diff --git a/dumux/geomechanics/elastic/model.hh b/dumux/geomechanics/elastic/model.hh
index 82614c943f8ff39a015ecf7e49dd6a2987a83f91..5feebaa59faf060857e43b6abd69d22c5c7e310e 100644
--- a/dumux/geomechanics/elastic/model.hh
+++ b/dumux/geomechanics/elastic/model.hh
@@ -19,7 +19,27 @@
 /*!
  * \file
  * \ingroup Elastic
- * \brief Defines a type tag and some properties for the elastic geomechanical model
+ * \brief A geomechanical model.
+ *
+ * This model describe the deformation of the solid body, using theory of linear elasticity:
+ \f[
+ \boldsymbol{\nabla}\cdot\boldsymbol{\sigma_s} + \mathbf{F} + \rho_s \mathbf{g} = \rho\ddot{\mathbf{u}}
+ \f]
+ * We assume the quasi-static conditions, so the acceleration term \f$ \rho\ddot{\mathbf{u}} \approx 0\f$.
+ *
+ * For isotropic materials, the stress tensor \f$ \boldsymbol{\sigma_s} \f$ can be calculated after Hookes' Law
+ \f[
+ {\boldsymbol {\sigma_s}}= \lambda \mathrm{tr}(\varepsilon)  \boldsymbol{\mathrm I}+ 2G \varepsilon,
+ \f]
+ * with
+ \f[
+ {\boldsymbol {\varepsilon }}={\frac {1}{2}}\left[{\boldsymbol {\nabla }}\mathbf {u} +({\boldsymbol {\nabla }}\mathbf {u} )^{\mathrm {T} }\right].
+ \f]
+ *
+ * Gravity can be enabled or disabled via the property system.
+ *
+ * The equations are discretized using a vertex-centered finite volume (box) scheme as spatial discretization. The time discretization is not needed due to the quasi-static conditions.
+ * PrimaryVariables are the displacements in each direction \f$ \mathbf{u} \f$.
  */
 #ifndef DUMUX_GEOMECHANICS_ELASTIC_MODEL_HH
 #define DUMUX_GEOMECHANICS_ELASTIC_MODEL_HH
diff --git a/dumux/geomechanics/poroelastic/model.hh b/dumux/geomechanics/poroelastic/model.hh
index 68334dd6e781e40eababcfa2ef37bc3483dec67d..8d0aeca94ae4f44855899e1a71e32f98683058a5 100644
--- a/dumux/geomechanics/poroelastic/model.hh
+++ b/dumux/geomechanics/poroelastic/model.hh
@@ -19,7 +19,32 @@
 /*!
  * \file
  * \ingroup PoroElastic
- * \brief Defines a type tag and some properties for the poroelastic geomechanical model
+ * \brief A poroelastic geomechanical model
+ *
+ * The adapted geomechanical model describes the deformation of the solid matrix filled with fluids, using linear poro-elasticity:
+ \f[
+ \boldsymbol{\nabla}\cdot\boldsymbol{\sigma} + \mathbf{F} + \rho \mathbf{g} = \rho\ddot{\mathbf{u}}
+ \f]
+ * where the density of the matrix \f$ \rho = \phi \sum_{\beta} S_{\beta} \rho_{\beta} + (1-\phi) \rho_s\f$.
+ *
+ * We assume the quasi-static conditions, so the acceleration term \f$ \rho\ddot{\mathbf{u}} \approx 0\f$.
+ *
+ * For isotropic materials, the stress tensor \f$ \boldsymbol{\sigma} \f$ can be calculated after Hookes' Law, including the effective fluid pressure.
+ \f[
+ {\boldsymbol {\sigma}}= \lambda \mathrm{tr}(\varepsilon) \boldsymbol{\mathrm I}+ 2G \varepsilon - \alpha p_{\mathrm{eff}} \boldsymbol{\mathrm I},
+ \f]
+ * with
+ \f[
+ {\boldsymbol {\varepsilon }}={\frac {1}{2}}\left[{\boldsymbol {\nabla }}\mathbf {u} +({\boldsymbol {\nabla }}\mathbf {u} )^{\mathrm {T} }\right],
+ \f]
+ * and
+ \f[
+ p_{\mathrm{eff}} = \sum_{\beta} S_{\beta} p_{\beta}.
+ \f]
+ * Gravity can be enabled or disabled via the property system.
+ *
+ * The equations are discretized using a vertex-centered finite volume (box) scheme as spatial discretization. The time discretization is not needed due to the quasi-static conditions.
+ * PrimaryVariables are the displacements in each direction \f$ \mathbf{u} \f$.
  */
 #ifndef DUMUX_GEOMECHANICS_POROELASTIC_MODEL_HH
 #define DUMUX_GEOMECHANICS_POROELASTIC_MODEL_HH