From b58523ffbd4d77c1a791e89c72417784d84b5b37 Mon Sep 17 00:00:00 2001 From: Leon Keim <leon.keim@googlemail.com> Date: Thu, 29 Sep 2022 15:38:26 +0200 Subject: [PATCH] Documentation of Maxwell-Stefan fluxes --- doc/handbook/dumux-handbook.bib | 20 ++++++++++++++++++++ dumux/flux/maxwellstefanslaw.hh | 19 +++++++++++++++++-- 2 files changed, 37 insertions(+), 2 deletions(-) diff --git a/doc/handbook/dumux-handbook.bib b/doc/handbook/dumux-handbook.bib index e2f7c103f8..06ebaf15f7 100644 --- a/doc/handbook/dumux-handbook.bib +++ b/doc/handbook/dumux-handbook.bib @@ -444,6 +444,7 @@ journal = {Journal of Contaminant Hydrology}, year = {2005} } + @MastersThesis{nuske2009, title={{Determination of interfacial area-capillary pressure-saturation relationships for a single fracture}}, author={Nuske, K. P.}, @@ -1078,6 +1079,7 @@ url = {http://www.sciencedirect.com/science/article/pii/S0169772204001160} year = {1979}, author = {Aziz, K. and Settari, A.} } + @book{daubert1989, title={{Physical and Thermodynamic Properties of Pure Chemicals: Design institute for physical property data, American institute of chemical engineers. vp}}, author={Daubert, T. E. and Danner, R. P.}, @@ -1102,6 +1104,7 @@ url = {http://www.sciencedirect.com/science/article/pii/S0169772204001160} volume = {198}, pages = {71--78} } + @misc{cooper2008, title={{Release of the IAPWS formulation 2008 for the viscosity of ordinary water substance}}, author={Cooper, J. R. and Dooley, R. B.}, @@ -1997,6 +2000,7 @@ url={https://doi.org/10.1007/s10765-012-1254-5} url = {https://link.springer.com/content/pdf/10.1007/BF00867119.pdf} } + @article{Fichot2006, title = {The impact of thermal non-equilibrium and large-scale 2D/3D effects on debris bed reflooding and coolability}, journal = {Nuclear Engineering and Design}, @@ -2008,3 +2012,19 @@ issn = {0029-5493}, doi = {10.1016/j.nucengdes.2006.03.059}, author = {F. Fichot and F. Duval and N. Trégourès and C. Béchaud and M. Quintard}, } + +@Article{Krishna1997, + author = {Krishna, R. and Wesselingh, J. A.}, + journal = {Chemical Engineering Science}, + title = {The Maxwell-Stefan approach to mass transfer}, + year = {1997}, + number = {6}, + pages = {861-911}, + volume = {52}, + abstract = {The limitations of the Fick's law for describing diffusion are discussed. It is argued that the Maxwell-Stefan formulation provides the most general, and convenient, approach for describing mass transport which takes proper account of thermodynamic non-idealities and influence of external force fields. Furthermore, the Maxwell-Stefan approach can be extended to handle diffusion in macro- and microporous catalysts, adsorbents and membranes.}, + affiliation = {Department of Chemical Engineering, University of Amsterdam, Nieuwe Achtergracht 1661018 WV AmsterdamThe Netherlands; Department of Chemical Engineering, University of Groningen, Nijenborgh 49747 AG GroningenThe Netherlands}, + keywords = {Multicomponent diffusion; porous media; membrane separations; Fick's law; ionic diffusion; zeolities}, + language = {English}, +} + + diff --git a/dumux/flux/maxwellstefanslaw.hh b/dumux/flux/maxwellstefanslaw.hh index 3b0f2b29fd..9930a4dbdb 100644 --- a/dumux/flux/maxwellstefanslaw.hh +++ b/dumux/flux/maxwellstefanslaw.hh @@ -19,8 +19,23 @@ /*! * \file * \ingroup Flux - * \brief This file contains the data which is required to calculate - * diffusive mass fluxes due to molecular diffusion with Maxwell-Stefan's law. + * \brief Diffusive mass fluxes according to Maxwell-Stefan's law + * + * Maxwell-Stefan's law describes the diffusive mass fluxes due to molecular diffusion. The diffusion phenomena results from coupling effects + * between the different molecules in a gas-mixture \cite Krishna1997. \n + * The Maxwell-Stefan formulation can be used to describe systems where Fick's law does not hold (e.g. diffusion of diluted + * gases in multicomponent systems). + * + * For diffusive mass fluxes \f$\textbf{j}_{diff}^i\f$ the Maxwell-Stefan formulation can be defined as: + * + * \f[ + * \frac{x^i \textbf{grad}_T \eta^i}{RT} = - \sum\limits_{j=1,j\neq i}^{N} \frac{x^ix^j}{D^{ij}}\left(\frac{\textbf{j}_{diff}^i}{\varrho^i}-\frac{\textbf{j}_{diff}^j}{\varrho^j}\right) = - + * \sum\limits_{j=1,j\neq i}^{N} \frac{x^ix^j}{D^{ij}\varrho}\left(\frac{\textbf{j}_{diff}^i}{X^i}-\frac{\textbf{j}_{diff}^j}{X^j}\right) + * \f] + * + * With \f$\eta^i\f$ as the chemical potential of the species i. Note, the diffusion coefficients are based on the Onsager symmetry, thus the diffusion coefficients can be expressed as + * \f$D^{ij}=D^{ji}\f$. + * */ #ifndef DUMUX_FLUX_MAXWELL_STEFAN_LAW_HH #define DUMUX_FLUX_MAXWELL_STEFAN_LAW_HH -- GitLab