From 9a43d90ab8cc26938d7011e2cb09fa4f508365d1 Mon Sep 17 00:00:00 2001 From: "Dennis.Glaeser" <dennis.glaeser@iws.uni-stuttgart.de> Date: Tue, 7 Apr 2020 09:27:50 +0200 Subject: [PATCH] [examples][tracer] fix equations --- examples/1ptracer/README.md | 4 ++-- examples/1ptracer/doc/_intro.md | 4 ++-- 2 files changed, 4 insertions(+), 4 deletions(-) diff --git a/examples/1ptracer/README.md b/examples/1ptracer/README.md index 516fc37705..1c355ed460 100644 --- a/examples/1ptracer/README.md +++ b/examples/1ptracer/README.md @@ -52,12 +52,12 @@ The single phase model uses Darcy's law as the equation for the momentum conserv \textbf v = - \frac{\textbf K}{\mu} \left(\textbf{grad}\, p - \varrho {\textbf g} \right), ``` -with the darcy velocity $` \textbf v `$, the permeability $` \textbf K`$, the dynamic viscosity $` \mu`$, the pressure $`p`$, the density $`\rho`$ and the gravity $`\textbf g`$. +with the darcy velocity $`\textbf v`$, the permeability $`\textbf K`$, the dynamic viscosity $`\mu`$, the pressure $`p`$, the density $`\varrho`$ and the gravitational acceleration $`\textbf g`$. Darcy's law is inserted into the mass balance equation: ```math -\phi \frac{\partial \varrho}{\partial t} + \text{div} \textbf v = 0, +\phi \frac{\partial \varrho}{\partial t} + \text{div} \left( \varrho \textbf v \right) = 0, ``` where $`\phi`$ is the porosity. The primary variable used in this model is the pressure $`p`$. diff --git a/examples/1ptracer/doc/_intro.md b/examples/1ptracer/doc/_intro.md index 83583192b2..4b37aa1f54 100644 --- a/examples/1ptracer/doc/_intro.md +++ b/examples/1ptracer/doc/_intro.md @@ -50,12 +50,12 @@ The single phase model uses Darcy's law as the equation for the momentum conserv \textbf v = - \frac{\textbf K}{\mu} \left(\textbf{grad}\, p - \varrho {\textbf g} \right), ``` -with the darcy velocity $` \textbf v `$, the permeability $` \textbf K`$, the dynamic viscosity $` \mu`$, the pressure $`p`$, the density $`\rho`$ and the gravity $`\textbf g`$. +with the darcy velocity $`\textbf v`$, the permeability $`\textbf K`$, the dynamic viscosity $`\mu`$, the pressure $`p`$, the density $`\varrho`$ and the gravitational acceleration $`\textbf g`$. Darcy's law is inserted into the mass balance equation: ```math -\phi \frac{\partial \varrho}{\partial t} + \text{div} \textbf v = 0, +\phi \frac{\partial \varrho}{\partial t} + \text{div} \left( \varrho \textbf v \right) = 0, ``` where $`\phi`$ is the porosity. The primary variable used in this model is the pressure $`p`$. -- GitLab