From 9eec9a6037c96d74cb27a2f8c9bc1cc95017472f Mon Sep 17 00:00:00 2001
From: Timo Koch <timo.koch@iws.uni-stuttgart.de>
Date: Fri, 30 Oct 2020 16:12:22 +0100
Subject: [PATCH] [bugfix][monotonecubicspline] Enable increasing and
 decreasing values for both function and argument

---
 dumux/common/monotonecubicspline.hh           | 115 ++++++------
 .../common/spline/test_monotonecubicspline.cc | 167 ++++++++++--------
 2 files changed, 155 insertions(+), 127 deletions(-)

diff --git a/dumux/common/monotonecubicspline.hh b/dumux/common/monotonecubicspline.hh
index 9fa462e634..75abcfd61f 100644
--- a/dumux/common/monotonecubicspline.hh
+++ b/dumux/common/monotonecubicspline.hh
@@ -77,7 +77,7 @@ public:
         // check some requirements
         assert (x.size() == y.size());
         assert (x.size() >=2);
-        assert (std::is_sorted(x.begin(), x.end()));
+        assert (std::is_sorted(x.begin(), x.end()) || std::is_sorted(x.rbegin(), x.rend()));
 
         // save a copy of the control points
         x_ = x;
@@ -87,7 +87,8 @@ public:
         numPoints_ = x.size();
 
         // whether we are increasing
-        increasing_ = y_.back() > y_.front();
+        increasingX_ = x_.back() > x_.front();
+        increasingY_ = y_.back() > y_.front();
 
         // the slope at every control point
         m_.resize(numPoints_);
@@ -114,21 +115,12 @@ public:
      */
     Scalar eval(const Scalar x) const
     {
-        if (x <= x_.front())
+        if ((x <= x_.front() && increasingX_) || (x >= x_.front() && !increasingX_))
             return y_.front() + m_.front()*(x - x_.front());
-        else if (x > x_.back())
+        else if ((x > x_.back() && increasingX_) || (x < x_.back() && !increasingX_))
             return y_.back() + m_.back()*(x - x_.back());
-        else
-        {
-            const auto lookUpIndex = std::distance(x_.begin(), std::lower_bound(x_.begin(), x_.end(), x));
-            assert(lookUpIndex != 0);
 
-            // interpolate parametrization parameter t in [0,1]
-            const auto h = (x_[lookUpIndex] - x_[lookUpIndex-1]);
-            const auto t = (x - x_[lookUpIndex-1])/h;
-            return y_[lookUpIndex-1]*Basis::h00(t) + h*m_[lookUpIndex-1]*Basis::h10(t)
-                   + y_[lookUpIndex]*Basis::h01(t) + h*m_[lookUpIndex]*Basis::h11(t);
-        }
+        return eval_(x);
     }
 
     /*!
@@ -138,22 +130,12 @@ public:
      */
     Scalar evalDerivative(const Scalar x) const
     {
-        if (x <= x_.front())
+        if ((x <= x_.front() && increasingX_) || (x >= x_.front() && !increasingX_))
             return m_.front();
-        else if (x > x_.back())
+        else if ((x > x_.back() && increasingX_) || (x < x_.back() && !increasingX_))
             return m_.back();
-        else
-        {
-            const auto lookUpIndex = std::distance(x_.begin(), std::lower_bound(x_.begin(), x_.end(), x));
-            assert(lookUpIndex != 0);
 
-            // interpolate parametrization parameter t in [0,1]
-            const auto h = (x_[lookUpIndex] - x_[lookUpIndex-1]);
-            const auto t = (x - x_[lookUpIndex-1])/h;
-            const auto dtdx = 1.0/h;
-            return y_[lookUpIndex-1]*Basis::dh00(t)*dtdx + m_[lookUpIndex-1]*Basis::dh10(t)
-                   + y_[lookUpIndex]*Basis::dh01(t)*dtdx + m_[lookUpIndex]*Basis::dh11(t);
-        }
+        return evalDerivative_(x);
     }
 
     /*!
@@ -164,40 +146,39 @@ public:
      */
     Scalar evalInverse(const Scalar y) const
     {
-        if (increasing_)
-        {
-            if (y <= y_.front())
-                return x_.front() + (y - y_.front())/m_.front();
-            else if (y > y_.back())
-                return x_.back() + (y - y_.back())/m_.back();
-            else
-            {
-                const auto lookUpIndex = std::distance(y_.begin(), std::lower_bound(y_.begin(), y_.end(), y));
-                assert(lookUpIndex != 0);
-
-                return evalInverse_(y, lookUpIndex);
-            }
-        }
+        if ((y <= y_.front() && increasingY_) || (y >= y_.front() && !increasingY_))
+            return x_.front() + (y - y_.front())/m_.front();
+        else if ((y > y_.back() && increasingY_) || (y < y_.back() && !increasingY_))
+            return x_.back() + (y - y_.back())/m_.back();
 
-        else
-        {
-            if (y >= y_.front())
-                return x_.front() + (y - y_.front())/m_.front();
-            else if (y < y_.back())
-                return x_.back() + (y - y_.back())/m_.back();
-            else
-            {
-                const auto lookUpIndex = y_.size() - std::distance(y_.rbegin(), std::lower_bound(y_.rbegin(), y_.rend(), y));
-                assert(lookUpIndex != 0);
-
-                return evalInverse_(y, lookUpIndex);
-            }
-        }
+        return evalInverse_(y);
     }
 
 private:
-    Scalar evalInverse_(const Scalar y, const std::size_t lookUpIndex) const
+    Scalar eval_(const Scalar x) const
     {
+        // interpolate parametrization parameter t in [0,1]
+        const auto lookUpIndex = lookUpIndex_(x_, x, increasingX_);
+        const auto h = (x_[lookUpIndex] - x_[lookUpIndex-1]);
+        const auto t = (x - x_[lookUpIndex-1])/h;
+        return y_[lookUpIndex-1]*Basis::h00(t) + h*m_[lookUpIndex-1]*Basis::h10(t)
+               + y_[lookUpIndex]*Basis::h01(t) + h*m_[lookUpIndex]*Basis::h11(t);
+    }
+
+    Scalar evalDerivative_(const Scalar x) const
+    {
+        // interpolate parametrization parameter t in [0,1]
+        const auto lookUpIndex = lookUpIndex_(x_, x, increasingX_);
+        const auto h = (x_[lookUpIndex] - x_[lookUpIndex-1]);
+        const auto t = (x - x_[lookUpIndex-1])/h;
+        const auto dtdx = 1.0/h;
+        return y_[lookUpIndex-1]*Basis::dh00(t)*dtdx + m_[lookUpIndex-1]*Basis::dh10(t)
+               + y_[lookUpIndex]*Basis::dh01(t)*dtdx + m_[lookUpIndex]*Basis::dh11(t);
+    }
+
+    Scalar evalInverse_(const Scalar y) const
+    {
+        const auto lookUpIndex = lookUpIndex_(y_, y, increasingY_);
         auto localPolynomial = [&](const auto x) {
             // interpolate parametrization parameter t in [0,1]
             const auto h = (x_[lookUpIndex] - x_[lookUpIndex-1]);
@@ -211,11 +192,31 @@ private:
         return findScalarRootBrent(x_[lookUpIndex-1]-eps, x_[lookUpIndex]+eps, localPolynomial);
     }
 
+    auto lookUpIndex_(const std::vector<Scalar>& vec, const Scalar v, bool increasing) const
+    {
+        return increasing ? lookUpIndexIncreasing_(vec, v) : lookUpIndexDecreasing_(vec, v);
+    }
+
+    auto lookUpIndexIncreasing_(const std::vector<Scalar>& vec, const Scalar v) const
+    {
+        const auto lookUpIndex = std::distance(vec.begin(), std::lower_bound(vec.begin(), vec.end(), v));
+        assert(lookUpIndex != 0);
+        return lookUpIndex;
+    }
+
+    auto lookUpIndexDecreasing_(const std::vector<Scalar>& vec, const Scalar v) const
+    {
+        const auto lookUpIndex = vec.size() - std::distance(vec.rbegin(), std::lower_bound(vec.rbegin(), vec.rend(), v));
+        assert(lookUpIndex != 0);
+        return lookUpIndex;
+    }
+
     std::vector<Scalar> x_; //!< the x-coordinates
     std::vector<Scalar> y_; //!< the y-coordinates
     std::vector<Scalar> m_; //!< the slope for each control point
     std::size_t numPoints_; //!< the number of control points
-    bool increasing_; //!< if we are increasing monotone or not
+    bool increasingX_; //!< if we are increasing monotone or not
+    bool increasingY_; //!< if we are increasing monotone or not
 };
 
 } // end namespace Dumux
diff --git a/test/common/spline/test_monotonecubicspline.cc b/test/common/spline/test_monotonecubicspline.cc
index dc59b47701..04596dcb17 100644
--- a/test/common/spline/test_monotonecubicspline.cc
+++ b/test/common/spline/test_monotonecubicspline.cc
@@ -45,82 +45,109 @@ int main(int argc, char** argv)
 {
     Dune::MPIHelper::instance(argc, argv);
 
-    // we test the spline interpolation against a sample function
-    const auto f = [](double x){ return x*x*x; };
-    const auto df = [](double x){ return 3*x*x; };
-
-    // create some test samples
-    const auto testPoints = Dumux::linspace(0.0, 4.0, 1000);
-    const auto ref = eval(f, testPoints);
-    const auto refDeriv = eval(df, testPoints);
-
-    // create the spline sample points
-    const auto samplePoints = Dumux::linspace(0.0, 5.0, 10);
-    const auto y = eval(f, samplePoints);
-
-    // create the spline
-    Dumux::MonotoneCubicSpline<double> spline(samplePoints, y);
-
-    // evaluate spline and derivative
-    const auto result = eval([&](const double x) { return spline.eval(x); }, testPoints);
-    const auto resultDeriv = eval([&](const double x) { return spline.evalDerivative(x); }, testPoints);
-
-    // compute largest difference
-    auto diff = result; auto diffDeriv = result;
-    std::transform(result.begin(), result.end(), ref.begin(), diff.begin(), [](auto a, auto b){ return std::abs(a-b); });
-    std::transform(resultDeriv.begin(), resultDeriv.end(), refDeriv.begin(), diffDeriv.begin(), [](auto a, auto b){ return std::abs(a-b); });
-    const auto maxNorm = std::accumulate(diff.begin(), diff.end(), diff[0], [](auto a, auto b){ return std::max(a, b); })
-                         /(*std::max_element(ref.begin(), ref.end()));
-    const auto maxNormDeriv = std::accumulate(diffDeriv.begin(), diffDeriv.end(), diffDeriv[0], [](auto a, auto b){ return std::max(a, b); })
-                              /(*std::max_element(refDeriv.begin(), refDeriv.end()));
-    std::cout << "Maximum error: " << maxNorm << "\n";
-    std::cout << "Maximum error in derivative: " << maxNormDeriv << "\n";
-
-    if (maxNorm > 0.0008 || maxNormDeriv > 0.013)
-        DUNE_THROW(Dune::Exception, "Maximum error in spline interpolation too large!");
-
-    // test inverse by evaluating (x = f^-1(f(x))) for monotonically increasing function
+    const auto test = [](auto f, auto df, const auto& testPoints, const auto& samplePoints, const std::string& prefix)
     {
-        const auto resultX = eval([&](double x){ return spline.evalInverse(spline.eval(x)); }, testPoints);
-        auto diffInverse = resultX;
-        std::transform(resultX.begin(), resultX.end(), testPoints.begin(), diffInverse.begin(), [](auto a, auto b){ return std::abs(a-b); });
-        const auto maxNormInverse = std::accumulate(diffInverse.begin(), diffInverse.end(), diffInverse[0], [](auto a, auto b){ return std::max(a, b); })
-                             /(*std::max_element(testPoints.begin(), testPoints.end()));
+        // create some test samples
+        const auto ref = eval(f, testPoints);
+        const auto refDeriv = eval(df, testPoints);
+
+        // create the spline sample points
+        const auto y = eval(f, samplePoints);
+
+        // create the spline
+        Dumux::MonotoneCubicSpline<double> spline(samplePoints, y);
+
+        // evaluate spline and derivative
+        const auto result = eval([&](const double x) { return spline.eval(x); }, testPoints);
+        const auto resultDeriv = eval([&](const double x) { return spline.evalDerivative(x); }, testPoints);
+
+        // compute largest difference
+        auto diff = result; auto diffDeriv = result;
+        std::transform(result.begin(), result.end(), ref.begin(), diff.begin(), [](auto a, auto b){ return std::abs(a-b); });
+        std::transform(resultDeriv.begin(), resultDeriv.end(), refDeriv.begin(), diffDeriv.begin(), [](auto a, auto b){ return std::abs(a-b); });
+        const auto maxNorm = std::accumulate(diff.begin(), diff.end(), diff[0], [](auto a, auto b){ return std::max(a, b); })
+                             /std::abs(*std::max_element(ref.begin(), ref.end(), [](auto a, auto b){ return abs(a) < abs(b); }));
+        const auto maxNormDeriv = std::accumulate(diffDeriv.begin(), diffDeriv.end(), diffDeriv[0], [](auto a, auto b){ return std::max(a, b); })
+                                  /std::abs(*std::max_element(refDeriv.begin(), refDeriv.end(), [](auto a, auto b){ return abs(a) < abs(b); }));
+        std::cout << "Maximum error: " << std::scientific << maxNorm << "\n";
+        std::cout << "Maximum error in derivative: " << std::scientific << maxNormDeriv << "\n";
+
+        if (maxNorm > 0.0008 || maxNormDeriv > 0.013)
+            DUNE_THROW(Dune::Exception, "Maximum error in spline interpolation too large!");
 
+        // test inverse by evaluating (x = f^-1(f(x))) for monotonically increasing function
+        {
+            const auto resultX = eval([&](double x){ return spline.evalInverse(spline.eval(x)); }, testPoints);
+            auto diffInverse = resultX;
+            std::transform(resultX.begin(), resultX.end(), testPoints.begin(), diffInverse.begin(), [](auto a, auto b){ return std::abs(a-b); });
+            const auto maxNormInverse = std::accumulate(diffInverse.begin(), diffInverse.end(), diffInverse[0], [](auto a, auto b){ return std::max(a, b); })
+                                 /std::abs(*std::max_element(testPoints.begin(), testPoints.end(), [](auto a, auto b){ return abs(a) < abs(b); }));
+
+
+            std::cout << "Maximum error in identity using the inverse (mon. incr.): " << std::scientific << maxNormInverse << "\n";
+            if (maxNormInverse > 1e-13)
+                DUNE_THROW(Dune::Exception, "Maximum error in spline interpolation too large!");
+        }
+        // test inverse by evaluating (x = f^-1(f(x))) for monotonically decreasing function
+        {
+            auto reverseTest = testPoints;
+            std::reverse(reverseTest.begin(), reverseTest.end());
+            const auto resultX = eval([&](double x){ return spline.evalInverse(spline.eval(x)); }, reverseTest);
+            auto diffInverse = resultX;
+            std::transform(resultX.begin(), resultX.end(), reverseTest.begin(), diffInverse.begin(), [](auto a, auto b){ return std::abs(a-b); });
+            const auto maxNormInverse = std::accumulate(diffInverse.begin(), diffInverse.end(), diffInverse[0], [](auto a, auto b){ return std::max(a, b); })
+                                 /std::abs(*std::max_element(reverseTest.begin(), reverseTest.end(), [](auto a, auto b){ return abs(a) < abs(b); }));
+
+            std::cout << "Maximum error in identity using the inverse (mon. decr.): " << std::scientific << maxNormInverse << "\n";
+            if (maxNormInverse > 1e-13)
+                DUNE_THROW(Dune::Exception, "Maximum error in spline interpolation too large!");
+        }
+
+        // plot with Gnuplot (plot a bit more so we can see the linear extension)
+        const auto plotPoints = Dumux::linspace(-1.0, 5.0, 1000);
+        const auto refPlot = eval(f, plotPoints);
+        const auto refDerivPlot = eval(df, plotPoints);
+        const auto resultPlot = eval([&](const double x) { return spline.eval(x); }, plotPoints);
+        const auto resultDerivPlot = eval([&](const double x) { return spline.evalDerivative(x); }, plotPoints);
+
+        Dumux::GnuplotInterface<double> gnuplot(/*persist=*/false);
+        gnuplot.setOpenPlotWindow(false);
+        gnuplot.addDataSetToPlot(plotPoints, refPlot, prefix + "exp_reference");
+        gnuplot.addDataSetToPlot(plotPoints, refDerivPlot, prefix + "exp_reference_derivative");
+        gnuplot.addDataSetToPlot(plotPoints, resultPlot, prefix + "monotspline");
+        gnuplot.addDataSetToPlot(plotPoints, resultDerivPlot, prefix + "monotspline_derivative");
+        gnuplot.plot(prefix + "monotspline");
+    };
 
-        std::cout << "Maximum error in identity using the inverse (mon. incr.): " << std::scientific << maxNormInverse << "\n";
-        if (maxNormInverse > 1e-13)
-            DUNE_THROW(Dune::Exception, "Maximum error in spline interpolation too large!");
-    }
-    // test inverse by evaluating (x = f^-1(f(x))) for monotonically decreasing function
     {
-        auto reverseTest = testPoints;
-        std::reverse(reverseTest.begin(), reverseTest.end());
-        const auto resultX = eval([&](double x){ return spline.evalInverse(spline.eval(x)); }, reverseTest);
-        auto diffInverse = resultX;
-        std::transform(resultX.begin(), resultX.end(), reverseTest.begin(), diffInverse.begin(), [](auto a, auto b){ return std::abs(a-b); });
-        const auto maxNormInverse = std::accumulate(diffInverse.begin(), diffInverse.end(), diffInverse[0], [](auto a, auto b){ return std::max(a, b); })
-                             /(*std::max_element(reverseTest.begin(), reverseTest.end()));
-
-        std::cout << "Maximum error in identity using the inverse (mon. decr.): " << std::scientific << maxNormInverse << "\n";
-        if (maxNormInverse > 1e-13)
-            DUNE_THROW(Dune::Exception, "Maximum error in spline interpolation too large!");
+        // we test the spline interpolation against a sample function
+        // monotonically increasing function
+        const auto f = [](double x){ return x*x*x; };
+        const auto df = [](double x){ return 3*x*x; };
+
+        const auto testPoints = Dumux::linspace(0.0, 4.0, 1000);
+        const auto samplePoints = Dumux::linspace(0.0, 5.0, 10);
+        test(f, df, testPoints, samplePoints, "x3in");
+
+        const auto testPoints2 = Dumux::linspace(4.0, 0.0, 1000);
+        const auto samplePoints2 = Dumux::linspace(5.0, 0.0, 10);
+        test(f, df, testPoints2, samplePoints2, "x3de");
     }
 
-    // plot with Gnuplot (plot a bit more so we can see the linear extension)
-    const auto plotPoints = Dumux::linspace(-1.0, 5.0, 1000);
-    const auto refPlot = eval(f, plotPoints);
-    const auto refDerivPlot = eval(df, plotPoints);
-    const auto resultPlot = eval([&](const double x) { return spline.eval(x); }, plotPoints);
-    const auto resultDerivPlot = eval([&](const double x) { return spline.evalDerivative(x); }, plotPoints);
-
-    Dumux::GnuplotInterface<double> gnuplot(/*persist=*/false);
-    gnuplot.setOpenPlotWindow(false);
-    gnuplot.addDataSetToPlot(plotPoints, refPlot, "exp_reference");
-    gnuplot.addDataSetToPlot(plotPoints, refDerivPlot, "exp_reference_derivative");
-    gnuplot.addDataSetToPlot(plotPoints, resultPlot, "monotspline");
-    gnuplot.addDataSetToPlot(plotPoints, resultDerivPlot, "monotspline_derivative");
-    gnuplot.plot("monotspline");
+    {
+        // we test the spline interpolation against a sample function
+        // monotonically decreasing function
+        const auto f = [](double x){ return -x*x*x; };
+        const auto df = [](double x){ return -3*x*x; };
+
+        const auto testPoints = Dumux::linspace(0.0, 4.0, 1000);
+        const auto samplePoints = Dumux::linspace(0.0, 5.0, 10);
+        test(f, df, testPoints, samplePoints, "mx3in");
+
+        const auto testPoints2 = Dumux::linspace(4.0, 0.0, 1000);
+        const auto samplePoints2 = Dumux::linspace(5.0, 0.0, 10);
+        test(f, df, testPoints2, samplePoints2, "mx3de");
+    }
 
     return 0;
 }
-- 
GitLab