappa = p_\alpha \exp\left\{\frac{\zeta^\kappa_\alpha}{R T_\alpha} \right\} \;,\f] + * where \f$\zeta^\kappa_\alpha\f$ represents the \f$\kappa\f$'s chemical + * potential in phase \f$\alpha\f$, \f$R\f$ stands for the ideal gas constant, + * and \f$T_\alpha\f$ for the absolute temperature of phase \f$\alpha\f$. Assuming thermal equilibrium, + * there is a one-to-one mapping between a component's chemical potential + * \f$\zeta^\kappa_\alpha\f$ and its fugacity \f$f^\kappa_\alpha\f$. In this + * case chemical equilibrium can thus be expressed by: + * \f[f^\kappa := f^\kappa_\alpha = f^\kappa_\beta\quad\forall \alpha, \beta\f] + */ Scalar fugacity(int phaseIdx, int compIdx) const { // Unfortunately throw does not work when triggered from a constructor diff --git a/dumux/material/fluidstates/nonequilibriummass.hh b/dumux/material/fluidstates/nonequilibriummass.hh index f1351c8d0e..5bbd5a7ed3 100644 --- a/dumux/material/fluidstates/nonequilibriummass.hh +++ b/dumux/material/fluidstates/nonequilibriummass.hh @@ -18,7 +18,7 @@ *****************************************************************************/ /*! * \file - * + * \ingroup FluidStates * \brief Represents all relevant thermodynamic quantities of a * multi-phase, multi-component fluid system without using * any assumptions. @@ -106,7 +106,7 @@ class NonEquilibriumMassFluidState return temperature_ ; } - /*! + /*! * \brief Retrieve all parameters from an arbitrary fluid * state. The assign method from the parent class cannot be used, because here, we have only one temperature. * \param fs Fluidstate @@ -134,8 +134,6 @@ class NonEquilibriumMassFluidState } - - private: Scalar temperature_; }; diff --git a/dumux/material/fluidstates/pressureoverlay.hh b/dumux/material/fluidstates/pressureoverlay.hh index 18309fab90..b3380b7b31 100644 --- a/dumux/material/fluidstates/pressureoverlay.hh +++ b/dumux/material/fluidstates/pressureoverlay.hh @@ -18,7 +18,7 @@ *****************************************************************************/ /*! * \file - * + * \ingroup FluidStates * \brief This is a fluid state which allows to set the fluid * pressures and takes all other quantities from an other * fluid state. @@ -80,91 +80,151 @@ public: * on thermodynamic equilibrium required) *****************************************************/ /*! - * @copydoc CompositionalFluidState::saturation() + * \brief Returns the saturation \f$S_\alpha\f$ of a fluid phase \f$\alpha\f$ in \f$\mathrm{[-]}\f$. + * + * The saturation is defined as the pore space occupied by the fluid divided by the total pore space: + * \f[S_\alpha := \frac{\phi \mathcal{V}_\alpha}{\phi \mathcal{V}}\f] + * + * \param phaseIdx the index of the phase */ Scalar saturation(int phaseIdx) const { return fs_->saturation(phaseIdx); } /*! - * @copydoc CompositionalFluidState::moleFraction() + * \brief Returns the molar fraction \f$x^\kappa_\alpha\f$ of the component \f$\kappa\f$ in fluid phase \f$\alpha\f$ in \f$\mathrm{[-]}\f$. + * + * The molar fraction \f$x^\kappa_\alpha\f$ is defined as the ratio of the number of molecules + * of component \f$\kappa\f$ and the total number of molecules of the phase \f$\alpha\f$. + * + * \param phaseIdx the index of the phase + * \param compIdx the index of the component */ Scalar moleFraction(int phaseIdx, int compIdx) const { return fs_->moleFraction(phaseIdx, compIdx); } /*! - * @copydoc CompositionalFluidState::massFraction() + * \brief Returns the mass fraction \f$X^\kappa_\alpha\f$ of component \f$\kappa\f$ in fluid phase \f$\alpha\f$ in \f$\mathrm{[-]}\f$. + * + * The mass fraction \f$X^\kappa_\alpha\f$ is defined as the weight of all molecules of a + * component divided by the total mass of the fluid phase. It is related with the component's mole fraction by means of the relation + * + * \f[X^\kappa_\alpha = x^\kappa_\alpha \frac{M^\kappa}{\overline M_\alpha}\;,\f] + * + * where \f$M^\kappa\f$ is the molar mass of component \f$\kappa\f$ and + * \f$\overline M_\alpha\f$ is the mean molar mass of a molecule of phase + * \f$\alpha\f$. + * + * \param phaseIdx the index of the phase + * \param compIdx the index of the component */ Scalar massFraction(int phaseIdx, int compIdx) const { return fs_->massFraction(phaseIdx, compIdx); } /*! - * @copydoc CompositionalFluidState::averageMolarMass() + * \brief The average molar mass \f$\overline M_\alpha\f$ of phase \f$\alpha\f$ in \f$\mathrm{[kg/mol]}\f$ + * + * The average molar mass is the mean mass of a mole of the + * fluid at current composition. It is defined as the sum of the + * component's molar masses weighted by the current mole fraction: + * \f[\mathrm{ \overline M_\alpha = \sum_\kappa M^\kappa x_\alpha^\kappa}\f] */ Scalar averageMolarMass(int phaseIdx) const { return fs_->averageMolarMass(phaseIdx); } /*! - * @copydoc CompositionalFluidState::molarity() + * \brief The molar concentration \f$c^\kappa_\alpha\f$ of component \f$\kappa\f$ in fluid phase \f$\alpha\f$ in \f$\mathrm{[mol/m^3]}\f$ + * + * This quantity is usually called "molar concentration" or just + * "concentration", but there are many other (though less common) + * measures for concentration. + * + * http://en.wikipedia.org/wiki/Concentration */ Scalar molarity(int phaseIdx, int compIdx) const { return fs_->molarity(phaseIdx, compIdx); } /*! - * @copydoc CompositionalFluidState::fugacity() + * \brief The fugacity \f$f^\kappa_\alpha\f$ of component \f$\kappa\f$ + * in fluid phase \f$\alpha\f$ in \f$\mathrm{[Pa]}\f$ + * + * The fugacity is defined as: + * \f$f_\alpha^\kappa := \Phi^\kappa_\alpha x^\kappa_\alpha p_\alpha \;,\f$ + * where \f$\Phi^\kappa_\alpha\f$ is the fugacity coefficient \cite reid1987 . + * The physical meaning of fugacity becomes clear from the equation: + * \f[f_\alpha^\kappa = p_\alpha \exp\left\{\frac{\zeta^\kappa_\alpha}{R T_\alpha} \right\} \;,\f] + * where \f$\zeta^\kappa_\alpha\f$ represents the \f$\kappa\f$'s chemical + * potential in phase \f$\alpha\f$, \f$R\f$ stands for the ideal gas constant, + * and \f$T_\alpha\f$ for the absolute temperature of phase \f$\alpha\f$. Assuming thermal equilibrium, + * there is a one-to-one mapping between a component's chemical potential + * \f$\zeta^\kappa_\alpha\f$ and its fugacity \f$f^\kappa_\alpha\f$. In this + * case chemical equilibrium can thus be expressed by: + * \f[f^\kappa := f^\kappa_\alpha = f^\kappa_\beta\quad\forall \alpha, \beta\f] */ Scalar fugacity(int phaseIdx, int compIdx) const { return fs_->fugacity(phaseIdx, compIdx); } /*! - * @copydoc CompositionalFluidState::fugacityCoefficient() + * \brief The fugacity coefficient \f$\Phi^\kappa_\alpha\f$ of component \f$\kappa\f$ in fluid phase \f$\alpha\f$ in \f$\mathrm{[-]}\f$ */ Scalar fugacityCoefficient(int phaseIdx, int compIdx) const { return fs_->fugacityCoefficient(phaseIdx, compIdx); } /*! - * @copydoc CompositionalFluidState::molarVolume() + * \brief The molar volume \f$v_{mol,\alpha}\f$ of a fluid phase \f$\alpha\f$ in \f$\mathrm{[m^3/mol]}\f$ + * + * This quantity is the inverse of the molar density. */ Scalar molarVolume(int phaseIdx) const { return fs_->molarVolume(phaseIdx); } /*! - * @copydoc CompositionalFluidState::density() + * \brief The mass density \f$\rho_\alpha\f$ of the fluid phase + * \f$\alpha\f$ in \f$\mathrm{[kg/m^3]}\f$ */ Scalar density(int phaseIdx) const { return fs_->density(phaseIdx); } /*! - *@copydoc CompositionalFluidState::molarDensity() + * \brief The molar density \f$\rho_{mol,\alpha}\f$ + * of a fluid phase \f$\alpha\f$ in \f$\mathrm{[mol/m^3]}\f$ + * + * The molar density is defined by the mass density \f$\rho_\alpha\f$ and the mean molar mass \f$\overline M_\alpha\f$: + * + * \f[\rho_{mol,\alpha} = \frac{\rho_\alpha}{\overline M_\alpha} \;.\f] */ Scalar molarDensity(int phaseIdx) const { return fs_->molarDensity(phaseIdx); } /*! - * @copydoc CompositionalFluidState::temperature() + * \brief The absolute temperature\f$T_\alpha\f$ of a fluid phase \f$\alpha\f$ in \f$\mathrm{[K]}\f$ */ Scalar temperature(int phaseIdx) const { return fs_->temperature(phaseIdx); } /*! - * @copydoc CompositionalFluidState::pressure() + * \brief The pressure \f$p_\alpha\f$ of a fluid phase \f$\alpha\f$ in \f$\mathrm{[Pa]}\f$ */ Scalar pressure(int phaseIdx) const { return pressure_[phaseIdx]; } /*! - * @copydoc CompositionalFluidState::enthalpy() + * \brief The specific enthalpy \f$h_\alpha\f$ of a fluid phase \f$\alpha\f$ in \f$\mathrm{[J/kg]}\f$ */ Scalar enthalpy(int phaseIdx) const { return fs_->enthalpy(phaseIdx); } /*! - * @copydoc CompositionalFluidState::internalEnergy() + * \brief The specific internal energy \f$u_\alpha\f$ of a fluid phase \f$\alpha\f$ in \f$\mathrm{[J/kg]}\f$ + * + * The specific internal energy is defined by the relation: + * + * \f[u_\alpha = h_\alpha - \frac{p_\alpha}{\rho_\alpha}\f] */ Scalar internalEnergy(int phaseIdx) const { return fs_->internalEnergy(phaseIdx); } /*! - * @copydoc CompositionalFluidState::viscosity() + * \brief The dynamic viscosity \f$\mu_\alpha\f$ of fluid phase \f$\alpha\f$ in \f$\mathrm{[Pa s]}\f$ */ Scalar viscosity(int phaseIdx) const { return fs_->viscosity(phaseIdx); } diff --git a/dumux/material/fluidstates/pseudo1p2c.hh b/dumux/material/fluidstates/pseudo1p2c.hh index b35650c7a0..77c04a7121 100644 --- a/dumux/material/fluidstates/pseudo1p2c.hh +++ b/dumux/material/fluidstates/pseudo1p2c.hh @@ -18,7 +18,7 @@ *****************************************************************************/ /*! * \file - * + * \ingroup FluidStates * \brief Calculates phase state for a single phase but two-component state. */ #ifndef DUMUX_PSEUDO1P2C_FLUID_STATE_HH @@ -56,7 +56,13 @@ public: public: /*! \name Acess functions */ //@{ - /*! @copydoc CompositionalFluidState::saturation() + /*! + * \brief Returns the saturation \f$S_\alpha\f$ of a fluid phase \f$\alpha\f$ in \f$\mathrm{[-]}\f$. + * + * The saturation is defined as the pore space occupied by the fluid divided by the total pore space: + * \f[S_\alpha := \frac{\phi \mathcal{V}_\alpha}{\phi \mathcal{V}}\f] + * This is set either to 1 or 0 depending on the phase presence. + * \param phaseIdx the index of the phase */ Scalar saturation(int phaseIdx) const { @@ -86,7 +92,7 @@ public: } /*! - * @copydoc CompositionalFluidState::partialPressure() + * \brief The partial pressure of a component in a phase \f$\mathrm{[Pa]}\f$ */ Scalar partialPressure(int phaseIdx, int compIdx) const { @@ -94,13 +100,14 @@ public: return pressure(phaseIdx)*moleFraction(phaseIdx, compIdx); } - /*! @copydoc CompositionalFluidState::pressure() + /*! + * \brief The pressure \f$p_\alpha\f$ of a fluid phase \f$\alpha\f$ in \f$\mathrm{[Pa]}\f$ */ Scalar pressure(int phaseIdx) const { return pressure_[phaseIdx]; } /*! - * @copydoc CompositionalFluidState::density() + * \brief Set the density of a phase \f$\mathrm{[kg / m^3]}\f$ */ Scalar density(int phaseIdx) const { @@ -112,7 +119,18 @@ public: } /*! - * @copydoc CompositionalFluidState::massFraction() + * \brief Returns the mass fraction \f$X^\kappa_\alpha\f$ of component \f$\kappa\f$ in fluid phase \f$\alpha\f$ in \f$\mathrm{[-]}\f$. + * + * The mass fraction \f$X^\kappa_\alpha\f$ is defined as the weight of all molecules of a + * component divided by the total mass of the fluid phase. It is related with the component's mole fraction by means of the relation + * + * This is either set to 1 or 0 depending on the phase presence for the + * non-wetting phase in general. + * It is set to the mass fraction of water or 1-massFractionWater + * if the considered component is the main component of the wetting phase. + * + * \param phaseIdx the index of the phase + * \param compIdx the index of the component */ Scalar massFraction(int phaseIdx, int compIdx) const { @@ -133,7 +151,14 @@ public: } /*! - * @copydoc CompositionalFluidState::moleFraction() + * \brief Returns the molar fraction \f$x^\kappa_\alpha\f$ of the component \f$\kappa\f$ in fluid phase \f$\alpha\f$ in \f$\mathrm{[-]}\f$. + * + * This is either set to 1 or 0 depending on the phase presence for the + * non-wetting phase in general. + * It is set to the mole fraction of water or 1-moleFractionWater + * if the considered component is the main component of the wetting phase. + * \param phaseIdx the index of the phase + * \param compIdx the index of the component */ Scalar moleFraction(int phaseIdx, int compIdx) const { @@ -152,7 +177,7 @@ public: } /*! - * @copydoc CompositionalFluidState::viscosity() + * \brief The dynamic viscosity \f$\mu_\alpha\f$ of fluid phase \f$\alpha\f$ in \f$\mathrm{[Pa s]}\f$ */ Scalar viscosity(int phaseIdx) const { @@ -161,7 +186,12 @@ public: } /*! - * @copydoc CompositionalFluidState::averageMolarMass() + * \brief The average molar mass \f$\overline M_\alpha\f$ of phase \f$\alpha\f$ in \f$\mathrm{[kg/mol]}\f$ + * + * The average molar mass is the mean mass of a mole of the + * fluid at current composition. It is defined as the sum of the + * component's molar masses weighted by the current mole fraction: + * \f[\mathrm{ \overline M_\alpha = \sum_\kappa M^\kappa x_\alpha^\kappa}\f] */ Scalar averageMolarMass(int phaseIdx) const { @@ -169,7 +199,7 @@ public: } /*! - * @copydoc CompositionalFluidState::enthalpy() + * \brief The specific enthalpy \f$h_\alpha\f$ of a fluid phase \f$\alpha\f$ in \f$\mathrm{[J/kg]}\f$ */ Scalar enthalpy(int phaseIdx) const { @@ -180,7 +210,11 @@ public: } /*! - * @copydoc CompositionalFluidState::internalEnergy() + * \brief The specific internal energy \f$u_\alpha\f$ of a fluid phase \f$\alpha\f$ in \f$\mathrm{[J/kg]}\f$ + * + * The specific internal energy is defined by the relation: + * + * \f[u_\alpha = h_\alpha - \frac{p_\alpha}{\rho_\alpha}\f] */ Scalar internalEnergy(int phaseIdx) const { diff --git a/dumux/material/fluidstates/saturationoverlay.hh b/dumux/material/fluidstates/saturationoverlay.hh index 30b576ca44..14b7236d46 100644 --- a/dumux/material/fluidstates/saturationoverlay.hh +++ b/dumux/material/fluidstates/saturationoverlay.hh @@ -18,7 +18,7 @@ *****************************************************************************/ /*! * \file - * + * \ingroup FluidStates * \brief This is a fluid state which allows to set the fluid * saturations and takes all other quantities from an other * fluid state. @@ -77,7 +77,12 @@ public: * on thermodynamic equilibrium required) *****************************************************/ /*! - * @copydoc CompositionalFluidState::saturation() + * \brief Returns the saturation \f$S_\alpha\f$ of a fluid phase \f$\alpha\f$ in \f$\mathrm{[-]}\f$. + * + * The saturation is defined as the pore space occupied by the fluid divided by the total pore space: + * \f[S_\alpha := \frac{\phi \mathcal{V}_\alpha}{\phi \mathcal{V}}\f] + * + * \param phaseIdx the index of the phase */ Scalar saturation(int phaseIdx) const { return saturation_[phaseIdx]; } diff --git a/dumux/material/fluidstates/temperatureoverlay.hh b/dumux/material/fluidstates/temperatureoverlay.hh index 576d0b8aee..b902ebccdb 100644 --- a/dumux/material/fluidstates/temperatureoverlay.hh +++ b/dumux/material/fluidstates/temperatureoverlay.hh @@ -18,7 +18,7 @@ *****************************************************************************/ /*! * \file - * + * \ingroup FluidStates * \brief This is a fluid state which allows to set the fluid * temperatures and takes all other quantities from an other * fluid state. -- GitLab