diff --git a/test/porousmediumflow/1p/implicit/1pniconvectionproblem.hh b/test/porousmediumflow/1p/implicit/1pniconvectionproblem.hh index 1f5b59b005a17ef345e6e5c24a137f1d2c6873c4..885e93ce1762cb6485599b75d23bbb5ed08d4885 100644 --- a/test/porousmediumflow/1p/implicit/1pniconvectionproblem.hh +++ b/test/porousmediumflow/1p/implicit/1pniconvectionproblem.hh @@ -27,8 +27,8 @@ #include <math.h> -#include <dumux/implicit/cellcentered/tpfa/properties.hh> -#include <dumux/implicit/cellcentered/mpfa/properties.hh> +#include <dumux/discretization/cellcentered/tpfa/properties.hh> +#include <dumux/discretization/cellcentered/mpfa/properties.hh> #include <dumux/porousmediumflow/1p/implicit/model.hh> #include <dumux/porousmediumflow/problem.hh> #include <dumux/material/components/h2o.hh> diff --git a/test/porousmediumflow/1p/implicit/test_cc1p.cc b/test/porousmediumflow/1p/implicit/test_cc1p.cc index 9df938bd710a07429be03381ed33af3a27a092bd..68dbad89779e74f186c153247c20c433783a68a6 100644 --- a/test/porousmediumflow/1p/implicit/test_cc1p.cc +++ b/test/porousmediumflow/1p/implicit/test_cc1p.cc @@ -22,8 +22,34 @@ * \brief test for the one-phase CC model */ #include <config.h> + +#include <ctime> +#include <iostream> + +#include <dune/common/parallel/mpihelper.hh> +#include <dune/common/timer.hh> +#include <dune/grid/io/file/dgfparser/dgfexception.hh> +#include <dune/grid/io/file/vtk.hh> +#include <dune/istl/io.hh> + #include "1ptestproblem.hh" -#include <dumux/common/start.hh> + +#include <dumux/common/propertysystem.hh> +#include <dumux/common/parameters.hh> +#include <dumux/common/valgrind.hh> +#include <dumux/common/dumuxmessage.hh> +#include <dumux/common/defaultusagemessage.hh> + +#include <dumux/linear/amgbackend.hh> +#include <dumux/nonlinear/newtonmethod.hh> +#include <dumux/nonlinear/newtoncontroller.hh> + +#include <dumux/assembly/fvassembler.hh> +#include <dumux/assembly/diffmethod.hh> + +#include <dumux/discretization/methods.hh> + +#include <dumux/io/vtkoutputmodule.hh> /*! * \brief Provides an interface for customizing error messages associated with @@ -56,8 +82,171 @@ void usage(const char *progName, const std::string &errorMsg) } } -int main(int argc, char** argv) +int main(int argc, char** argv) try +{ + using namespace Dumux; + + // define the type tag for this problem + using TypeTag = TTAG(TYPETAG); + + // initialize MPI, finalize is done automatically on exit + const auto& mpiHelper = Dune::MPIHelper::instance(argc, argv); + + // print dumux start message + if (mpiHelper.rank() == 0) + DumuxMessage::print(/*firstCall=*/true); + + // parse command line arguments and input file + Parameters::init(argc, argv, usage); + + // try to create a grid (from the given grid file or the input file) + using GridCreator = typename GET_PROP_TYPE(TypeTag, GridCreator); + GridCreator::makeGrid(); + GridCreator::loadBalance(); + + //////////////////////////////////////////////////////////// + // run instationary non-linear problem on this grid + //////////////////////////////////////////////////////////// + + // we compute on the leaf grid view + const auto& leafGridView = GridCreator::grid().leafGridView(); + + // create the finite volume grid geometry + using FVGridGeometry = typename GET_PROP_TYPE(TypeTag, FVGridGeometry); + auto fvGridGeometry = std::make_shared<FVGridGeometry>(leafGridView); + fvGridGeometry->update(); + + // the problem (initial and boundary conditions) + using Problem = typename GET_PROP_TYPE(TypeTag, Problem); + auto problem = std::make_shared<Problem>(fvGridGeometry); + + // the solution vector + using GridView = typename GET_PROP_TYPE(TypeTag, GridView); + using SolutionVector = typename GET_PROP_TYPE(TypeTag, SolutionVector); + SolutionVector x(leafGridView.size(GridView::dimension)); + problem->applyInitialSolution(x); + auto xOld = x; + + // the grid variables + using GridVariables = typename GET_PROP_TYPE(TypeTag, GridVariables); + auto gridVariables = std::make_shared<GridVariables>(problem, fvGridGeometry); + gridVariables->init(x, xOld); + + // get some time loop parameters + using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar); + const auto tEnd = getParam<Scalar>("TimeLoop.TEnd"); + const auto maxDivisions = getParam<int>("TimeLoop.MaxTimeStepDivisions"); + const auto maxDt = getParam<Scalar>("TimeLoop.MaxTimeStepSize"); + auto dt = getParam<Scalar>("TimeLoop.DtInitial"); + + // check if we are about to restart a previously interrupted simulation + Scalar restartTime = 0; + if (Parameters::getTree().hasKey("Restart") || Parameters::getTree().hasKey("TimeLoop.Restart")) + restartTime = getParam<Scalar>("TimeLoop.Restart"); + + // intialize the vtk output module + using VtkOutputFields = typename GET_PROP_TYPE(TypeTag, VtkOutputFields); + VtkOutputModule<TypeTag> vtkWriter(*problem, *fvGridGeometry, *gridVariables, x, problem->name()); + VtkOutputFields::init(vtkWriter); //! Add model specific output fields + vtkWriter.write(0.0); + + // instantiate time loop + auto timeLoop = std::make_shared<TimeLoop<Scalar>>(restartTime, dt, tEnd); + timeLoop->setMaxTimeStepSize(maxDt); + + // the assembler with time loop for instationary problem + using Assembler = FVAssembler<TypeTag, DiffMethod::numeric>; + auto assembler = std::make_shared<Assembler>(problem, fvGridGeometry, gridVariables, timeLoop); + + // the linear solver + using LinearSolver = AMGBackend<TypeTag>; + auto linearSolver = std::make_shared<LinearSolver>(leafGridView, fvGridGeometry->elementMapper()); + + // the non-linear solver + using NewtonController = NewtonController<TypeTag>; + using NewtonMethod = NewtonMethod<TypeTag, NewtonController, Assembler, LinearSolver>; + auto newtonController = std::make_shared<NewtonController>(leafGridView.comm(), timeLoop); + NewtonMethod nonLinearSolver(newtonController, assembler, linearSolver); + + // time loop + timeLoop->start(); do + { + // set previous solution for storage evaluations + assembler->setPreviousSolution(xOld); + + // try solving the non-linear system + for (int i = 0; i < maxDivisions; ++i) + { + // linearize & solve + auto converged = nonLinearSolver.solve(x); + + if (converged) + break; + + if (!converged && i == maxDivisions-1) + DUNE_THROW(Dune::MathError, + "Newton solver didn't converge after " + << maxDivisions + << " time-step divisions. dt=" + << timeLoop->timeStepSize() + << ".\nThe solutions of the current and the previous time steps " + << "have been saved to restart files."); + } + + // make the new solution the old solution + xOld = x; + gridVariables->advanceTimeStep(); + + // advance to the time loop to the next step + timeLoop->advanceTimeStep(); + + // write vtk output + vtkWriter.write(timeLoop->time()); + + // report statistics of this time step + timeLoop->reportTimeStep(); + + // set new dt as suggested by newton controller + timeLoop->setTimeStepSize(newtonController->suggestTimeStepSize(timeLoop->timeStepSize())); + + } while (!timeLoop->finished()); + + timeLoop->finalize(leafGridView.comm()); + + //////////////////////////////////////////////////////////// + // finalize, print dumux message to say goodbye + //////////////////////////////////////////////////////////// + + // print dumux end message + if (mpiHelper.rank() == 0) + { + Parameters::print(); + DumuxMessage::print(/*firstCall=*/false); + } + + return 0; +} // end main +catch (Dumux::ParameterException &e) +{ + std::cerr << std::endl << e << " ---> Abort!" << std::endl; + return 1; +} +catch (Dune::DGFException & e) +{ + std::cerr << "DGF exception thrown (" << e << + "). Most likely, the DGF file name is wrong " + "or the DGF file is corrupted, " + "e.g. missing hash at end of file or wrong number (dimensions) of entries." + << " ---> Abort!" << std::endl; + return 2; +} +catch (Dune::Exception &e) +{ + std::cerr << "Dune reported error: " << e << " ---> Abort!" << std::endl; + return 3; +} +catch (...) { - typedef TTAG(OnePTestCCProblem) ProblemTypeTag; - return Dumux::start<ProblemTypeTag>(argc, argv, usage); + std::cerr << "Unknown exception thrown! ---> Abort!" << std::endl; + return 4; } diff --git a/test/porousmediumflow/1p/implicit/test_cc1pfracture2d3d.cc b/test/porousmediumflow/1p/implicit/test_cc1pfracture2d3d.cc index 4a3d85bc6cf39d7aab76da8e24c3177b3b80d6c4..5134b32d4ecc3625ddf281dbf7b9da0ee289327a 100644 --- a/test/porousmediumflow/1p/implicit/test_cc1pfracture2d3d.cc +++ b/test/porousmediumflow/1p/implicit/test_cc1pfracture2d3d.cc @@ -22,9 +22,34 @@ * \brief test for the one-phase CC model */ #include <config.h> + +#include <ctime> +#include <iostream> + +#include <dune/common/parallel/mpihelper.hh> +#include <dune/common/timer.hh> +#include <dune/grid/io/file/dgfparser/dgfexception.hh> +#include <dune/grid/io/file/vtk.hh> +#include <dune/istl/io.hh> + #include "fractureproblem.hh" -#include <dumux/common/start.hh> +#include <dumux/common/propertysystem.hh> +#include <dumux/common/parameters.hh> +#include <dumux/common/valgrind.hh> +#include <dumux/common/dumuxmessage.hh> +#include <dumux/common/defaultusagemessage.hh> + +#include <dumux/linear/amgbackend.hh> +#include <dumux/nonlinear/newtonmethod.hh> +#include <dumux/nonlinear/newtoncontroller.hh> + +#include <dumux/assembly/fvassembler.hh> +#include <dumux/assembly/diffmethod.hh> + +#include <dumux/discretization/methods.hh> + +#include <dumux/io/vtkoutputmodule.hh> /*! * \brief Provides an interface for customizing error messages associated with * reading in parameters. @@ -50,14 +75,179 @@ void usage(const char *progName, const std::string &errorMsg) } } -int main(int argc, char** argv) +int main(int argc, char** argv) try { #if HAVE_DUNE_FOAMGRID - typedef TTAG(FractureCCProblem) ProblemTypeTag; - return Dumux::start<ProblemTypeTag>(argc, argv, usage); + using namespace Dumux; + + // define the type tag for this problem + using TypeTag = TTAG(TYPETAG); + + // initialize MPI, finalize is done automatically on exit + const auto& mpiHelper = Dune::MPIHelper::instance(argc, argv); + + // print dumux start message + if (mpiHelper.rank() == 0) + DumuxMessage::print(/*firstCall=*/true); + + // parse command line arguments and input file + Parameters::init(argc, argv, usage); + + // try to create a grid (from the given grid file or the input file) + using GridCreator = typename GET_PROP_TYPE(TypeTag, GridCreator); + GridCreator::makeGrid(); + GridCreator::loadBalance(); + + //////////////////////////////////////////////////////////// + // run instationary non-linear problem on this grid + //////////////////////////////////////////////////////////// + + // we compute on the leaf grid view + const auto& leafGridView = GridCreator::grid().leafGridView(); + + // create the finite volume grid geometry + using FVGridGeometry = typename GET_PROP_TYPE(TypeTag, FVGridGeometry); + auto fvGridGeometry = std::make_shared<FVGridGeometry>(leafGridView); + fvGridGeometry->update(); + + // the problem (initial and boundary conditions) + using Problem = typename GET_PROP_TYPE(TypeTag, Problem); + auto problem = std::make_shared<Problem>(fvGridGeometry); + + // the solution vector + using GridView = typename GET_PROP_TYPE(TypeTag, GridView); + using SolutionVector = typename GET_PROP_TYPE(TypeTag, SolutionVector); + SolutionVector x(leafGridView.size(GridView::dimension)); + problem->applyInitialSolution(x); + auto xOld = x; + + // the grid variables + using GridVariables = typename GET_PROP_TYPE(TypeTag, GridVariables); + auto gridVariables = std::make_shared<GridVariables>(problem, fvGridGeometry); + gridVariables->init(x, xOld); + + // get some time loop parameters + using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar); + const auto tEnd = getParam<Scalar>("TimeLoop.TEnd"); + const auto maxDivisions = getParam<int>("TimeLoop.MaxTimeStepDivisions"); + const auto maxDt = getParam<Scalar>("TimeLoop.MaxTimeStepSize"); + auto dt = getParam<Scalar>("TimeLoop.DtInitial"); + + // check if we are about to restart a previously interrupted simulation + Scalar restartTime = 0; + if (Parameters::getTree().hasKey("Restart") || Parameters::getTree().hasKey("TimeLoop.Restart")) + restartTime = getParam<Scalar>("TimeLoop.Restart"); + + // intialize the vtk output module + using VtkOutputFields = typename GET_PROP_TYPE(TypeTag, VtkOutputFields); + VtkOutputModule<TypeTag> vtkWriter(*problem, *fvGridGeometry, *gridVariables, x, problem->name()); + VtkOutputFields::init(vtkWriter); //! Add model specific output fields + vtkWriter.write(0.0); + + // instantiate time loop + auto timeLoop = std::make_shared<TimeLoop<Scalar>>(restartTime, dt, tEnd); + timeLoop->setMaxTimeStepSize(maxDt); + + // the assembler with time loop for instationary problem + using Assembler = FVAssembler<TypeTag, DiffMethod::numeric>; + auto assembler = std::make_shared<Assembler>(problem, fvGridGeometry, gridVariables, timeLoop); + + // the linear solver + using LinearSolver = AMGBackend<TypeTag>; + auto linearSolver = std::make_shared<LinearSolver>(leafGridView, fvGridGeometry->elementMapper()); + + // the non-linear solver + using NewtonController = NewtonController<TypeTag>; + using NewtonMethod = NewtonMethod<TypeTag, NewtonController, Assembler, LinearSolver>; + auto newtonController = std::make_shared<NewtonController>(leafGridView.comm(), timeLoop); + NewtonMethod nonLinearSolver(newtonController, assembler, linearSolver); + + // time loop + timeLoop->start(); do + { + // set previous solution for storage evaluations + assembler->setPreviousSolution(xOld); + + // try solving the non-linear system + for (int i = 0; i < maxDivisions; ++i) + { + // linearize & solve + auto converged = nonLinearSolver.solve(x); + + if (converged) + break; + + if (!converged && i == maxDivisions-1) + DUNE_THROW(Dune::MathError, + "Newton solver didn't converge after " + << maxDivisions + << " time-step divisions. dt=" + << timeLoop->timeStepSize() + << ".\nThe solutions of the current and the previous time steps " + << "have been saved to restart files."); + } + + // make the new solution the old solution + xOld = x; + gridVariables->advanceTimeStep(); + + // advance to the time loop to the next step + timeLoop->advanceTimeStep(); + + // write vtk output + vtkWriter.write(timeLoop->time()); + + // report statistics of this time step + timeLoop->reportTimeStep(); + + // set new dt as suggested by newton controller + timeLoop->setTimeStepSize(newtonController->suggestTimeStepSize(timeLoop->timeStepSize())); + + } while (!timeLoop->finished()); + + timeLoop->finalize(leafGridView.comm()); + + //////////////////////////////////////////////////////////// + // finalize, print dumux message to say goodbye + //////////////////////////////////////////////////////////// + + // print dumux end message + if (mpiHelper.rank() == 0) + { + Parameters::print(); + DumuxMessage::print(/*firstCall=*/false); + } + + return 0; + #else #warning External grid module dune-foamgrid needed to run this example. std::cerr << "Test skipped, it needs dune-foamgrid!" << std::endl; return 77; #endif + +} // end main +catch (Dumux::ParameterException &e) +{ + std::cerr << std::endl << e << " ---> Abort!" << std::endl; + return 1; +} +catch (Dune::DGFException & e) +{ + std::cerr << "DGF exception thrown (" << e << + "). Most likely, the DGF file name is wrong " + "or the DGF file is corrupted, " + "e.g. missing hash at end of file or wrong number (dimensions) of entries." + << " ---> Abort!" << std::endl; + return 2; +} +catch (Dune::Exception &e) +{ + std::cerr << "Dune reported error: " << e << " ---> Abort!" << std::endl; + return 3; +} +catch (...) +{ + std::cerr << "Unknown exception thrown! ---> Abort!" << std::endl; + return 4; } diff --git a/test/porousmediumflow/1p/implicit/test_cc1pnetwork1d3d.cc b/test/porousmediumflow/1p/implicit/test_cc1pnetwork1d3d.cc index 21253b075349aae3085f212613348d351f9f3b64..2b664734cc9680ec7e9eab7525a28c99ee3ef6a0 100644 --- a/test/porousmediumflow/1p/implicit/test_cc1pnetwork1d3d.cc +++ b/test/porousmediumflow/1p/implicit/test_cc1pnetwork1d3d.cc @@ -22,17 +22,232 @@ * \brief test for the one-phase CC model */ #include <config.h> + +#include <ctime> +#include <iostream> + +#include <dune/common/parallel/mpihelper.hh> +#include <dune/common/timer.hh> +#include <dune/grid/io/file/dgfparser/dgfexception.hh> +#include <dune/grid/io/file/vtk.hh> +#include <dune/istl/io.hh> + #include "tubesproblem.hh" -#include <dumux/common/start.hh> -int main(int argc, char** argv) +#include <dumux/common/propertysystem.hh> +#include <dumux/common/parameters.hh> +#include <dumux/common/valgrind.hh> +#include <dumux/common/dumuxmessage.hh> +#include <dumux/common/defaultusagemessage.hh> + +#include <dumux/linear/amgbackend.hh> +#include <dumux/nonlinear/newtonmethod.hh> +#include <dumux/nonlinear/newtoncontroller.hh> + +#include <dumux/assembly/fvassembler.hh> +#include <dumux/assembly/diffmethod.hh> + +#include <dumux/discretization/methods.hh> + +#include <dumux/io/vtkoutputmodule.hh> +/*! + * \brief Provides an interface for customizing error messages associated with + * reading in parameters. + * + * \param progName The name of the program, that was tried to be started. + * \param errorMsg The error message that was issued by the start function. + * Comprises the thing that went wrong and a general help message. + */ +void usage(const char *progName, const std::string &errorMsg) +{ + if (errorMsg.size() > 0) { + std::string errorMessageOut = "\nUsage: "; + errorMessageOut += progName; + errorMessageOut += " [options]\n"; + errorMessageOut += errorMsg; + errorMessageOut += "\n\nThe list of mandatory arguments for this program is:\n" + "\t-TimeManager.TEnd End of the simulation [s] \n" + "\t-TimeManager.DtInitial Initial timestep size [s] \n" + "\t-Grid.File The grid file\n"; + + std::cout << errorMessageOut + << "\n"; + } +} + +int main(int argc, char** argv) try { #if HAVE_DUNE_FOAMGRID - typedef TTAG(TubesTestCCTpfaProblem) ProblemTypeTag; - return Dumux::start<ProblemTypeTag>(argc, argv, [](const char *, const std::string &){}); + using namespace Dumux; + + // define the type tag for this problem + using TypeTag = TTAG(TYPETAG); + + // initialize MPI, finalize is done automatically on exit + const auto& mpiHelper = Dune::MPIHelper::instance(argc, argv); + + // print dumux start message + if (mpiHelper.rank() == 0) + DumuxMessage::print(/*firstCall=*/true); + + // parse command line arguments and input file + Parameters::init(argc, argv, usage); + + // try to create a grid (from the given grid file or the input file) + using GridCreator = typename GET_PROP_TYPE(TypeTag, GridCreator); + GridCreator::makeGrid(); + GridCreator::loadBalance(); + + //////////////////////////////////////////////////////////// + // run instationary non-linear problem on this grid + //////////////////////////////////////////////////////////// + + // we compute on the leaf grid view + const auto& leafGridView = GridCreator::grid().leafGridView(); + + // create the finite volume grid geometry + using FVGridGeometry = typename GET_PROP_TYPE(TypeTag, FVGridGeometry); + auto fvGridGeometry = std::make_shared<FVGridGeometry>(leafGridView); + fvGridGeometry->update(); + + // the problem (initial and boundary conditions) + using Problem = typename GET_PROP_TYPE(TypeTag, Problem); + auto problem = std::make_shared<Problem>(fvGridGeometry); + + // the solution vector + using GridView = typename GET_PROP_TYPE(TypeTag, GridView); + using SolutionVector = typename GET_PROP_TYPE(TypeTag, SolutionVector); + SolutionVector x(leafGridView.size(GridView::dimension)); + problem->applyInitialSolution(x); + auto xOld = x; + + // the grid variables + using GridVariables = typename GET_PROP_TYPE(TypeTag, GridVariables); + auto gridVariables = std::make_shared<GridVariables>(problem, fvGridGeometry); + gridVariables->init(x, xOld); + + // get some time loop parameters + using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar); + const auto tEnd = getParam<Scalar>("TimeLoop.TEnd"); + const auto maxDivisions = getParam<int>("TimeLoop.MaxTimeStepDivisions"); + const auto maxDt = getParam<Scalar>("TimeLoop.MaxTimeStepSize"); + auto dt = getParam<Scalar>("TimeLoop.DtInitial"); + + // check if we are about to restart a previously interrupted simulation + Scalar restartTime = 0; + if (Parameters::getTree().hasKey("Restart") || Parameters::getTree().hasKey("TimeLoop.Restart")) + restartTime = getParam<Scalar>("TimeLoop.Restart"); + + // intialize the vtk output module + using VtkOutputFields = typename GET_PROP_TYPE(TypeTag, VtkOutputFields); + VtkOutputModule<TypeTag> vtkWriter(*problem, *fvGridGeometry, *gridVariables, x, problem->name()); + VtkOutputFields::init(vtkWriter); //! Add model specific output fields + vtkWriter.write(0.0); + + // instantiate time loop + auto timeLoop = std::make_shared<TimeLoop<Scalar>>(restartTime, dt, tEnd); + timeLoop->setMaxTimeStepSize(maxDt); + + // the assembler with time loop for instationary problem + using Assembler = FVAssembler<TypeTag, DiffMethod::numeric>; + auto assembler = std::make_shared<Assembler>(problem, fvGridGeometry, gridVariables, timeLoop); + + // the linear solver + using LinearSolver = AMGBackend<TypeTag>; + auto linearSolver = std::make_shared<LinearSolver>(leafGridView, fvGridGeometry->elementMapper()); + + // the non-linear solver + using NewtonController = NewtonController<TypeTag>; + using NewtonMethod = NewtonMethod<TypeTag, NewtonController, Assembler, LinearSolver>; + auto newtonController = std::make_shared<NewtonController>(leafGridView.comm(), timeLoop); + NewtonMethod nonLinearSolver(newtonController, assembler, linearSolver); + + // time loop + timeLoop->start(); do + { + // set previous solution for storage evaluations + assembler->setPreviousSolution(xOld); + + // try solving the non-linear system + for (int i = 0; i < maxDivisions; ++i) + { + // linearize & solve + auto converged = nonLinearSolver.solve(x); + + if (converged) + break; + + if (!converged && i == maxDivisions-1) + DUNE_THROW(Dune::MathError, + "Newton solver didn't converge after " + << maxDivisions + << " time-step divisions. dt=" + << timeLoop->timeStepSize() + << ".\nThe solutions of the current and the previous time steps " + << "have been saved to restart files."); + } + + // make the new solution the old solution + xOld = x; + gridVariables->advanceTimeStep(); + + // advance to the time loop to the next step + timeLoop->advanceTimeStep(); + + // write vtk output + vtkWriter.write(timeLoop->time()); + + // report statistics of this time step + timeLoop->reportTimeStep(); + + // set new dt as suggested by newton controller + timeLoop->setTimeStepSize(newtonController->suggestTimeStepSize(timeLoop->timeStepSize())); + + } while (!timeLoop->finished()); + + timeLoop->finalize(leafGridView.comm()); + + //////////////////////////////////////////////////////////// + // finalize, print dumux message to say goodbye + //////////////////////////////////////////////////////////// + + // print dumux end message + if (mpiHelper.rank() == 0) + { + Parameters::print(); + DumuxMessage::print(/*firstCall=*/false); + } + + return 0; + #else #warning External grid module dune-foamgrid needed to run this example. std::cerr << "Test skipped, it needs dune-foamgrid!" << std::endl; return 77; #endif + +} // end main +catch (Dumux::ParameterException &e) +{ + std::cerr << std::endl << e << " ---> Abort!" << std::endl; + return 1; +} +catch (Dune::DGFException & e) +{ + std::cerr << "DGF exception thrown (" << e << + "). Most likely, the DGF file name is wrong " + "or the DGF file is corrupted, " + "e.g. missing hash at end of file or wrong number (dimensions) of entries." + << " ---> Abort!" << std::endl; + return 2; +} +catch (Dune::Exception &e) +{ + std::cerr << "Dune reported error: " << e << " ---> Abort!" << std::endl; + return 3; +} +catch (...) +{ + std::cerr << "Unknown exception thrown! ---> Abort!" << std::endl; + return 4; } diff --git a/test/porousmediumflow/1p/implicit/test_cc1pniconduction.cc b/test/porousmediumflow/1p/implicit/test_cc1pniconduction.cc index a2f444ddda090d8855d7abe02242b493a774c2c6..64627ab40a7f84ba121982aab0d732660cff29f4 100644 --- a/test/porousmediumflow/1p/implicit/test_cc1pniconduction.cc +++ b/test/porousmediumflow/1p/implicit/test_cc1pniconduction.cc @@ -22,8 +22,34 @@ * \brief test for the 1pni CC model */ #include <config.h> + +#include <ctime> +#include <iostream> + +#include <dune/common/parallel/mpihelper.hh> +#include <dune/common/timer.hh> +#include <dune/grid/io/file/dgfparser/dgfexception.hh> +#include <dune/grid/io/file/vtk.hh> +#include <dune/istl/io.hh> + #include "1pniconductionproblem.hh" -#include <dumux/common/start.hh> + +#include <dumux/common/propertysystem.hh> +#include <dumux/common/parameters.hh> +#include <dumux/common/valgrind.hh> +#include <dumux/common/dumuxmessage.hh> +#include <dumux/common/defaultusagemessage.hh> + +#include <dumux/linear/amgbackend.hh> +#include <dumux/nonlinear/newtonmethod.hh> +#include <dumux/nonlinear/newtoncontroller.hh> + +#include <dumux/assembly/fvassembler.hh> +#include <dumux/assembly/diffmethod.hh> + +#include <dumux/discretization/methods.hh> + +#include <dumux/io/vtkoutputmodule.hh> /*! * \brief Provides an interface for customizing error messages associated with @@ -51,8 +77,171 @@ void usage(const char *progName, const std::string &errorMsg) } } -int main(int argc, char** argv) +int main(int argc, char** argv) try +{ + using namespace Dumux; + + // define the type tag for this problem + using TypeTag = TTAG(TYPETAG); + + // initialize MPI, finalize is done automatically on exit + const auto& mpiHelper = Dune::MPIHelper::instance(argc, argv); + + // print dumux start message + if (mpiHelper.rank() == 0) + DumuxMessage::print(/*firstCall=*/true); + + // parse command line arguments and input file + Parameters::init(argc, argv, usage); + + // try to create a grid (from the given grid file or the input file) + using GridCreator = typename GET_PROP_TYPE(TypeTag, GridCreator); + GridCreator::makeGrid(); + GridCreator::loadBalance(); + + //////////////////////////////////////////////////////////// + // run instationary non-linear problem on this grid + //////////////////////////////////////////////////////////// + + // we compute on the leaf grid view + const auto& leafGridView = GridCreator::grid().leafGridView(); + + // create the finite volume grid geometry + using FVGridGeometry = typename GET_PROP_TYPE(TypeTag, FVGridGeometry); + auto fvGridGeometry = std::make_shared<FVGridGeometry>(leafGridView); + fvGridGeometry->update(); + + // the problem (initial and boundary conditions) + using Problem = typename GET_PROP_TYPE(TypeTag, Problem); + auto problem = std::make_shared<Problem>(fvGridGeometry); + + // the solution vector + using GridView = typename GET_PROP_TYPE(TypeTag, GridView); + using SolutionVector = typename GET_PROP_TYPE(TypeTag, SolutionVector); + SolutionVector x(leafGridView.size(GridView::dimension)); + problem->applyInitialSolution(x); + auto xOld = x; + + // the grid variables + using GridVariables = typename GET_PROP_TYPE(TypeTag, GridVariables); + auto gridVariables = std::make_shared<GridVariables>(problem, fvGridGeometry); + gridVariables->init(x, xOld); + + // get some time loop parameters + using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar); + const auto tEnd = getParam<Scalar>("TimeLoop.TEnd"); + const auto maxDivisions = getParam<int>("TimeLoop.MaxTimeStepDivisions"); + const auto maxDt = getParam<Scalar>("TimeLoop.MaxTimeStepSize"); + auto dt = getParam<Scalar>("TimeLoop.DtInitial"); + + // check if we are about to restart a previously interrupted simulation + Scalar restartTime = 0; + if (Parameters::getTree().hasKey("Restart") || Parameters::getTree().hasKey("TimeLoop.Restart")) + restartTime = getParam<Scalar>("TimeLoop.Restart"); + + // intialize the vtk output module + using VtkOutputFields = typename GET_PROP_TYPE(TypeTag, VtkOutputFields); + VtkOutputModule<TypeTag> vtkWriter(*problem, *fvGridGeometry, *gridVariables, x, problem->name()); + VtkOutputFields::init(vtkWriter); //! Add model specific output fields + vtkWriter.write(0.0); + + // instantiate time loop + auto timeLoop = std::make_shared<TimeLoop<Scalar>>(restartTime, dt, tEnd); + timeLoop->setMaxTimeStepSize(maxDt); + + // the assembler with time loop for instationary problem + using Assembler = FVAssembler<TypeTag, DiffMethod::numeric>; + auto assembler = std::make_shared<Assembler>(problem, fvGridGeometry, gridVariables, timeLoop); + + // the linear solver + using LinearSolver = AMGBackend<TypeTag>; + auto linearSolver = std::make_shared<LinearSolver>(leafGridView, fvGridGeometry->elementMapper()); + + // the non-linear solver + using NewtonController = NewtonController<TypeTag>; + using NewtonMethod = NewtonMethod<TypeTag, NewtonController, Assembler, LinearSolver>; + auto newtonController = std::make_shared<NewtonController>(leafGridView.comm(), timeLoop); + NewtonMethod nonLinearSolver(newtonController, assembler, linearSolver); + + // time loop + timeLoop->start(); do + { + // set previous solution for storage evaluations + assembler->setPreviousSolution(xOld); + + // try solving the non-linear system + for (int i = 0; i < maxDivisions; ++i) + { + // linearize & solve + auto converged = nonLinearSolver.solve(x); + + if (converged) + break; + + if (!converged && i == maxDivisions-1) + DUNE_THROW(Dune::MathError, + "Newton solver didn't converge after " + << maxDivisions + << " time-step divisions. dt=" + << timeLoop->timeStepSize() + << ".\nThe solutions of the current and the previous time steps " + << "have been saved to restart files."); + } + + // make the new solution the old solution + xOld = x; + gridVariables->advanceTimeStep(); + + // advance to the time loop to the next step + timeLoop->advanceTimeStep(); + + // write vtk output + vtkWriter.write(timeLoop->time()); + + // report statistics of this time step + timeLoop->reportTimeStep(); + + // set new dt as suggested by newton controller + timeLoop->setTimeStepSize(newtonController->suggestTimeStepSize(timeLoop->timeStepSize())); + + } while (!timeLoop->finished()); + + timeLoop->finalize(leafGridView.comm()); + + //////////////////////////////////////////////////////////// + // finalize, print dumux message to say goodbye + //////////////////////////////////////////////////////////// + + // print dumux end message + if (mpiHelper.rank() == 0) + { + Parameters::print(); + DumuxMessage::print(/*firstCall=*/false); + } + + return 0; +} // end main +catch (Dumux::ParameterException &e) +{ + std::cerr << std::endl << e << " ---> Abort!" << std::endl; + return 1; +} +catch (Dune::DGFException & e) +{ + std::cerr << "DGF exception thrown (" << e << + "). Most likely, the DGF file name is wrong " + "or the DGF file is corrupted, " + "e.g. missing hash at end of file or wrong number (dimensions) of entries." + << " ---> Abort!" << std::endl; + return 2; +} +catch (Dune::Exception &e) +{ + std::cerr << "Dune reported error: " << e << " ---> Abort!" << std::endl; + return 3; +} +catch (...) { - typedef TTAG(OnePNIConductionCCProblem) ProblemTypeTag; - return Dumux::start<ProblemTypeTag>(argc, argv, usage); + std::cerr << "Unknown exception thrown! ---> Abort!" << std::endl; + return 4; } diff --git a/test/porousmediumflow/1p/implicit/test_cc1pniconvection.cc b/test/porousmediumflow/1p/implicit/test_cc1pniconvection.cc index a7fb0661fbea0878cfbae630342ea893205598ad..edd26d36c4c09f05fa16eec2647a719cf8066aa7 100644 --- a/test/porousmediumflow/1p/implicit/test_cc1pniconvection.cc +++ b/test/porousmediumflow/1p/implicit/test_cc1pniconvection.cc @@ -22,8 +22,34 @@ * \brief test for the 1pni CC model */ #include <config.h> + +#include <ctime> +#include <iostream> + +#include <dune/common/parallel/mpihelper.hh> +#include <dune/common/timer.hh> +#include <dune/grid/io/file/dgfparser/dgfexception.hh> +#include <dune/grid/io/file/vtk.hh> +#include <dune/istl/io.hh> + #include "1pniconvectionproblem.hh" -#include <dumux/common/start.hh> + +#include <dumux/common/propertysystem.hh> +#include <dumux/common/parameters.hh> +#include <dumux/common/valgrind.hh> +#include <dumux/common/dumuxmessage.hh> +#include <dumux/common/defaultusagemessage.hh> + +#include <dumux/linear/amgbackend.hh> +#include <dumux/nonlinear/newtonmethod.hh> +#include <dumux/nonlinear/newtoncontroller.hh> + +#include <dumux/assembly/fvassembler.hh> +#include <dumux/assembly/diffmethod.hh> + +#include <dumux/discretization/methods.hh> + +#include <dumux/io/vtkoutputmodule.hh> /*! * \brief Provides an interface for customizing error messages associated with @@ -51,8 +77,171 @@ void usage(const char *progName, const std::string &errorMsg) } } -int main(int argc, char** argv) +int main(int argc, char** argv) try +{ + using namespace Dumux; + + // define the type tag for this problem + using TypeTag = TTAG(TYPETAG); + + // initialize MPI, finalize is done automatically on exit + const auto& mpiHelper = Dune::MPIHelper::instance(argc, argv); + + // print dumux start message + if (mpiHelper.rank() == 0) + DumuxMessage::print(/*firstCall=*/true); + + // parse command line arguments and input file + Parameters::init(argc, argv, usage); + + // try to create a grid (from the given grid file or the input file) + using GridCreator = typename GET_PROP_TYPE(TypeTag, GridCreator); + GridCreator::makeGrid(); + GridCreator::loadBalance(); + + //////////////////////////////////////////////////////////// + // run instationary non-linear problem on this grid + //////////////////////////////////////////////////////////// + + // we compute on the leaf grid view + const auto& leafGridView = GridCreator::grid().leafGridView(); + + // create the finite volume grid geometry + using FVGridGeometry = typename GET_PROP_TYPE(TypeTag, FVGridGeometry); + auto fvGridGeometry = std::make_shared<FVGridGeometry>(leafGridView); + fvGridGeometry->update(); + + // the problem (initial and boundary conditions) + using Problem = typename GET_PROP_TYPE(TypeTag, Problem); + auto problem = std::make_shared<Problem>(fvGridGeometry); + + // the solution vector + using GridView = typename GET_PROP_TYPE(TypeTag, GridView); + using SolutionVector = typename GET_PROP_TYPE(TypeTag, SolutionVector); + SolutionVector x(leafGridView.size(GridView::dimension)); + problem->applyInitialSolution(x); + auto xOld = x; + + // the grid variables + using GridVariables = typename GET_PROP_TYPE(TypeTag, GridVariables); + auto gridVariables = std::make_shared<GridVariables>(problem, fvGridGeometry); + gridVariables->init(x, xOld); + + // get some time loop parameters + using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar); + const auto tEnd = getParam<Scalar>("TimeLoop.TEnd"); + const auto maxDivisions = getParam<int>("TimeLoop.MaxTimeStepDivisions"); + const auto maxDt = getParam<Scalar>("TimeLoop.MaxTimeStepSize"); + auto dt = getParam<Scalar>("TimeLoop.DtInitial"); + + // check if we are about to restart a previously interrupted simulation + Scalar restartTime = 0; + if (Parameters::getTree().hasKey("Restart") || Parameters::getTree().hasKey("TimeLoop.Restart")) + restartTime = getParam<Scalar>("TimeLoop.Restart"); + + // intialize the vtk output module + using VtkOutputFields = typename GET_PROP_TYPE(TypeTag, VtkOutputFields); + VtkOutputModule<TypeTag> vtkWriter(*problem, *fvGridGeometry, *gridVariables, x, problem->name()); + VtkOutputFields::init(vtkWriter); //! Add model specific output fields + vtkWriter.write(0.0); + + // instantiate time loop + auto timeLoop = std::make_shared<TimeLoop<Scalar>>(restartTime, dt, tEnd); + timeLoop->setMaxTimeStepSize(maxDt); + + // the assembler with time loop for instationary problem + using Assembler = FVAssembler<TypeTag, DiffMethod::numeric>; + auto assembler = std::make_shared<Assembler>(problem, fvGridGeometry, gridVariables, timeLoop); + + // the linear solver + using LinearSolver = AMGBackend<TypeTag>; + auto linearSolver = std::make_shared<LinearSolver>(leafGridView, fvGridGeometry->elementMapper()); + + // the non-linear solver + using NewtonController = NewtonController<TypeTag>; + using NewtonMethod = NewtonMethod<TypeTag, NewtonController, Assembler, LinearSolver>; + auto newtonController = std::make_shared<NewtonController>(leafGridView.comm(), timeLoop); + NewtonMethod nonLinearSolver(newtonController, assembler, linearSolver); + + // time loop + timeLoop->start(); do + { + // set previous solution for storage evaluations + assembler->setPreviousSolution(xOld); + + // try solving the non-linear system + for (int i = 0; i < maxDivisions; ++i) + { + // linearize & solve + auto converged = nonLinearSolver.solve(x); + + if (converged) + break; + + if (!converged && i == maxDivisions-1) + DUNE_THROW(Dune::MathError, + "Newton solver didn't converge after " + << maxDivisions + << " time-step divisions. dt=" + << timeLoop->timeStepSize() + << ".\nThe solutions of the current and the previous time steps " + << "have been saved to restart files."); + } + + // make the new solution the old solution + xOld = x; + gridVariables->advanceTimeStep(); + + // advance to the time loop to the next step + timeLoop->advanceTimeStep(); + + // write vtk output + vtkWriter.write(timeLoop->time()); + + // report statistics of this time step + timeLoop->reportTimeStep(); + + // set new dt as suggested by newton controller + timeLoop->setTimeStepSize(newtonController->suggestTimeStepSize(timeLoop->timeStepSize())); + + } while (!timeLoop->finished()); + + timeLoop->finalize(leafGridView.comm()); + + //////////////////////////////////////////////////////////// + // finalize, print dumux message to say goodbye + //////////////////////////////////////////////////////////// + + // print dumux end message + if (mpiHelper.rank() == 0) + { + Parameters::print(); + DumuxMessage::print(/*firstCall=*/false); + } + + return 0; +} // end main +catch (Dumux::ParameterException &e) +{ + std::cerr << std::endl << e << " ---> Abort!" << std::endl; + return 1; +} +catch (Dune::DGFException & e) +{ + std::cerr << "DGF exception thrown (" << e << + "). Most likely, the DGF file name is wrong " + "or the DGF file is corrupted, " + "e.g. missing hash at end of file or wrong number (dimensions) of entries." + << " ---> Abort!" << std::endl; + return 2; +} +catch (Dune::Exception &e) +{ + std::cerr << "Dune reported error: " << e << " ---> Abort!" << std::endl; + return 3; +} +catch (...) { - typedef TTAG(OnePNIConvectionCCProblem) ProblemTypeTag; - return Dumux::start<ProblemTypeTag>(argc, argv, usage); + std::cerr << "Unknown exception thrown! ---> Abort!" << std::endl; + return 4; } diff --git a/test/porousmediumflow/1p/implicit/test_cc1pwithgstat.cc b/test/porousmediumflow/1p/implicit/test_cc1pwithgstat.cc index e84848f6733d7a9d9d9da155439b60ee0bd7eb08..f81f722750373726194f8451d0bb87729ed16e7d 100644 --- a/test/porousmediumflow/1p/implicit/test_cc1pwithgstat.cc +++ b/test/porousmediumflow/1p/implicit/test_cc1pwithgstat.cc @@ -23,8 +23,34 @@ * generated by gstat */ #include <config.h> + +#include <ctime> +#include <iostream> + +#include <dune/common/parallel/mpihelper.hh> +#include <dune/common/timer.hh> +#include <dune/grid/io/file/dgfparser/dgfexception.hh> +#include <dune/grid/io/file/vtk.hh> +#include <dune/istl/io.hh> + #include "1ptestproblem.hh" -#include <dumux/common/start.hh> + +#include <dumux/common/propertysystem.hh> +#include <dumux/common/parameters.hh> +#include <dumux/common/valgrind.hh> +#include <dumux/common/dumuxmessage.hh> +#include <dumux/common/defaultusagemessage.hh> + +#include <dumux/linear/amgbackend.hh> +#include <dumux/nonlinear/newtonmethod.hh> +#include <dumux/nonlinear/newtoncontroller.hh> + +#include <dumux/assembly/fvassembler.hh> +#include <dumux/assembly/diffmethod.hh> + +#include <dumux/discretization/methods.hh> + +#include <dumux/io/vtkoutputmodule.hh> /*! * \brief Provides an interface for customizing error messages associated with @@ -60,14 +86,179 @@ void usage(const char *progName, const std::string &errorMsg) } } -int main(int argc, char** argv) +int main(int argc, char** argv) try { #if HAVE_GSTAT - typedef TTAG(OnePTestCCProblem) ProblemTypeTag; - return Dumux::start<ProblemTypeTag>(argc, argv, usage); + using namespace Dumux; + + // define the type tag for this problem + using TypeTag = TTAG(TYPETAG); + + // initialize MPI, finalize is done automatically on exit + const auto& mpiHelper = Dune::MPIHelper::instance(argc, argv); + + // print dumux start message + if (mpiHelper.rank() == 0) + DumuxMessage::print(/*firstCall=*/true); + + // parse command line arguments and input file + Parameters::init(argc, argv, usage); + + // try to create a grid (from the given grid file or the input file) + using GridCreator = typename GET_PROP_TYPE(TypeTag, GridCreator); + GridCreator::makeGrid(); + GridCreator::loadBalance(); + + //////////////////////////////////////////////////////////// + // run instationary non-linear problem on this grid + //////////////////////////////////////////////////////////// + + // we compute on the leaf grid view + const auto& leafGridView = GridCreator::grid().leafGridView(); + + // create the finite volume grid geometry + using FVGridGeometry = typename GET_PROP_TYPE(TypeTag, FVGridGeometry); + auto fvGridGeometry = std::make_shared<FVGridGeometry>(leafGridView); + fvGridGeometry->update(); + + // the problem (initial and boundary conditions) + using Problem = typename GET_PROP_TYPE(TypeTag, Problem); + auto problem = std::make_shared<Problem>(fvGridGeometry); + + // the solution vector + using GridView = typename GET_PROP_TYPE(TypeTag, GridView); + using SolutionVector = typename GET_PROP_TYPE(TypeTag, SolutionVector); + SolutionVector x(leafGridView.size(GridView::dimension)); + problem->applyInitialSolution(x); + auto xOld = x; + + // the grid variables + using GridVariables = typename GET_PROP_TYPE(TypeTag, GridVariables); + auto gridVariables = std::make_shared<GridVariables>(problem, fvGridGeometry); + gridVariables->init(x, xOld); + + // get some time loop parameters + using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar); + const auto tEnd = getParam<Scalar>("TimeLoop.TEnd"); + const auto maxDivisions = getParam<int>("TimeLoop.MaxTimeStepDivisions"); + const auto maxDt = getParam<Scalar>("TimeLoop.MaxTimeStepSize"); + auto dt = getParam<Scalar>("TimeLoop.DtInitial"); + + // check if we are about to restart a previously interrupted simulation + Scalar restartTime = 0; + if (Parameters::getTree().hasKey("Restart") || Parameters::getTree().hasKey("TimeLoop.Restart")) + restartTime = getParam<Scalar>("TimeLoop.Restart"); + + // intialize the vtk output module + using VtkOutputFields = typename GET_PROP_TYPE(TypeTag, VtkOutputFields); + VtkOutputModule<TypeTag> vtkWriter(*problem, *fvGridGeometry, *gridVariables, x, problem->name()); + VtkOutputFields::init(vtkWriter); //! Add model specific output fields + vtkWriter.write(0.0); + + // instantiate time loop + auto timeLoop = std::make_shared<TimeLoop<Scalar>>(restartTime, dt, tEnd); + timeLoop->setMaxTimeStepSize(maxDt); + + // the assembler with time loop for instationary problem + using Assembler = FVAssembler<TypeTag, DiffMethod::numeric>; + auto assembler = std::make_shared<Assembler>(problem, fvGridGeometry, gridVariables, timeLoop); + + // the linear solver + using LinearSolver = AMGBackend<TypeTag>; + auto linearSolver = std::make_shared<LinearSolver>(leafGridView, fvGridGeometry->elementMapper()); + + // the non-linear solver + using NewtonController = NewtonController<TypeTag>; + using NewtonMethod = NewtonMethod<TypeTag, NewtonController, Assembler, LinearSolver>; + auto newtonController = std::make_shared<NewtonController>(leafGridView.comm(), timeLoop); + NewtonMethod nonLinearSolver(newtonController, assembler, linearSolver); + + // time loop + timeLoop->start(); do + { + // set previous solution for storage evaluations + assembler->setPreviousSolution(xOld); + + // try solving the non-linear system + for (int i = 0; i < maxDivisions; ++i) + { + // linearize & solve + auto converged = nonLinearSolver.solve(x); + + if (converged) + break; + + if (!converged && i == maxDivisions-1) + DUNE_THROW(Dune::MathError, + "Newton solver didn't converge after " + << maxDivisions + << " time-step divisions. dt=" + << timeLoop->timeStepSize() + << ".\nThe solutions of the current and the previous time steps " + << "have been saved to restart files."); + } + + // make the new solution the old solution + xOld = x; + gridVariables->advanceTimeStep(); + + // advance to the time loop to the next step + timeLoop->advanceTimeStep(); + + // write vtk output + vtkWriter.write(timeLoop->time()); + + // report statistics of this time step + timeLoop->reportTimeStep(); + + // set new dt as suggested by newton controller + timeLoop->setTimeStepSize(newtonController->suggestTimeStepSize(timeLoop->timeStepSize())); + + } while (!timeLoop->finished()); + + timeLoop->finalize(leafGridView.comm()); + + //////////////////////////////////////////////////////////// + // finalize, print dumux message to say goodbye + //////////////////////////////////////////////////////////// + + // print dumux end message + if (mpiHelper.rank() == 0) + { + Parameters::print(); + DumuxMessage::print(/*firstCall=*/false); + } + + return 0; + #else #warning External geostatistical module gstat needed to run this example. std::cerr << "Test skipped, it needs gstat!" << std::endl; return 77; #endif + +} // end main +catch (Dumux::ParameterException &e) +{ + std::cerr << std::endl << e << " ---> Abort!" << std::endl; + return 1; +} +catch (Dune::DGFException & e) +{ + std::cerr << "DGF exception thrown (" << e << + "). Most likely, the DGF file name is wrong " + "or the DGF file is corrupted, " + "e.g. missing hash at end of file or wrong number (dimensions) of entries." + << " ---> Abort!" << std::endl; + return 2; +} +catch (Dune::Exception &e) +{ + std::cerr << "Dune reported error: " << e << " ---> Abort!" << std::endl; + return 3; +} +catch (...) +{ + std::cerr << "Unknown exception thrown! ---> Abort!" << std::endl; + return 4; } diff --git a/test/porousmediumflow/1p/implicit/tubesproblem.hh b/test/porousmediumflow/1p/implicit/tubesproblem.hh index 9bd591ad1668d6d06637a2968251ca2e6f4c40b8..e261f79fb9bd846d04465ef830b56a2323d409ec 100644 --- a/test/porousmediumflow/1p/implicit/tubesproblem.hh +++ b/test/porousmediumflow/1p/implicit/tubesproblem.hh @@ -28,9 +28,9 @@ #include <dune/localfunctions/lagrange/pqkfactory.hh> #include <dune/geometry/quadraturerules.hh> -#include <dumux/implicit/cellcentered/tpfa/properties.hh> +#include <dumux/discretization/cellcentered/tpfa/properties.hh> #include <dumux/porousmediumflow/1p/implicit/model.hh> -#include <dumux/porousmediumflow/implicit/problem.hh> +#include <dumux/porousmediumflow/problem.hh> #include <dumux/material/components/constant.hh> #include "tubesspatialparams.hh" @@ -73,9 +73,9 @@ public: * and a branching point embedded in a three-dimensional world */ template <class TypeTag> -class TubesTestProblem : public ImplicitPorousMediaProblem<TypeTag> +class TubesTestProblem : public PorousMediumFlowProblem<TypeTag> { - using ParentType = ImplicitPorousMediaProblem<TypeTag>; + using ParentType = PorousMediumFlowProblem<TypeTag>; using GridView = typename GET_PROP_TYPE(TypeTag, GridView); using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar); using ElementVolumeVariables = typename GET_PROP_TYPE(TypeTag, ElementVolumeVariables); @@ -103,10 +103,10 @@ class TubesTestProblem : public ImplicitPorousMediaProblem<TypeTag> enum { isBox = GET_PROP_VALUE(TypeTag, ImplicitIsBox) }; public: - TubesTestProblem(TimeManager &timeManager, const GridView &gridView) - : ParentType(timeManager, gridView) + TubesTestProblem(std::shared_ptr<const FVGridGeometry> fvGridGeometry) + : ParentType(fvGridGeometry) { - name_ = GET_RUNTIME_PARAM_FROM_GROUP(TypeTag, std::string, Problem, Name); + name_ = getParam<std::string>( "Problem.Name"); //get hMax_ of the grid hMax_ = 0.0; diff --git a/test/porousmediumflow/1p/implicit/tubesspatialparams.hh b/test/porousmediumflow/1p/implicit/tubesspatialparams.hh index db88f75f4c23e604318be347a594aceb934c5c6f..4ad9e0eada13b9690db058d458fd486313574612 100644 --- a/test/porousmediumflow/1p/implicit/tubesspatialparams.hh +++ b/test/porousmediumflow/1p/implicit/tubesspatialparams.hh @@ -52,8 +52,8 @@ public: // export permeability type using PermeabilityType = Scalar; - TubesTestSpatialParams(const Problem& problem, const GridView& gridView) - : ParentType(problem, gridView) + TubesTestSpatialParams(const Problem& problem) + : ParentType(problem) { radius_ = 1.0;