diff --git a/doc/doxygen/Doxylocal b/doc/doxygen/Doxylocal index c8bcd58a42f49ff79186f614fd3d99a651c6f6e5..6d851cb60f19ec790c37d81b6963e08e9ba04f89 100644 --- a/doc/doxygen/Doxylocal +++ b/doc/doxygen/Doxylocal @@ -26,4 +26,6 @@ SERVER_BASED_SEARCH = NO # disable macro expansion (Otherwise, certain properties will not appear # in the documentation properly. This should be fixed at some time.) -MACRO_EXPANSION = NO \ No newline at end of file +MACRO_EXPANSION = NO + +CITE_BIB_FILES = @top_srcdir@/doc/handbook/dumux-handbook diff --git a/doc/handbook/dumux-handbook.bib b/doc/handbook/dumux-handbook.bib index a748fd5ec1287dc1ebc12f85e5045268447eba85..1ffffcfd5ec9fdc112ffcd68f4d7047b9f4d8acb 100644 --- a/doc/handbook/dumux-handbook.bib +++ b/doc/handbook/dumux-handbook.bib @@ -77,6 +77,17 @@ pages = {in print} } +@inproceedings{adebiyi2003, + title={Formulations for the thermodynamic properties of pure substances}, + author={Adebiyi, George A}, + booktitle={ASME 2003 International Mechanical Engineering Congress and Exposition}, + pages={183--188}, + year={2003}, + organization={American Society of Mechanical Engineers}, + url = {https://dx.doi.org/10.1115/IMECE2003-41299} +} + + @ARTICLE{AGRAWAL2001, author = {K. Agrawal and P. N. Loezos and M. Syamlal and S. Sundaresan}, title = {The Role of Meso-Scale Structures in Rapid Gas-Solid Flows}, @@ -502,6 +513,14 @@ edition = {1} } +@article{hollis1996, + title={{Real-Gas Flow Properties for NASA Langley Research Center Aerothermodynamic Facilities Complex Wind Tunnels}}, + author={BR, Hollis}, + year={1996}, + publisher={NASA Langley Technical Report Server} +} + + @BOOK{HYDROSKRIPT, title = {Grundlagen der Hydromechanik}, publisher = {Shaker}, @@ -562,6 +581,14 @@ edition = {1} } +@BOOK{kays2005, + title = {Convective heat and mass transfer}, + publisher = {McGraw-Hill Higher Education}, + year = {2005}, + author = {W. M. Kays and M. E. Crawford and B. Weigand}, + edition = {4}, +} + @ARTICLE{A3:King:1996, author = {King, P. R.}, title = {Upscaling Permeability: Error Analysis for Renormalisation}, @@ -795,6 +822,16 @@ author = {Reid, R.C. and Prausnitz, J.M. and Poling, B.E.} } + +@book{poling2001, + title={The properties of gases and liquids}, + author={Poling, Bruce E and Prausnitz, John M and O'connell, John P and others}, + volume={5}, + year={2001}, + publisher={McGraw-Hill New York} +} + + @ARTICLE{Pardiso, author = {Olaf Schenk and Klaus G\"artner}, title = {Solving unsymmetric sparse systems of linear equations with {PARDISO}}, @@ -1005,6 +1042,11 @@ key = {FENICS} } +@MISC{NIST, + title = {Thermophysical Properties of Fluid Systems: \url{http://webbook.nist.gov/chemistry/fluid/}}, + key = {NIST} +} + @MISC{STL-REF-HP, title = {A {STL} Reference: \url{http://www.cplusplus.com/reference/stl/}}, key = {STL} diff --git a/dumux/material/components/air.hh b/dumux/material/components/air.hh index 8556d07b71b77fd2ff791a29a8421480dde5c2a0..a5bb1f9fa5e958581c71c5c340182d0bfe76efa7 100644 --- a/dumux/material/components/air.hh +++ b/dumux/material/components/air.hh @@ -107,24 +107,17 @@ public: return IdealGas::pressure(temperature, density/molarMass()); } /*! - * \brief The dynamic viscosity \f$\mathrm{[Pa*s]}\f$ of \f$AIR\f$ at a given pressure and temperature. + * \brief The dynamic viscosity \f$\mathrm{[Pa*s]}\f$ of \f$AIR\f$ at a given pressure and temperature. Criticial specific + * volume calculated by \f$V_c = (R*T_c)/p_c\f$. * - *\param temperature temperature of component in \f$\mathrm{[K]}\f$ + * \param temperature temperature of component in \f$\mathrm{[K]}\f$ * \param pressure pressure of component in \f$\mathrm{[Pa]}\f$ * - * See: - * - * See: R. Reid, et al.: The Properties of Gases and Liquids, - * 4th edition, McGraw-Hill, 1987, pp 396-397, 667 - * 5th edition, McGraw-Hill, 2001, pp 9.7-9.8 - * - * accentric factor taken from: - * Journal of Energy Resources Technology, March 2005, Vol 127 - * Formulation for the Thermodynamic Properties - * Georeg A. Abediyi - * University, Mississippi State + * Reid et al. (1987, pp 396-397, 667) \cite reid1987 <BR> + * Poling et al. (2001, pp 9.7-9.8) \cite poling2001 <BR> * - * V_c = (R*T_c)/p_c + * Accentric factor taken from: <BR> + * Adebiyi (2003) \cite adebiyi2003 * */ static Scalar gasViscosity(Scalar temperature, Scalar pressure) @@ -168,14 +161,12 @@ public: /*! * \brief Specific enthalpy of air \f$\mathrm{[J/kg]}\f$ - * with 273.15 K as basis. - * See: - * W. Kays, M. Crawford, B. Weigand - * Convective heat and mass transfer, 4th edition (2005) - * p. 431ff + * with 273.15 \f$ K \f$ as basis. <BR> * * \param temperature temperature of component in \f$\mathrm{[K]}\f$ * \param pressure pressure of component in \f$\mathrm{[Pa]}\f$ + * + * Kays et al. (2005, 431ff) \cite kays2005 <BR> */ static Scalar gasEnthalpy(Scalar temperature, Scalar pressure) { @@ -188,7 +179,7 @@ public: * Definition of enthalpy: \f$h= u + pv = u + p / \rho\f$. * Rearranging for internal energy yields: \f$u = h - pv\f$. * Exploiting the Ideal Gas assumption - * (\f$pv = R_{\textnormal{specific}} T\f$)gives: \f$u = h - R / M T \f$. + * (\f$pv = R_{\textnormal{specific}} T\f$) gives: \f$u = h - R / M T \f$. * * \param temperature temperature of component in \f$\mathrm{[K]}\f$ * \param pressure pressure of component in \f$\mathrm{[Pa]}\f$ @@ -210,12 +201,11 @@ public: * This methods uses the formula for "zero-pressure" heat capacity that * is only dependent on temperature, because the pressure dependence is rather small. * This one should be accurate for a pressure of 1 atm. - * Values taken from NASA Contractor Report 4755, Real-Gas Flow Properties for NASA - * Langley Research Center Aerothermodynamic Facilities Complex Wind Tunnels - * using data from - * Hilsenrath et al 1955, "Tables of Thermal Properties of Gases" * \param temperature temperature of component in \f$\mathrm{[K]}\f$ * \param pressure pressure of component in \f$\mathrm{[Pa]}\f$ + * + * Values taken from Hollis (1996) \cite hollis1996 <BR> + * "Tables of Thermal Properties of Gases" */ static const Scalar gasHeatCapacity(Scalar temperature, Scalar pressure) @@ -244,11 +234,10 @@ public: /*! * \brief Thermal conductivity \f$\mathrm{[[W/(m*K)]}\f$ of air. - * Isobaric Properties for Nitrogen in: NIST Standard - * see http://webbook.nist.gov/chemistry/fluid/ - * evaluated at p=.1 MPa, T=20°C - * Nitrogen: 0.025398 - * Oxygen: 0.026105 + * Isobaric Properties for Nitrogen in: NIST Standard \cite NIST <BR> + * evaluated at p=.1 MPa, T=20°C <BR> + * Nitrogen: 0.025398 <BR> + * Oxygen: 0.026105 <BR> * lambda_air is approximately 0.78*lambda_N2+0.22*lambda_O2 */ static Scalar gasThermalConductivity(Scalar temperature, Scalar pressure)