diff --git a/examples/embedded_network_1d3d/doc/_intro.md b/examples/embedded_network_1d3d/doc/_intro.md index 3d63fb03f1e0c740b077a31bc2b9c0a17df4a42b..7a21354bd3af1197ab4c37796dc6fdf8a12d7984 100644 --- a/examples/embedded_network_1d3d/doc/_intro.md +++ b/examples/embedded_network_1d3d/doc/_intro.md @@ -48,7 +48,7 @@ We solve the following coupled, mixed-dimensional PDE system: where the subscript T and B denote the tissue and the network (blood flow) compartment, $`x`$ is the tracer mole fraction, $`\varrho`$ the molar density of the mixture, $`\phi`$ is the porosity, $`A_\mathrm{B}`$ denotes the network (vessel lumen) cross-sectional area, $`\vert P \vert`$ is the cross-sectional perimeter value, -$`D`$ is the free diffusion coefficient, $`D_{\text{app}`$ apparent diffusion coefficients and $C_M$ a membrane diffusivity factor. +$`D`$ is the free diffusion coefficient, $`D_{\text{app}}`$ apparent diffusion coefficients and $C_M$ a membrane diffusivity factor. Furthermore, isothermal conditions with a homogeneous temperature distribution of constant $`T=37^\circ C`$ are assumed. The 1D network PDE is formulated in terms of the local axial coordinate $`s`$.