diff --git a/doc/handbook/5_spatialdiscretizations.tex b/doc/handbook/5_spatialdiscretizations.tex index cae1e5115f446b3d30b4f14cf50555a22529e261..8d3af5f9454efd26258e1d46f3f3e38c7118e924 100644 --- a/doc/handbook/5_spatialdiscretizations.tex +++ b/doc/handbook/5_spatialdiscretizations.tex @@ -45,13 +45,13 @@ In the following, the discretization of the balance equation is going to be deri From the \textsc{Reynolds} transport theorem follows the general balance equation: \begin{equation} - \underbrace{\int_\Omega \frac{\partial}{\partial t} \: u \: dx}_{1} - + \underbrace{\int_{\partial\Omega} (\mathbf{v} u + \mathbf w) \cdot \textbf n \: d\varGamma}_{2} = \underbrace{\int_\Omega q \: dx}_{3} + \underbrace{\int_\Omega \frac{\partial}{\partial t} \: u \, \mathrm{d}x}_{1} + + \underbrace{\int_{\partial\Omega} (\mathbf{v} u + \mathbf w) \cdot \textbf n \, \mathrm{d}\Gamma}_{2} = \underbrace{\int_\Omega q \, \mathrm{d}x}_{3} \end{equation} \begin{equation} - f(u) = \int_\Omega \frac{\partial u}{\partial t} \: dx + \int_{\Omega} \nabla \cdot - \underbrace{\left[ \mathbf{v} u + \mathbf w(u)\right] }_{F(u)} \: dx - \int_\Omega q \: dx = 0 + f(u) = \int_\Omega \frac{\partial u}{\partial t} \, \mathrm{d}x + \int_{\Omega} \nabla \cdot + \underbrace{\left[ \mathbf{v} u + \mathbf w(u)\right] }_{F(u)} \, \mathrm{d}x - \int_\Omega q \, \mathrm{d}x = 0 \end{equation} where term 1 describes the changes of entity $u$ within a control volume over time, term 2 the advective, diffusive and dispersive fluxes over the interfaces @@ -106,14 +106,14 @@ of the residual $\varepsilon$ with a weighting function $W_j$ and claiming that this product has to vanish within the whole domain, \begin{equation} - \int_\Omega W_j \cdot \varepsilon \: \overset {!}{=} \: 0 \qquad \textrm{with} \qquad \sum_j W_j =1 + \int_\Omega W_j \cdot \varepsilon \, \mathrm{d}x \overset {!}{=} \: 0 \qquad \textrm{with} \qquad \sum_j W_j =1 \end{equation} yields the following equation: \begin{equation} - \int_\Omega W_j \frac{\partial \tilde u}{\partial t} \: dx + \int_\Omega W_j - \cdot \left[ \nabla \cdot F(\tilde u) \right] \: dx - \int_\Omega W_j - \cdot q \: dx = \int_\Omega W_j \cdot \varepsilon \: dx \: \overset {!}{=} \: 0. + \int_\Omega W_j \frac{\partial \tilde u}{\partial t} \, \mathrm{d}x + \int_\Omega W_j + \cdot \left[ \nabla \cdot F(\tilde u) \right] \, \mathrm{d}x - \int_\Omega W_j + \cdot q \, \mathrm{d}x = \int_\Omega W_j \cdot \varepsilon \, \mathrm{d}x \: \overset {!}{=} \: 0. \label{eq:weightedResidual} \end{equation} @@ -133,17 +133,17 @@ Thus, the Box method is a Petrov-Galerkin scheme, where the weighting functions Inserting definition \eqref{eq:weightingFunctions} into equation \eqref{eq:weightedResidual} and using the \textsc{Green-Gaussian} integral theorem results in \begin{equation} - \int_{B_j} \frac{\partial \tilde u}{\partial t} \: dx + \int_{\partial B_j} F(\tilde u) \cdot \mathbf n \: d\varGamma_{B_j} - \int_{B_j} q \: dx \overset {!}{=} \: 0, + \int_{B_j} \frac{\partial \tilde u}{\partial t} \, \mathrm{d}x + \int_{\partial B_j} F(\tilde u) \cdot \mathbf n \, \mathrm{d}\Gamma_{B_j} - \int_{B_j} q \, \mathrm{d}x \overset {!}{=} \: 0, \label{eq:BoxMassBlance} \end{equation} which has to hold for every box $B_j$. The first term in equation \eqref{eq:BoxMassBlance} can be written as \begin{equation} -\int_{B_j} \frac{\partial \tilde u}{\partial t} \: dx = \frac{d}{dt} \int_{B_j} \sum_i \hat u_i N_i \: dx = \sum_i \frac{\partial \hat u_i}{\partial t} \int_{B_j} N_i \: dx. +\int_{B_j} \frac{\partial \tilde u}{\partial t} \, \mathrm{d}x = \frac{d}{dt} \int_{B_j} \sum_i \hat u_i N_i \, \mathrm{d}x = \sum_i \frac{\partial \hat u_i}{\partial t} \int_{B_j} N_i \, \mathrm{d}x. \end{equation} Here, a mass lumping technique is applied by assuming that the storage capacity is -reduced to the nodes. This means that the integrals $M_{i,j} = \int_{B_j} N_i \: dx$ +reduced to the nodes. This means that the integrals $M_{i,j} = \int_{B_j} N_i \, \mathrm{d}x$ are replaced by some mass lumped terms $M^{lump}_{i,j}$ which are defined as \begin{equation} M^{lump}_{i,j} =\begin{cases} |B_j| &j = i\\ @@ -156,9 +156,9 @@ The application of this assumption yields \begin{equation} \label{eq:disc1} |B_j| \frac{\partial \hat u_j}{\partial t} - + \int_{\partial B_j} F(\tilde u) \cdot \mathbf n \: d\varGamma_{B_j} - Q_j = 0, + + \int_{\partial B_j} F(\tilde u) \cdot \mathbf n \, \mathrm{d}\Gamma_{B_j} - Q_j = 0, \end{equation} -where $Q_j$ is an approximation (using some quadrature rule) of the integrated source/sink term $\int_{B_j} q \: dx$. +where $Q_j$ is an approximation (using some quadrature rule) of the integrated source/sink term $\int_{B_j} q \, \mathrm{d}x$. Using an implicit Euler time discretization finally leads to the discretized form which will be applied to the mathematical @@ -168,7 +168,7 @@ flow and transport equations: \label{eq:discfin} |B_j| \frac{\hat u_j^{n+1} - \hat u_j^{n}}{\Delta t} + \int_{\partial B_j} F(\tilde u^{n+1}) \cdot \mathbf n - \; d{\varGamma}_{B_j} - Q_j^{n+1} \: = 0. + \; \mathrm{d}\Gamma_{B_j} - Q_j^{n+1} \: = 0. \end{equation} Equation \eqref{eq:discfin} has to be fulfilled for each box $B_j$. @@ -193,7 +193,7 @@ We denote by $\mathcal{M}$ the mesh that results from the division of the domain For the derivation of the finite-volume formulation we integrate the first equation of \eqref{eq:elliptic} over a control volume $K$ and apply the Gauss divergence theorem: \begin{equation} - \int_{\partial K} \left( - \mathbf{\Lambda} \nabla u \right) \cdot \mathbf{n} \, \mathrm{d} \Gamma = \int_K q \, \mathrm{d}\Omega. + \int_{\partial K} \left( - \mathbf{\Lambda} \nabla u \right) \cdot \mathbf{n} \, \mathrm{d} \Gamma = \int_K q \, \mathrm{d}x. \label{eq:ellipticIntegrated} \end{equation}