From 76995aedd9e54c44844d164329994399c6043cc4 Mon Sep 17 00:00:00 2001 From: Kilian Weishaupt <kilian.weishaupt@iws.uni-stuttgart.de> Date: Mon, 9 Apr 2018 07:13:16 +0200 Subject: [PATCH] [tutorial] Use NewtonSolver --- tutorial/ex1/exercise1.cc | 34 ++++-------------- tutorial/ex1/exercise1_2p.cc | 34 ++++-------------- tutorial/ex1/exercise1_2p2c.cc | 35 +++++-------------- tutorial/ex2/exercise2.cc | 35 +++++-------------- tutorial/ex3/exercise3.cc | 34 ++++-------------- tutorial/solution/ex1/exercise1_2p2c.cc | 35 +++++-------------- .../solution/ex1/exercise1_2pni_solution.cc | 34 ++++-------------- tutorial/solution/ex2/exercise2_solution.cc | 35 +++++-------------- 8 files changed, 60 insertions(+), 216 deletions(-) diff --git a/tutorial/ex1/exercise1.cc b/tutorial/ex1/exercise1.cc index b7655dac87..d6bb2599a0 100644 --- a/tutorial/ex1/exercise1.cc +++ b/tutorial/ex1/exercise1.cc @@ -36,8 +36,7 @@ #include <dumux/common/defaultusagemessage.hh> #include <dumux/linear/amgbackend.hh> -#include <dumux/nonlinear/newtonmethod.hh> -#include <dumux/nonlinear/newtoncontroller.hh> +#include <dumux/nonlinear/newtonsolver.hh> #include <dumux/assembly/fvassembler.hh> #include <dumux/assembly/diffmethod.hh> @@ -103,7 +102,6 @@ int main(int argc, char** argv) try // get some time loop parameters using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar); const auto tEnd = getParam<Scalar>("TimeLoop.TEnd"); - const auto maxDivisions = getParam<int>("TimeLoop.MaxTimeStepDivisions"); const auto maxDt = getParam<Scalar>("TimeLoop.MaxTimeStepSize"); auto dt = getParam<Scalar>("TimeLoop.DtInitial"); @@ -125,10 +123,8 @@ int main(int argc, char** argv) try auto linearSolver = std::make_shared<LinearSolver>(leafGridView, fvGridGeometry->dofMapper()); // the non-linear solver - using NewtonController = Dumux::NewtonController<Scalar>; - using NewtonMethod = NewtonMethod<NewtonController, Assembler, LinearSolver>; - auto newtonController = std::make_shared<NewtonController>(timeLoop); - NewtonMethod nonLinearSolver(newtonController, assembler, linearSolver); + using NewtonSolver = Dumux::NewtonSolver<Assembler, LinearSolver>; + NewtonSolver nonLinearSolver(assembler, linearSolver); // time loop timeLoop->start(); @@ -140,24 +136,8 @@ int main(int argc, char** argv) try //set time in problem (is used in time-dependent Neumann boundary condition) problem->setTime(timeLoop->time()+timeLoop->timeStepSize()); - // try solving the non-linear system - for (int i = 0; i < maxDivisions; ++i) - { - // linearize & solve - auto converged = nonLinearSolver.solve(x); - - if (converged) - break; - - if (!converged && i == maxDivisions-1) - DUNE_THROW(Dune::MathError, - "Newton solver didn't converge after " - << maxDivisions - << " time-step divisions. dt=" - << timeLoop->timeStepSize() - << ".\nThe solutions of the current and the previous time steps " - << "have been saved to restart files."); - } + // solve the non-linear system with time step control + nonLinearSolver.solve(x, *timeLoop); // make the new solution the old solution xOld = x; @@ -169,8 +149,8 @@ int main(int argc, char** argv) try // report statistics of this time step timeLoop->reportTimeStep(); - // set new dt as suggested by newton controller - timeLoop->setTimeStepSize(newtonController->suggestTimeStepSize(timeLoop->timeStepSize())); + // set new dt as suggested by the newton solver + timeLoop->setTimeStepSize(nonLinearSolver.suggestTimeStepSize(timeLoop->timeStepSize())); // output to vtk vtkWriter.write(timeLoop->time()); diff --git a/tutorial/ex1/exercise1_2p.cc b/tutorial/ex1/exercise1_2p.cc index 9cba2e73b2..7ae3bca427 100644 --- a/tutorial/ex1/exercise1_2p.cc +++ b/tutorial/ex1/exercise1_2p.cc @@ -36,8 +36,7 @@ #include <dumux/common/defaultusagemessage.hh> #include <dumux/linear/amgbackend.hh> -#include <dumux/nonlinear/newtonmethod.hh> -#include <dumux/nonlinear/newtoncontroller.hh> +#include <dumux/nonlinear/newtonsolver.hh> #include <dumux/assembly/fvassembler.hh> #include <dumux/assembly/diffmethod.hh> @@ -106,7 +105,6 @@ int main(int argc, char** argv) try // of type TYPE given in the group GROUPNAME from the input file using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar); const auto tEnd = getParam<Scalar>("TimeLoop.TEnd"); - const auto maxDivisions = getParam<int>("TimeLoop.MaxTimeStepDivisions"); const auto maxDt = getParam<Scalar>("TimeLoop.MaxTimeStepSize"); auto dt = getParam<Scalar>("TimeLoop.DtInitial"); @@ -128,10 +126,8 @@ int main(int argc, char** argv) try auto linearSolver = std::make_shared<LinearSolver>(leafGridView, fvGridGeometry->dofMapper()); // the non-linear solver - using NewtonController = Dumux::NewtonController<Scalar>; - using NewtonMethod = NewtonMethod<NewtonController, Assembler, LinearSolver>; - auto newtonController = std::make_shared<NewtonController>(timeLoop); - NewtonMethod nonLinearSolver(newtonController, assembler, linearSolver); + using NewtonSolver = Dumux::NewtonSolver<Assembler, LinearSolver>; + NewtonSolver nonLinearSolver(assembler, linearSolver); // time loop timeLoop->start(); @@ -143,24 +139,8 @@ int main(int argc, char** argv) try //set time in problem (is used in time-dependent Neumann boundary condition) problem->setTime(timeLoop->time()+timeLoop->timeStepSize()); - // try solving the non-linear system - for (int i = 0; i < maxDivisions; ++i) - { - // linearize & solve - auto converged = nonLinearSolver.solve(x); - - if (converged) - break; - - if (!converged && i == maxDivisions-1) - DUNE_THROW(Dune::MathError, - "Newton solver didn't converge after " - << maxDivisions - << " time-step divisions. dt=" - << timeLoop->timeStepSize() - << ".\nThe solutions of the current and the previous time steps " - << "have been saved to restart files."); - } + // solve the non-linear system with time step control + nonLinearSolver.solve(x, *timeLoop); // make the new solution the old solution xOld = x; @@ -172,8 +152,8 @@ int main(int argc, char** argv) try // report statistics of this time step timeLoop->reportTimeStep(); - // set new dt as suggested by newton controller - timeLoop->setTimeStepSize(newtonController->suggestTimeStepSize(timeLoop->timeStepSize())); + // set new dt as suggested by the newton solver + timeLoop->setTimeStepSize(nonLinearSolver.suggestTimeStepSize(timeLoop->timeStepSize())); // output to vtk vtkWriter.write(timeLoop->time()); diff --git a/tutorial/ex1/exercise1_2p2c.cc b/tutorial/ex1/exercise1_2p2c.cc index a0b5ebb035..6f7e515c04 100644 --- a/tutorial/ex1/exercise1_2p2c.cc +++ b/tutorial/ex1/exercise1_2p2c.cc @@ -36,8 +36,7 @@ #include <dumux/common/dumuxmessage.hh> #include <dumux/linear/amgbackend.hh> -#include <dumux/nonlinear/newtonmethod.hh> -#include <dumux/porousmediumflow/compositional/privarswitchnewtoncontroller.hh> +#include <dumux/nonlinear/privarswitchnewtonsolver.hh> #include <dumux/assembly/fvassembler.hh> #include <dumux/assembly/diffmethod.hh> @@ -106,7 +105,6 @@ int main(int argc, char** argv) try // of type TYPE given in the group GROUPNAME from the input file using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar); const auto tEnd = getParam<Scalar>("TimeLoop.TEnd"); - const auto maxDivisions = getParam<int>("TimeLoop.MaxTimeStepDivisions"); const auto maxDt = getParam<Scalar>("TimeLoop.MaxTimeStepSize"); auto dt = getParam<Scalar>("TimeLoop.DtInitial"); @@ -128,10 +126,9 @@ int main(int argc, char** argv) try auto linearSolver = std::make_shared<LinearSolver>(leafGridView, fvGridGeometry->dofMapper()); // the non-linear solver - using NewtonController = PriVarSwitchNewtonController<TypeTag>; - using NewtonMethod = NewtonMethod<NewtonController, Assembler, LinearSolver>; - auto newtonController = std::make_shared<NewtonController>(timeLoop); - NewtonMethod nonLinearSolver(newtonController, assembler, linearSolver); + using PrimaryVariableSwitch = typename GET_PROP_TYPE(TypeTag, PrimaryVariableSwitch); + using NewtonSolver = Dumux::PriVarSwitchNewtonSolver<Assembler, LinearSolver, PrimaryVariableSwitch>; + NewtonSolver nonLinearSolver(assembler, linearSolver); // time loop timeLoop->start(); @@ -143,24 +140,8 @@ int main(int argc, char** argv) try //set time in problem (is used in time-dependent Neumann boundary condition) problem->setTime(timeLoop->time()+timeLoop->timeStepSize()); - // try solving the non-linear system - for (int i = 0; i < maxDivisions; ++i) - { - // linearize & solve - auto converged = nonLinearSolver.solve(x); - - if (converged) - break; - - if (!converged && i == maxDivisions-1) - DUNE_THROW(Dune::MathError, - "Newton solver didn't converge after " - << maxDivisions - << " time-step divisions. dt=" - << timeLoop->timeStepSize() - << ".\nThe solutions of the current and the previous time steps " - << "have been saved to restart files."); - } + // solve the non-linear system with time step control + nonLinearSolver.solve(x, *timeLoop); // make the new solution the old solution xOld = x; @@ -172,8 +153,8 @@ int main(int argc, char** argv) try // report statistics of this time step timeLoop->reportTimeStep(); - // set new dt as suggested by newton controller - timeLoop->setTimeStepSize(newtonController->suggestTimeStepSize(timeLoop->timeStepSize())); + // set new dt as suggested by the newton solver + timeLoop->setTimeStepSize(nonLinearSolver.suggestTimeStepSize(timeLoop->timeStepSize())); // output to vtk vtkWriter.write(timeLoop->time()); diff --git a/tutorial/ex2/exercise2.cc b/tutorial/ex2/exercise2.cc index dba708fbc1..d031e8753b 100644 --- a/tutorial/ex2/exercise2.cc +++ b/tutorial/ex2/exercise2.cc @@ -37,8 +37,7 @@ #include <dumux/common/defaultusagemessage.hh> #include <dumux/linear/amgbackend.hh> -#include <dumux/nonlinear/newtonmethod.hh> -#include <dumux/porousmediumflow/compositional/privarswitchnewtoncontroller.hh> +#include <dumux/nonlinear/privarswitchnewtonsolver.hh> #include <dumux/assembly/fvassembler.hh> #include <dumux/assembly/diffmethod.hh> @@ -101,7 +100,6 @@ int main(int argc, char** argv)try // get some time loop parameters using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar); const auto tEnd = getParam<Scalar>("TimeLoop.TEnd"); - const auto maxDivisions = getParam<int>("TimeLoop.MaxTimeStepDivisions"); const auto maxDt = getParam<Scalar>("TimeLoop.MaxTimeStepSize"); auto dt = getParam<Scalar>("TimeLoop.DtInitial"); @@ -128,10 +126,9 @@ int main(int argc, char** argv)try auto linearSolver = std::make_shared<LinearSolver>(leafGridView, fvGridGeometry->dofMapper()); // the non-linear solver - using NewtonController = PriVarSwitchNewtonController<TypeTag>; - using NewtonMethod = NewtonMethod<NewtonController, Assembler, LinearSolver>; - auto newtonController = std::make_shared<NewtonController>(timeLoop); - NewtonMethod nonLinearSolver(newtonController, assembler, linearSolver); + using PrimaryVariableSwitch = typename GET_PROP_TYPE(TypeTag, PrimaryVariableSwitch); + using NewtonSolver = Dumux::PriVarSwitchNewtonSolver<Assembler, LinearSolver, PrimaryVariableSwitch>; + NewtonSolver nonLinearSolver(assembler, linearSolver); // time loop timeLoop->start(); do @@ -142,24 +139,8 @@ int main(int argc, char** argv)try //set time in problem (is used in time-dependent Neumann boundary condition) problem->setTime(timeLoop->time()+timeLoop->timeStepSize()); - // try solving the non-linear system - for (int i = 0; i < maxDivisions; ++i) - { - // linearize & solve - auto converged = nonLinearSolver.solve(x); - - if (converged) - break; - - if (!converged && i == maxDivisions-1) - DUNE_THROW(Dune::MathError, - "Newton solver didn't converge after " - << maxDivisions - << " time-step divisions. dt=" - << timeLoop->timeStepSize() - << ".\nThe solutions of the current and the previous time steps " - << "have been saved to restart files."); - } + // solve the non-linear system with time step control + nonLinearSolver.solve(x, *timeLoop); // make the new solution the old solution xOld = x; @@ -171,8 +152,8 @@ int main(int argc, char** argv)try // report statistics of this time step timeLoop->reportTimeStep(); - // set new dt as suggested by newton controller - timeLoop->setTimeStepSize(newtonController->suggestTimeStepSize(timeLoop->timeStepSize())); + // set new dt as suggested by the newton solver + timeLoop->setTimeStepSize(nonLinearSolver.suggestTimeStepSize(timeLoop->timeStepSize())); vtkWriter.write(timeLoop->time()); diff --git a/tutorial/ex3/exercise3.cc b/tutorial/ex3/exercise3.cc index 7111c6a3e0..4669ea7f18 100644 --- a/tutorial/ex3/exercise3.cc +++ b/tutorial/ex3/exercise3.cc @@ -42,8 +42,7 @@ #include <dumux/common/defaultusagemessage.hh> #include <dumux/linear/amgbackend.hh> -#include <dumux/nonlinear/newtonmethod.hh> -#include <dumux/nonlinear/newtoncontroller.hh> +#include <dumux/nonlinear/newtonsolver.hh> #include <dumux/assembly/fvassembler.hh> #include <dumux/assembly/diffmethod.hh> @@ -140,7 +139,6 @@ int main(int argc, char** argv) try // get some time loop parameters using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar); const auto tEnd = getParam<Scalar>("TimeLoop.TEnd"); - const auto maxDivisions = getParam<int>("TimeLoop.MaxTimeStepDivisions"); const auto maxDt = getParam<Scalar>("TimeLoop.MaxTimeStepSize"); auto dt = getParam<Scalar>("TimeLoop.DtInitial"); @@ -167,10 +165,8 @@ int main(int argc, char** argv) try auto linearSolver = std::make_shared<LinearSolver>(leafGridView, fvGridGeometry->dofMapper()); // the non-linear solver - using NewtonController = Dumux::NewtonController<Scalar>; - using NewtonMethod = NewtonMethod<NewtonController, Assembler, LinearSolver>; - auto newtonController = std::make_shared<NewtonController>(timeLoop); - NewtonMethod nonLinearSolver(newtonController, assembler, linearSolver); + using NewtonSolver = Dumux::NewtonSolver<Assembler, LinearSolver>; + NewtonSolver nonLinearSolver(assembler, linearSolver); // time loop timeLoop->start(); do @@ -178,24 +174,8 @@ int main(int argc, char** argv) try // set previous solution for storage evaluations assembler->setPreviousSolution(xOld); - // try solving the non-linear system - for (int i = 0; i < maxDivisions; ++i) - { - // linearize & solve - auto converged = nonLinearSolver.solve(x); - - if (converged) - break; - - if (!converged && i == maxDivisions-1) - DUNE_THROW(Dune::MathError, - "Newton solver didn't converge after " - << maxDivisions - << " time-step divisions. dt=" - << timeLoop->timeStepSize() - << ".\nThe solutions of the current and the previous time steps " - << "have been saved to restart files."); - } + // solve the non-linear system with time step control + nonLinearSolver.solve(x, *timeLoop); // make the new solution the old solution xOld = x; @@ -207,8 +187,8 @@ int main(int argc, char** argv) try // report statistics of this time step timeLoop->reportTimeStep(); - // set new dt as suggested by newton controller - timeLoop->setTimeStepSize(newtonController->suggestTimeStepSize(timeLoop->timeStepSize())); + // set new dt as suggested by the newton solver + timeLoop->setTimeStepSize(nonLinearSolver.suggestTimeStepSize(timeLoop->timeStepSize())); // write solution and grid to vtk vtkWriter.write(timeLoop->time()); diff --git a/tutorial/solution/ex1/exercise1_2p2c.cc b/tutorial/solution/ex1/exercise1_2p2c.cc index 313486242d..779a668a61 100644 --- a/tutorial/solution/ex1/exercise1_2p2c.cc +++ b/tutorial/solution/ex1/exercise1_2p2c.cc @@ -36,8 +36,7 @@ #include <dumux/common/dumuxmessage.hh> #include <dumux/linear/amgbackend.hh> -#include <dumux/nonlinear/newtonmethod.hh> -#include <dumux/porousmediumflow/compositional/privarswitchnewtoncontroller.hh> +#include <dumux/nonlinear/privarswitchnewtonsolver.hh> #include <dumux/assembly/fvassembler.hh> #include <dumux/assembly/diffmethod.hh> @@ -103,7 +102,6 @@ int main(int argc, char** argv) try // get some time loop parameters using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar); const auto tEnd = getParam<Scalar>("TimeLoop.TEnd"); - const auto maxDivisions = getParam<int>("TimeLoop.MaxTimeStepDivisions"); const auto maxDt = getParam<Scalar>("TimeLoop.MaxTimeStepSize"); auto dt = getParam<Scalar>("TimeLoop.DtInitial"); @@ -125,10 +123,9 @@ int main(int argc, char** argv) try auto linearSolver = std::make_shared<LinearSolver>(leafGridView, fvGridGeometry->dofMapper()); // the non-linear solver - using NewtonController = PriVarSwitchNewtonController<TypeTag>; - using NewtonMethod = NewtonMethod<NewtonController, Assembler, LinearSolver>; - auto newtonController = std::make_shared<NewtonController>(timeLoop); - NewtonMethod nonLinearSolver(newtonController, assembler, linearSolver); + using PrimaryVariableSwitch = typename GET_PROP_TYPE(TypeTag, PrimaryVariableSwitch); + using NewtonSolver = Dumux::PriVarSwitchNewtonSolver<Assembler, LinearSolver, PrimaryVariableSwitch>; + NewtonSolver nonLinearSolver(assembler, linearSolver); // time loop timeLoop->start(); @@ -140,24 +137,8 @@ int main(int argc, char** argv) try //set time in problem (is used in time-dependent Neumann boundary condition) problem->setTime(timeLoop->time()+timeLoop->timeStepSize()); - // try solving the non-linear system - for (int i = 0; i < maxDivisions; ++i) - { - // linearize & solve - auto converged = nonLinearSolver.solve(x); - - if (converged) - break; - - if (!converged && i == maxDivisions-1) - DUNE_THROW(Dune::MathError, - "Newton solver didn't converge after " - << maxDivisions - << " time-step divisions. dt=" - << timeLoop->timeStepSize() - << ".\nThe solutions of the current and the previous time steps " - << "have been saved to restart files."); - } + // solve the non-linear system with time step control + nonLinearSolver.solve(x, *timeLoop); // make the new solution the old solution xOld = x; @@ -169,8 +150,8 @@ int main(int argc, char** argv) try // report statistics of this time step timeLoop->reportTimeStep(); - // set new dt as suggested by newton controller - timeLoop->setTimeStepSize(newtonController->suggestTimeStepSize(timeLoop->timeStepSize())); + // set new dt as suggested by the newton solver + timeLoop->setTimeStepSize(nonLinearSolver.suggestTimeStepSize(timeLoop->timeStepSize())); // output to vtk vtkWriter.write(timeLoop->time()); diff --git a/tutorial/solution/ex1/exercise1_2pni_solution.cc b/tutorial/solution/ex1/exercise1_2pni_solution.cc index bd2b3e8357..877fe41e39 100644 --- a/tutorial/solution/ex1/exercise1_2pni_solution.cc +++ b/tutorial/solution/ex1/exercise1_2pni_solution.cc @@ -36,8 +36,7 @@ #include <dumux/common/defaultusagemessage.hh> #include <dumux/linear/amgbackend.hh> -#include <dumux/nonlinear/newtonmethod.hh> -#include <dumux/nonlinear/newtoncontroller.hh> +#include <dumux/nonlinear/newtonsolver.hh> #include <dumux/assembly/fvassembler.hh> #include <dumux/assembly/diffmethod.hh> @@ -103,7 +102,6 @@ int main(int argc, char** argv) try // get some time loop parameters using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar); const auto tEnd = getParam<Scalar>("TimeLoop.TEnd"); - const auto maxDivisions = getParam<int>("TimeLoop.MaxTimeStepDivisions"); const auto maxDt = getParam<Scalar>("TimeLoop.MaxTimeStepSize"); auto dt = getParam<Scalar>("TimeLoop.DtInitial"); @@ -125,10 +123,8 @@ int main(int argc, char** argv) try auto linearSolver = std::make_shared<LinearSolver>(leafGridView, fvGridGeometry->dofMapper()); // the non-linear solver - using NewtonController = Dumux::NewtonController<Scalar>; - using NewtonMethod = NewtonMethod<NewtonController, Assembler, LinearSolver>; - auto newtonController = std::make_shared<NewtonController>(timeLoop); - NewtonMethod nonLinearSolver(newtonController, assembler, linearSolver); + using NewtonSolver = Dumux::NewtonSolver<Assembler, LinearSolver>; + NewtonSolver nonLinearSolver(assembler, linearSolver); // time loop timeLoop->start(); @@ -140,24 +136,8 @@ int main(int argc, char** argv) try //set time in problem (is used in time-dependent Neumann boundary condition) problem->setTime(timeLoop->time()+timeLoop->timeStepSize()); - // try solving the non-linear system - for (int i = 0; i < maxDivisions; ++i) - { - // linearize & solve - auto converged = nonLinearSolver.solve(x); - - if (converged) - break; - - if (!converged && i == maxDivisions-1) - DUNE_THROW(Dune::MathError, - "Newton solver didn't converge after " - << maxDivisions - << " time-step divisions. dt=" - << timeLoop->timeStepSize() - << ".\nThe solutions of the current and the previous time steps " - << "have been saved to restart files."); - } + // solve the non-linear system with time step control + nonLinearSolver.solve(x, *timeLoop); // make the new solution the old solution xOld = x; @@ -169,8 +149,8 @@ int main(int argc, char** argv) try // report statistics of this time step timeLoop->reportTimeStep(); - // set new dt as suggested by newton controller - timeLoop->setTimeStepSize(newtonController->suggestTimeStepSize(timeLoop->timeStepSize())); + // set new dt as suggested by the newton solver + timeLoop->setTimeStepSize(nonLinearSolver.suggestTimeStepSize(timeLoop->timeStepSize())); // output to vtk vtkWriter.write(timeLoop->time()); diff --git a/tutorial/solution/ex2/exercise2_solution.cc b/tutorial/solution/ex2/exercise2_solution.cc index dba708fbc1..d031e8753b 100644 --- a/tutorial/solution/ex2/exercise2_solution.cc +++ b/tutorial/solution/ex2/exercise2_solution.cc @@ -37,8 +37,7 @@ #include <dumux/common/defaultusagemessage.hh> #include <dumux/linear/amgbackend.hh> -#include <dumux/nonlinear/newtonmethod.hh> -#include <dumux/porousmediumflow/compositional/privarswitchnewtoncontroller.hh> +#include <dumux/nonlinear/privarswitchnewtonsolver.hh> #include <dumux/assembly/fvassembler.hh> #include <dumux/assembly/diffmethod.hh> @@ -101,7 +100,6 @@ int main(int argc, char** argv)try // get some time loop parameters using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar); const auto tEnd = getParam<Scalar>("TimeLoop.TEnd"); - const auto maxDivisions = getParam<int>("TimeLoop.MaxTimeStepDivisions"); const auto maxDt = getParam<Scalar>("TimeLoop.MaxTimeStepSize"); auto dt = getParam<Scalar>("TimeLoop.DtInitial"); @@ -128,10 +126,9 @@ int main(int argc, char** argv)try auto linearSolver = std::make_shared<LinearSolver>(leafGridView, fvGridGeometry->dofMapper()); // the non-linear solver - using NewtonController = PriVarSwitchNewtonController<TypeTag>; - using NewtonMethod = NewtonMethod<NewtonController, Assembler, LinearSolver>; - auto newtonController = std::make_shared<NewtonController>(timeLoop); - NewtonMethod nonLinearSolver(newtonController, assembler, linearSolver); + using PrimaryVariableSwitch = typename GET_PROP_TYPE(TypeTag, PrimaryVariableSwitch); + using NewtonSolver = Dumux::PriVarSwitchNewtonSolver<Assembler, LinearSolver, PrimaryVariableSwitch>; + NewtonSolver nonLinearSolver(assembler, linearSolver); // time loop timeLoop->start(); do @@ -142,24 +139,8 @@ int main(int argc, char** argv)try //set time in problem (is used in time-dependent Neumann boundary condition) problem->setTime(timeLoop->time()+timeLoop->timeStepSize()); - // try solving the non-linear system - for (int i = 0; i < maxDivisions; ++i) - { - // linearize & solve - auto converged = nonLinearSolver.solve(x); - - if (converged) - break; - - if (!converged && i == maxDivisions-1) - DUNE_THROW(Dune::MathError, - "Newton solver didn't converge after " - << maxDivisions - << " time-step divisions. dt=" - << timeLoop->timeStepSize() - << ".\nThe solutions of the current and the previous time steps " - << "have been saved to restart files."); - } + // solve the non-linear system with time step control + nonLinearSolver.solve(x, *timeLoop); // make the new solution the old solution xOld = x; @@ -171,8 +152,8 @@ int main(int argc, char** argv)try // report statistics of this time step timeLoop->reportTimeStep(); - // set new dt as suggested by newton controller - timeLoop->setTimeStepSize(newtonController->suggestTimeStepSize(timeLoop->timeStepSize())); + // set new dt as suggested by the newton solver + timeLoop->setTimeStepSize(nonLinearSolver.suggestTimeStepSize(timeLoop->timeStepSize())); vtkWriter.write(timeLoop->time()); -- GitLab