diff --git a/examples/1ptracer/README.md b/examples/1ptracer/README.md index 516fc37705251a6bc871116fc08e7eec2dd96933..1c355ed460cd177518525479b138e06c78af8d20 100644 --- a/examples/1ptracer/README.md +++ b/examples/1ptracer/README.md @@ -52,12 +52,12 @@ The single phase model uses Darcy's law as the equation for the momentum conserv \textbf v = - \frac{\textbf K}{\mu} \left(\textbf{grad}\, p - \varrho {\textbf g} \right), ``` -with the darcy velocity $` \textbf v `$, the permeability $` \textbf K`$, the dynamic viscosity $` \mu`$, the pressure $`p`$, the density $`\rho`$ and the gravity $`\textbf g`$. +with the darcy velocity $`\textbf v`$, the permeability $`\textbf K`$, the dynamic viscosity $`\mu`$, the pressure $`p`$, the density $`\varrho`$ and the gravitational acceleration $`\textbf g`$. Darcy's law is inserted into the mass balance equation: ```math -\phi \frac{\partial \varrho}{\partial t} + \text{div} \textbf v = 0, +\phi \frac{\partial \varrho}{\partial t} + \text{div} \left( \varrho \textbf v \right) = 0, ``` where $`\phi`$ is the porosity. The primary variable used in this model is the pressure $`p`$. diff --git a/examples/1ptracer/doc/_intro.md b/examples/1ptracer/doc/_intro.md index 83583192b21dc6f7667f7a1d3e5bf2345630d8f4..4b37aa1f5438da4ac13b28376fb725d3700475a8 100644 --- a/examples/1ptracer/doc/_intro.md +++ b/examples/1ptracer/doc/_intro.md @@ -50,12 +50,12 @@ The single phase model uses Darcy's law as the equation for the momentum conserv \textbf v = - \frac{\textbf K}{\mu} \left(\textbf{grad}\, p - \varrho {\textbf g} \right), ``` -with the darcy velocity $` \textbf v `$, the permeability $` \textbf K`$, the dynamic viscosity $` \mu`$, the pressure $`p`$, the density $`\rho`$ and the gravity $`\textbf g`$. +with the darcy velocity $`\textbf v`$, the permeability $`\textbf K`$, the dynamic viscosity $`\mu`$, the pressure $`p`$, the density $`\varrho`$ and the gravitational acceleration $`\textbf g`$. Darcy's law is inserted into the mass balance equation: ```math -\phi \frac{\partial \varrho}{\partial t} + \text{div} \textbf v = 0, +\phi \frac{\partial \varrho}{\partial t} + \text{div} \left( \varrho \textbf v \right) = 0, ``` where $`\phi`$ is the porosity. The primary variable used in this model is the pressure $`p`$.