diff --git a/dumux/flux/box/darcyslaw.hh b/dumux/flux/box/darcyslaw.hh
index 37d973d0e6eef637f74c4d8433b2df0cb9a1d0fc..0c011f5d1d8454bd831e281a3eb2a0bb4b197a2f 100644
--- a/dumux/flux/box/darcyslaw.hh
+++ b/dumux/flux/box/darcyslaw.hh
@@ -73,6 +73,16 @@ class BoxDarcysLaw
 
 public:
 
+    /*!
+     * \brief Returns the advective flux of a fluid phase
+     *        across the given sub-control volume face.
+     * \note This assembles the term
+     *       \f$-|\sigma| \mathbf{n}^T \mathbf{K} \left( \nabla p - \rho \mathbf{g} \right)\f$,
+     *       where \f$|\sigma|\f$ is the area of the face and \f$\mathbf{n}\f$ is the outer
+     *       normal vector. Thus, the flux is given in N*m, and can be converted
+     *       into a volume flux (m^3/s) or mass flux (kg/s) by applying an upwind scheme
+     *       for the mobility or the product of density and mobility, respectively.
+     */
     template<class Problem, class ElementVolumeVariables, class ElementFluxVarsCache>
     static Scalar flux(const Problem& problem,
                        const Element& element,
diff --git a/dumux/flux/box/effectivestresslaw.hh b/dumux/flux/box/effectivestresslaw.hh
index d3409cf484ec8e873981f0b7f2c11ee203df0e36..629ef693e2eb65c3098a8d1f218c3c1ee1f68621 100644
--- a/dumux/flux/box/effectivestresslaw.hh
+++ b/dumux/flux/box/effectivestresslaw.hh
@@ -63,7 +63,9 @@ public:
     //! state the discretization method this implementation belongs to
     static constexpr DiscretizationMethod discMethod = DiscretizationMethod::box;
 
-    //! computes the force acting on a sub-control volume face
+    /*!
+     * \brief Computes the force (in Newton) acting on a sub-control volume face.
+     */
     template<class Problem, class ElementVolumeVariables, class ElementFluxVarsCache>
     static ForceVector force(const Problem& problem,
                              const Element& element,
diff --git a/dumux/flux/box/fickslaw.hh b/dumux/flux/box/fickslaw.hh
index 6b6e1e10f6f7b9880844c54b560a04b132c5036d..61b7a17b268fd9ee2d71c8006d714a8d0452eb89 100644
--- a/dumux/flux/box/fickslaw.hh
+++ b/dumux/flux/box/fickslaw.hh
@@ -83,6 +83,12 @@ public:
     static constexpr ReferenceSystemFormulation referenceSystemFormulation()
     { return referenceSystem; }
 
+    /*!
+     * \brief Returns the diffusive fluxes of all components within
+     *        a fluid phase across the given sub-control volume face.
+     *        The computed fluxes are given in mole/s or kg/s, depending
+     *        on the template parameter ReferenceSystemFormulation.
+     */
     static ComponentFluxVector flux(const Problem& problem,
                                     const Element& element,
                                     const FVElementGeometry& fvGeometry,
diff --git a/dumux/flux/box/fourierslaw.hh b/dumux/flux/box/fourierslaw.hh
index efe091e9883eb3833a840a48a5e4e5b1fcad33cb..988f87024ba23808b4cc5e06c73b294f4845006e 100644
--- a/dumux/flux/box/fourierslaw.hh
+++ b/dumux/flux/box/fourierslaw.hh
@@ -55,6 +55,13 @@ class FouriersLawImplementation<TypeTag, DiscretizationMethod::box>
     using Element = typename GridView::template Codim<0>::Entity;
 
 public:
+    /*!
+     * \brief Returns the heat flux within the porous medium
+     *        (in J/s) across the given sub-control volume face.
+     * \note This law assumes thermal equilibrium between the fluid
+     *       and solid phases, and uses an effective thermal conductivity
+     *       for the overall aggregate.
+     */
     static Scalar flux(const Problem& problem,
                        const Element& element,
                        const FVElementGeometry& fvGeometry,
diff --git a/dumux/flux/box/fourierslawnonequilibrium.hh b/dumux/flux/box/fourierslawnonequilibrium.hh
index 1b7df33d16fb49c8c90b70ad1616ddd0cca144ef..40bf51f39aef1038576543180a6a6e864454e53f 100644
--- a/dumux/flux/box/fourierslawnonequilibrium.hh
+++ b/dumux/flux/box/fourierslawnonequilibrium.hh
@@ -65,6 +65,10 @@ class FouriersLawNonEquilibriumImplementation<TypeTag, DiscretizationMethod::box
     static constexpr auto sPhaseIdx = ModelTraits::numFluidPhases();
 
 public:
+    /*!
+     * \brief Returns the heat flux within a fluid or solid
+     *        phase (in J/s) across the given sub-control volume face.
+     */
     static Scalar flux(const Problem& problem,
                        const Element& element,
                        const FVElementGeometry& fvGeometry,
diff --git a/dumux/flux/box/hookeslaw.hh b/dumux/flux/box/hookeslaw.hh
index dc51c8b1db496610b3abbbcb96f971dbf594acd0..e7dfe838321cd666573bddac73aaeadae9b5f2e7 100644
--- a/dumux/flux/box/hookeslaw.hh
+++ b/dumux/flux/box/hookeslaw.hh
@@ -63,7 +63,9 @@ public:
     //! state the discretization method this implementation belongs to
     static constexpr DiscretizationMethod discMethod = DiscretizationMethod::box;
 
-    //! computes the force acting on a sub-control volume face
+    /*!
+     * \brief Returns the force (in Newton) acting on a sub-control volume face.
+     */
     template<class Problem, class ElementVolumeVariables, class ElementFluxVarsCache>
     static ForceVector force(const Problem& problem,
                              const Element& element,
diff --git a/dumux/flux/box/maxwellstefanslaw.hh b/dumux/flux/box/maxwellstefanslaw.hh
index 3eff2b115c2ff6e0ef301507dd0baf56916f2187..76b2b5b583eec0b405a467fb924ffbfd5d32cc30 100644
--- a/dumux/flux/box/maxwellstefanslaw.hh
+++ b/dumux/flux/box/maxwellstefanslaw.hh
@@ -79,6 +79,11 @@ public:
     static constexpr ReferenceSystemFormulation referenceSystemFormulation()
     { return referenceSystem; }
 
+    /*!
+     * \brief Returns the diffusive fluxes of all components within
+     *        a fluid phase across the given sub-control volume face.
+     *        The computed fluxes are given in kg/s.
+     */
     static ComponentFluxVector flux(const Problem& problem,
                                     const Element& element,
                                     const FVElementGeometry& fvGeometry,
diff --git a/dumux/flux/ccmpfa/darcyslaw.hh b/dumux/flux/ccmpfa/darcyslaw.hh
index e0878a12f12020c346e504a945124e6758cd1fa8..97a5a3a2d87afbd2fa80c96fa26652c896941e55 100644
--- a/dumux/flux/ccmpfa/darcyslaw.hh
+++ b/dumux/flux/ccmpfa/darcyslaw.hh
@@ -157,7 +157,16 @@ public:
     // export the type for the corresponding cache
     using Cache = MpfaDarcysLawCache;
 
-    //! Compute the advective flux across an scvf
+    /*!
+     * \brief Returns the advective flux of a fluid phase
+     *        across the given sub-control volume face.
+     * \note This assembles the term
+     *       \f$-|\sigma| \mathbf{n}^T \mathbf{K} \left( \nabla p - \rho \mathbf{g} \right)\f$,
+     *       where \f$|\sigma|\f$ is the area of the face and \f$\mathbf{n}\f$ is the outer
+     *       normal vector. Thus, the flux is given in N*m, and can be converted
+     *       into a volume flux (m^3/s) or mass flux (kg/s) by applying an upwind scheme
+     *       for the mobility or the product of density and mobility, respectively.
+     */
     template<class ElementFluxVariablesCache>
     static Scalar flux(const Problem& problem,
                        const Element& element,
diff --git a/dumux/flux/ccmpfa/fickslaw.hh b/dumux/flux/ccmpfa/fickslaw.hh
index 5c6a98f0c521ab6b76b7e473b32853bf5bc4d948..0e13b4eebcb836c108ce9aecf0b828efc94bb5e2 100644
--- a/dumux/flux/ccmpfa/fickslaw.hh
+++ b/dumux/flux/ccmpfa/fickslaw.hh
@@ -175,7 +175,12 @@ public:
     // export the diffusion container
     using DiffusionCoefficientsContainer = FickianDiffusionCoefficients<Scalar, numPhases, numComponents>;
 
-    //! Compute the diffusive flux across an scvf
+    /*!
+     * \brief Returns the diffusive fluxes of all components within
+     *        a fluid phase across the given sub-control volume face.
+     *        The computed fluxes are given in mole/s or kg/s, depending
+     *        on the template parameter ReferenceSystemFormulation.
+     */
     static ComponentFluxVector flux(const Problem& problem,
                                     const Element& element,
                                     const FVElementGeometry& fvGeometry,
diff --git a/dumux/flux/ccmpfa/fourierslaw.hh b/dumux/flux/ccmpfa/fourierslaw.hh
index 22b658cdededbd36326c9619606f4652d3553a67..55fe8dbd46080d2d949a01e2790ae07d481a3c38 100644
--- a/dumux/flux/ccmpfa/fourierslaw.hh
+++ b/dumux/flux/ccmpfa/fourierslaw.hh
@@ -154,7 +154,13 @@ public:
     // state the type for the corresponding cache and its filler
     using Cache = MpfaFouriersLawCache;
 
-    //! Compute the conductive flux across an scvf
+    /*!
+     * \brief Returns the heat flux within the porous medium
+     *        (in J/s) across the given sub-control volume face.
+     * \note This law assumes thermal equilibrium between the fluid
+     *       and solid phases, and uses an effective thermal conductivity
+     *       for the overall aggregate.
+     */
     static Scalar flux(const Problem& problem,
                        const Element& element,
                        const FVElementGeometry& fvGeometry,
diff --git a/dumux/flux/cctpfa/darcyslaw.hh b/dumux/flux/cctpfa/darcyslaw.hh
index 10fe394b43f332ce4ffbc0e073e449bc5ef42499..98e6bc3f7a9c74b6ed64ffceace972c4ce4d2dc1 100644
--- a/dumux/flux/cctpfa/darcyslaw.hh
+++ b/dumux/flux/cctpfa/darcyslaw.hh
@@ -151,7 +151,16 @@ class CCTpfaDarcysLaw<ScalarType, GridGeometry, /*isNetwork*/ false>
     //! state the type for the corresponding cache
     using Cache = TpfaDarcysLawCache<ThisType, GridGeometry>;
 
-    //! Compute the advective flux
+    /*!
+     * \brief Returns the advective flux of a fluid phase
+     *        across the given sub-control volume face.
+     * \note This assembles the term
+     *       \f$-|\sigma| \mathbf{n}^T \mathbf{K} \left( \nabla p - \rho \mathbf{g} \right)\f$,
+     *       where \f$|\sigma|\f$ is the area of the face and \f$\mathbf{n}\f$ is the outer
+     *       normal vector. Thus, the flux is given in N*m, and can be converted
+     *       into a volume flux (m^3/s) or mass flux (kg/s) by applying an upwind scheme
+     *       for the mobility or the product of density and mobility, respectively.
+     */
     template<class Problem, class ElementVolumeVariables, class ElementFluxVarsCache>
     static Scalar flux(const Problem& problem,
                        const Element& element,
@@ -306,7 +315,16 @@ public:
     //! state the type for the corresponding cache
     using Cache = TpfaDarcysLawCache<ThisType, GridGeometry>;
 
-    //! Compute the advective flux
+    /*!
+     * \brief Returns the advective flux of a fluid phase
+     *        across the given sub-control volume face.
+     * \note This assembles the term
+     *       \f$-|\sigma| \mathbf{n}^T \mathbf{K} \left( \nabla p - \rho \mathbf{g} \right)\f$,
+     *       where \f$|\sigma|\f$ is the area of the face and \f$\mathbf{n}\f$ is the outer
+     *       normal vector. Thus, the flux is given in N*m, and can be converted
+     *       into a volume flux (m^3/s) or mass flux (kg/s) by applying an upwind scheme
+     *       for the mobility or the product of density and mobility, respectively.
+     */
     template<class Problem, class ElementVolumeVariables, class ElementFluxVarsCache>
     static Scalar flux(const Problem& problem,
                        const Element& element,
diff --git a/dumux/flux/cctpfa/fickslaw.hh b/dumux/flux/cctpfa/fickslaw.hh
index f4c2d82c45774501d4063831aa0095a38383ed2c..f9e51fcafb1196d165a9d169e32d88c92841ddc4 100644
--- a/dumux/flux/cctpfa/fickslaw.hh
+++ b/dumux/flux/cctpfa/fickslaw.hh
@@ -128,7 +128,12 @@ public:
 
     using DiffusionCoefficientsContainer = FickianDiffusionCoefficients<Scalar, numPhases, numComponents>;
 
-    //! return diffusive fluxes for all components in a phase
+    /*!
+     * \brief Returns the diffusive fluxes of all components within
+     *        a fluid phase across the given sub-control volume face.
+     *        The computed fluxes are given in mole/s or kg/s, depending
+     *        on the template parameter ReferenceSystemFormulation.
+     */
     static ComponentFluxVector flux(const Problem& problem,
                                     const Element& element,
                                     const FVElementGeometry& fvGeometry,
diff --git a/dumux/flux/cctpfa/forchheimerslaw.hh b/dumux/flux/cctpfa/forchheimerslaw.hh
index 956d7e7ed6b7cd2865f52cd6d6c994ad442b5efb..b0b4efe83598f4bb9d79e0b551cdc4c3624bd105 100644
--- a/dumux/flux/cctpfa/forchheimerslaw.hh
+++ b/dumux/flux/cctpfa/forchheimerslaw.hh
@@ -166,7 +166,12 @@ class CCTpfaForchheimersLaw<ScalarType, GridGeometry, /*isNetwork*/ false>
     //! state the type for the corresponding cache
     using Cache = TpfaForchheimersLawCache<ThisType, GridGeometry>;
 
-    /*! \brief Compute the advective flux using the Forchheimer equation
+    /*! \brief Compute the advective flux of a phase across
+    *          the given sub-control volume face uing the Forchheimer equation.
+    *
+    *          The flux is given in N*m, and can be converted
+    *          into a volume flux (m^3/s) or mass flux (kg/s) by applying an upwind scheme
+    *          for the mobility or the product of density and mobility, respectively.
     *
     * see e.g. Nield & Bejan: Convection in Porous Media \cite nield2006
     *
diff --git a/dumux/flux/cctpfa/fourierslaw.hh b/dumux/flux/cctpfa/fourierslaw.hh
index 6da3f30b15a77a284f55961d48ace05a946e34c5..1c677c94a447a8724c441cf55266269a7a2d2242 100644
--- a/dumux/flux/cctpfa/fourierslaw.hh
+++ b/dumux/flux/cctpfa/fourierslaw.hh
@@ -108,7 +108,13 @@ public:
     //! export the type for the corresponding cache
     using Cache = TpfaFouriersLawCache;
 
-    //! Compute the heat condution flux assuming thermal equilibrium
+    /*!
+     * \brief Returns the heat flux within the porous medium
+     *        (in J/s) across the given sub-control volume face.
+     * \note This law assumes thermal equilibrium between the fluid
+     *       and solid phases, and uses an effective thermal conductivity
+     *       for the overall aggregate.
+     */
     static Scalar flux(const Problem& problem,
                        const Element& element,
                        const FVElementGeometry& fvGeometry,
diff --git a/dumux/flux/cctpfa/fourierslawnonequilibrium.hh b/dumux/flux/cctpfa/fourierslawnonequilibrium.hh
index c524668c5bb526e6a1af21a3595adacce9998465..cf0dc419c7ecfe3fc6398a84d92e936ee26e4c1f 100644
--- a/dumux/flux/cctpfa/fourierslawnonequilibrium.hh
+++ b/dumux/flux/cctpfa/fourierslawnonequilibrium.hh
@@ -71,7 +71,10 @@ public:
 
     using Cache = FluxVariablesCaching::EmptyHeatConductionCache;
 
-    //! Compute the heat condution flux assuming thermal equilibrium
+    /*!
+     * \brief Returns the heat flux within a fluid or solid
+     *        phase (in J/s) across the given sub-control volume face.
+     */
     static Scalar flux(const Problem& problem,
                        const Element& element,
                        const FVElementGeometry& fvGeometry,
diff --git a/dumux/flux/cctpfa/maxwellstefanslaw.hh b/dumux/flux/cctpfa/maxwellstefanslaw.hh
index 3f3e3833a30ac009564a47bb45c78bd70e0715cd..87b3fd4717b0a6e69db2633229219068aa3b94cb 100644
--- a/dumux/flux/cctpfa/maxwellstefanslaw.hh
+++ b/dumux/flux/cctpfa/maxwellstefanslaw.hh
@@ -91,6 +91,11 @@ public:
     using Cache = FluxVariablesCaching::EmptyDiffusionCache;
     using CacheFiller = FluxVariablesCaching::EmptyCacheFiller;
 
+    /*!
+     * \brief Returns the diffusive fluxes of all components within
+     *        a fluid phase across the given sub-control volume face.
+     *        The computed fluxes are given in kg/s.
+     */
     static ComponentFluxVector flux(const Problem& problem,
                                     const Element& element,
                                     const FVElementGeometry& fvGeometry,
diff --git a/dumux/flux/staggered/freeflow/fickslaw.hh b/dumux/flux/staggered/freeflow/fickslaw.hh
index 8fc67054afa3a7a9601f0e37f58211b5acc2f93e..a1a36d25ae7f758df2bb91ef11acb0dac4452af9 100644
--- a/dumux/flux/staggered/freeflow/fickslaw.hh
+++ b/dumux/flux/staggered/freeflow/fickslaw.hh
@@ -84,6 +84,12 @@ public:
 
     using DiffusionCoefficientsContainer = FickianDiffusionCoefficients<Scalar, numPhases, numComponents>;
 
+    /*!
+     * \brief Returns the diffusive fluxes of all components within
+     *        a fluid phase across the given sub-control volume face.
+     *        The computed fluxes are given in mole/s or kg/s, depending
+     *        on the template parameter ReferenceSystemFormulation.
+     */
     template<class Problem, class ElementVolumeVariables>
     static NumEqVector flux(const Problem& problem,
                             const Element& element,
diff --git a/dumux/flux/staggered/freeflow/fourierslaw.hh b/dumux/flux/staggered/freeflow/fourierslaw.hh
index 47658aaac163328eaeb25f51f320b62ee6bcb900..578777bda0751d287e8e7693171b308bd524eb9b 100644
--- a/dumux/flux/staggered/freeflow/fourierslaw.hh
+++ b/dumux/flux/staggered/freeflow/fourierslaw.hh
@@ -61,7 +61,13 @@ public:
     //! We don't cache anything for this law
     using Cache = FluxVariablesCaching::EmptyDiffusionCache;
 
-    //! calculate the diffusive energy fluxes
+    /*!
+     * \brief Returns the heat flux within the porous medium
+     *        (in J/s) across the given sub-control volume face.
+     * \note This law assumes thermal equilibrium between the fluid
+     *       and solid phases, and uses an effective thermal conductivity
+     *       for the overall aggregate.
+     */
     template<class Problem>
     static Scalar flux(const Problem& problem,
                        const Element& element,
diff --git a/dumux/flux/staggered/freeflow/maxwellstefanslaw.hh b/dumux/flux/staggered/freeflow/maxwellstefanslaw.hh
index 2abb7a4bbbe2b9499947dedada062e332ab3d5cf..d74deb75234d4300dc7b79fc1e8f618704710d7a 100644
--- a/dumux/flux/staggered/freeflow/maxwellstefanslaw.hh
+++ b/dumux/flux/staggered/freeflow/maxwellstefanslaw.hh
@@ -88,6 +88,11 @@ public:
 
     using DiffusionCoefficientsContainer = MaxwellStefanDiffusionCoefficients<Scalar, numPhases, numComponents>;
 
+    /*!
+     * \brief Returns the diffusive fluxes of all components within
+     *        a fluid phase across the given sub-control volume face.
+     *        The computed fluxes are given in kg/s.
+     */
     template<class ElementVolumeVariables>
     static CellCenterPrimaryVariables flux(const Problem& problem,
                                            const Element& element,