diff --git a/doc/doxygen/Doxylocal b/doc/doxygen/Doxylocal
index c8bcd58a42f49ff79186f614fd3d99a651c6f6e5..6d851cb60f19ec790c37d81b6963e08e9ba04f89 100644
--- a/doc/doxygen/Doxylocal
+++ b/doc/doxygen/Doxylocal
@@ -26,4 +26,6 @@ SERVER_BASED_SEARCH    = NO
 
 # disable macro expansion (Otherwise, certain properties will not appear
 # in the documentation properly. This should be fixed at some time.)
-MACRO_EXPANSION = NO
\ No newline at end of file
+MACRO_EXPANSION = NO
+
+CITE_BIB_FILES = @top_srcdir@/doc/handbook/dumux-handbook
diff --git a/doc/handbook/dumux-handbook.bib b/doc/handbook/dumux-handbook.bib
index a748fd5ec1287dc1ebc12f85e5045268447eba85..1ffffcfd5ec9fdc112ffcd68f4d7047b9f4d8acb 100644
--- a/doc/handbook/dumux-handbook.bib
+++ b/doc/handbook/dumux-handbook.bib
@@ -77,6 +77,17 @@
   pages = {in print}
 }
 
+@inproceedings{adebiyi2003,
+  title={Formulations for the thermodynamic properties of pure substances},
+  author={Adebiyi, George A},
+  booktitle={ASME 2003 International Mechanical Engineering Congress and Exposition},
+  pages={183--188},
+  year={2003},
+  organization={American Society of Mechanical Engineers},
+  url = {https://dx.doi.org/10.1115/IMECE2003-41299}
+}
+
+
 @ARTICLE{AGRAWAL2001,
   author = {K. Agrawal and P. N. Loezos and M. Syamlal and S. Sundaresan},
   title = {The Role of Meso-Scale Structures in Rapid Gas-Solid Flows},
@@ -502,6 +513,14 @@
   edition = {1}
 }
 
+@article{hollis1996,
+  title={{Real-Gas Flow Properties for NASA Langley Research Center Aerothermodynamic Facilities Complex Wind Tunnels}},
+  author={BR, Hollis},
+  year={1996},
+  publisher={NASA Langley Technical Report Server}
+}
+
+
 @BOOK{HYDROSKRIPT,
   title = {Grundlagen der Hydromechanik},
   publisher = {Shaker},
@@ -562,6 +581,14 @@
   edition = {1}
 }
 
+@BOOK{kays2005,
+  title = {Convective heat and mass transfer},
+  publisher = {McGraw-Hill Higher Education},
+  year = {2005},
+  author = {W. M. Kays and M. E. Crawford and B. Weigand},
+  edition = {4},
+}
+
 @ARTICLE{A3:King:1996,
   author = {King, P. R.},
   title = {Upscaling Permeability: Error Analysis for Renormalisation},
@@ -795,6 +822,16 @@
   author = {Reid, R.C. and Prausnitz, J.M. and Poling, B.E.}
 }
 
+
+@book{poling2001,
+  title={The properties of gases and liquids},
+  author={Poling, Bruce E and Prausnitz, John M and O'connell, John P and others},
+  volume={5},
+  year={2001},
+  publisher={McGraw-Hill New York}
+}
+
+
 @ARTICLE{Pardiso,
   author = {Olaf Schenk and Klaus G\"artner},
   title = {Solving unsymmetric sparse systems of linear equations with {PARDISO}},
@@ -1005,6 +1042,11 @@
   key = {FENICS}
 }
 
+@MISC{NIST,
+  title = {Thermophysical Properties of Fluid Systems: \url{http://webbook.nist.gov/chemistry/fluid/}},
+  key = {NIST}
+}
+
 @MISC{STL-REF-HP,
   title = {A {STL} Reference: \url{http://www.cplusplus.com/reference/stl/}},
   key = {STL}
diff --git a/dumux/material/components/air.hh b/dumux/material/components/air.hh
index 8556d07b71b77fd2ff791a29a8421480dde5c2a0..a5bb1f9fa5e958581c71c5c340182d0bfe76efa7 100644
--- a/dumux/material/components/air.hh
+++ b/dumux/material/components/air.hh
@@ -107,24 +107,17 @@ public:
         return IdealGas::pressure(temperature, density/molarMass());
     }
     /*!
-     * \brief The dynamic viscosity \f$\mathrm{[Pa*s]}\f$ of \f$AIR\f$ at a given pressure and temperature.
+     * \brief The dynamic viscosity \f$\mathrm{[Pa*s]}\f$ of \f$AIR\f$ at a given pressure and temperature. Criticial specific
+     * volume calculated by \f$V_c = (R*T_c)/p_c\f$.
      *
-     *\param temperature temperature of component in \f$\mathrm{[K]}\f$
+     * \param temperature temperature of component in \f$\mathrm{[K]}\f$
      * \param pressure pressure of component in \f$\mathrm{[Pa]}\f$
      *
-     * See:
-     *
-     * See: R. Reid, et al.: The Properties of Gases and Liquids,
-     * 4th edition, McGraw-Hill, 1987, pp 396-397, 667
-     * 5th edition, McGraw-Hill, 2001, pp 9.7-9.8
-     *
-     * accentric factor taken from:
-     * Journal of Energy Resources Technology, March 2005, Vol 127
-     * Formulation for the Thermodynamic Properties
-     * Georeg A. Abediyi
-     * University, Mississippi State
+     * Reid et al. (1987, pp 396-397, 667) \cite reid1987 <BR>
+     * Poling et al. (2001, pp 9.7-9.8) \cite poling2001 <BR>
      *
-     * V_c = (R*T_c)/p_c
+     * Accentric factor taken from: <BR>
+     * Adebiyi (2003) \cite adebiyi2003 
      *
      */
     static Scalar gasViscosity(Scalar temperature, Scalar pressure)
@@ -168,14 +161,12 @@ public:
 
     /*!
      * \brief Specific enthalpy of air \f$\mathrm{[J/kg]}\f$
-     *        with 273.15 K as basis.
-     * See:
-     * W. Kays, M. Crawford, B. Weigand
-     * Convective heat and mass transfer, 4th edition (2005)
-     * p. 431ff
+     *        with 273.15 \f$ K \f$ as basis. <BR>
      *
      * \param temperature temperature of component in \f$\mathrm{[K]}\f$
      * \param pressure pressure of component in \f$\mathrm{[Pa]}\f$
+     *
+     * Kays et al. (2005, 431ff) \cite kays2005 <BR>
      */
     static Scalar gasEnthalpy(Scalar temperature, Scalar pressure)
     {
@@ -188,7 +179,7 @@ public:
      * Definition of enthalpy: \f$h= u + pv = u + p / \rho\f$.
      * Rearranging for internal energy yields: \f$u = h - pv\f$.
      * Exploiting the Ideal Gas assumption
-     * (\f$pv = R_{\textnormal{specific}} T\f$)gives: \f$u = h - R / M T \f$.
+     * (\f$pv = R_{\textnormal{specific}} T\f$) gives: \f$u = h - R / M T \f$.
      *
      * \param temperature temperature of component in \f$\mathrm{[K]}\f$
      * \param pressure pressure of component in \f$\mathrm{[Pa]}\f$
@@ -210,12 +201,11 @@ public:
      *  This methods uses the formula for "zero-pressure" heat capacity that
      *  is only dependent on temperature, because the pressure dependence is rather small.
      *  This one should be accurate for a pressure of 1 atm.
-     *  Values taken from NASA Contractor Report 4755, Real-Gas Flow Properties for NASA
-     *  Langley Research Center Aerothermodynamic Facilities Complex Wind Tunnels
-     *  using data from
-     *  Hilsenrath et al 1955, "Tables of Thermal Properties of Gases"
      * \param temperature temperature of component in \f$\mathrm{[K]}\f$
      * \param pressure pressure of component in \f$\mathrm{[Pa]}\f$
+     *
+     *  Values taken from Hollis (1996) \cite hollis1996 <BR>
+     *  "Tables of Thermal Properties of Gases"
      */
     static const Scalar gasHeatCapacity(Scalar temperature,
                                         Scalar pressure)
@@ -244,11 +234,10 @@ public:
 
     /*!
      * \brief Thermal conductivity \f$\mathrm{[[W/(m*K)]}\f$ of air.
-     * Isobaric Properties for Nitrogen in: NIST Standard
-     * see http://webbook.nist.gov/chemistry/fluid/
-     * evaluated at p=.1 MPa, T=20°C
-     * Nitrogen: 0.025398
-     * Oxygen: 0.026105
+     * Isobaric Properties for Nitrogen in: NIST Standard \cite NIST <BR>
+     * evaluated at p=.1 MPa, T=20°C <BR>
+     * Nitrogen: 0.025398 <BR>
+     * Oxygen: 0.026105 <BR>
      * lambda_air is approximately 0.78*lambda_N2+0.22*lambda_O2
      */
     static Scalar gasThermalConductivity(Scalar temperature, Scalar pressure)