diff --git a/test/porousmediumflow/2pncmin/implicit/dissolutionproblem.hh b/test/porousmediumflow/2pncmin/implicit/dissolutionproblem.hh index a28f5ee1f5c4adf86f5c8c95c3ca8cc534899d14..6fa7d6bc5ffcf12bb9adbcabb6789aa21b4ee053 100644 --- a/test/porousmediumflow/2pncmin/implicit/dissolutionproblem.hh +++ b/test/porousmediumflow/2pncmin/implicit/dissolutionproblem.hh @@ -24,9 +24,10 @@ #ifndef DUMUX_DISSOLUTION_PROBLEM_HH #define DUMUX_DISSOLUTION_PROBLEM_HH -#include <dumux/implicit/cellcentered/tpfa/properties.hh> +#include <dumux/discretization/cellcentered/tpfa/properties.hh> +#include <dumux/discretization/box/properties.hh> #include <dumux/porousmediumflow/2pncmin/implicit/model.hh> -#include <dumux/porousmediumflow/implicit/problem.hh> +#include <dumux/porousmediumflow/problem.hh> #include <dumux/material/fluidsystems/brineair.hh> #include "dissolutionspatialparams.hh" @@ -86,9 +87,9 @@ SET_INT_PROP(DissolutionProblem, Formulation, TwoPNCFormulation::pnsw); * <tt>./test_box2pncmin</tt> */ template <class TypeTag> -class DissolutionProblem : public ImplicitPorousMediaProblem<TypeTag> +class DissolutionProblem : public PorousMediumFlowProblem<TypeTag> { - using ParentType = ImplicitPorousMediaProblem<TypeTag>; + using ParentType = PorousMediumFlowProblem<TypeTag>; using GridView = typename GET_PROP_TYPE(TypeTag, GridView); using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar); using FluidSystem = typename GET_PROP_TYPE(TypeTag, FluidSystem); diff --git a/test/porousmediumflow/2pncmin/implicit/test_box2pncmin.cc b/test/porousmediumflow/2pncmin/implicit/test_box2pncmin.cc index f8195f933fc04a8d4f22dd77ae09a9f77aeff920..b4975cb1781eb5ff29be5cce18eacd38bcf5d5e3 100644 --- a/test/porousmediumflow/2pncmin/implicit/test_box2pncmin.cc +++ b/test/porousmediumflow/2pncmin/implicit/test_box2pncmin.cc @@ -19,11 +19,37 @@ /*! * \file * - * \brief Test for the two-phase n-component isothermal box model. + * \brief Test for the two-phase n-component box model used to model e.g. salt dissolution. */ #include <config.h> + +#include <ctime> +#include <iostream> + +#include <dune/common/parallel/mpihelper.hh> +#include <dune/common/timer.hh> +#include <dune/grid/io/file/dgfparser/dgfexception.hh> +#include <dune/grid/io/file/vtk.hh> +#include <dune/istl/io.hh> + #include "dissolutionproblem.hh" -#include <dumux/common/start.hh> + +#include <dumux/common/propertysystem.hh> +#include <dumux/common/parameters.hh> +#include <dumux/common/valgrind.hh> +#include <dumux/common/dumuxmessage.hh> +#include <dumux/common/defaultusagemessage.hh> + +#include <dumux/linear/amgbackend.hh> +#include <dumux/nonlinear/newtonmethod.hh> +#include <dumux/porousmediumflow/compositional/privarswitchnewtoncontroller.hh> + +#include <dumux/assembly/fvassembler.hh> +#include <dumux/assembly/diffmethod.hh> + +#include <dumux/discretization/methods.hh> + +#include <dumux/io/vtkoutputmodule.hh> /*! * \brief Provides an interface for customizing error messages associated with @@ -50,6 +76,178 @@ void usage(const char *progName, const std::string &errorMsg) int main(int argc, char** argv) { - typedef TTAG(DissolutionBoxProblem) ProblemTypeTag; - return Dumux::start<ProblemTypeTag>(argc, argv, usage); + using namespace Dumux; + + // define the type tag for this problem + using TypeTag = TTAG(DissolutionBoxProblem); + + // initialize MPI, finalize is done automatically on exit + const auto& mpiHelper = Dune::MPIHelper::instance(argc, argv); + + // print dumux start message + if (mpiHelper.rank() == 0) + DumuxMessage::print(/*firstCall=*/true); + + // parse command line arguments and input file + Parameters::init(argc, argv, usage); + + // try to create a grid (from the given grid file or the input file) + using GridCreator = typename GET_PROP_TYPE(TypeTag, GridCreator); + GridCreator::makeGrid(); + GridCreator::loadBalance(); + + //////////////////////////////////////////////////////////// + // run instationary non-linear problem on this grid + //////////////////////////////////////////////////////////// + + // we compute on the leaf grid view + const auto& leafGridView = GridCreator::grid().leafGridView(); + + // create the finite volume grid geometry + using FVGridGeometry = typename GET_PROP_TYPE(TypeTag, FVGridGeometry); + auto fvGridGeometry = std::make_shared<FVGridGeometry>(leafGridView); + fvGridGeometry->update(); + + // the problem (initial and boundary conditions) + using Problem = typename GET_PROP_TYPE(TypeTag, Problem); + auto problem = std::make_shared<Problem>(fvGridGeometry); + + // the solution vector + using GridView = typename GET_PROP_TYPE(TypeTag, GridView); + using SolutionVector = typename GET_PROP_TYPE(TypeTag, SolutionVector); + SolutionVector x(leafGridView.size(GridView::dimension)); + problem->applyInitialSolution(x); + auto xOld = x; + + // the grid variables + using GridVariables = typename GET_PROP_TYPE(TypeTag, GridVariables); + auto gridVariables = std::make_shared<GridVariables>(problem, fvGridGeometry); + gridVariables->init(x, xOld); + + // get some time loop parameters + using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar); + const auto tEnd = getParam<Scalar>("TimeLoop.TEnd"); + const auto maxDivisions = getParam<int>("TimeLoop.MaxTimeStepDivisions"); + const auto maxDt = getParam<Scalar>("TimeLoop.MaxTimeStepSize"); + auto dt = getParam<Scalar>("TimeLoop.DtInitial"); + + // check if we are about to restart a previously interrupted simulation + Scalar restartTime = 0; + if (Parameters::getTree().hasKey("Restart") || Parameters::getTree().hasKey("TimeLoop.Restart")) + restartTime = getParam<Scalar>("TimeLoop.Restart"); + + // intialize the vtk output module + using VtkOutputFields = typename GET_PROP_TYPE(TypeTag, VtkOutputFields); + VtkOutputModule<TypeTag> vtkWriter(*problem, *fvGridGeometry, *gridVariables, x, problem->name()); + VtkOutputFields::init(vtkWriter); //! Add model specific output fields + //add specific output + vtkWriter.addField(problem->getCurrentDensity(), "currentDensity [A/cm^2]"); + vtkWriter.addField(problem->getReactionSourceH2O(), "reactionSourceH2O [mol/(sm^2)]"); + vtkWriter.addField(problem->getReactionSourceO2(), "reactionSourceO2 [mol/(sm^2)]"); + vtkWriter.addField(problem->getKxx(), "Kxx"); + vtkWriter.addField(problem->getKyy(), "Kyy"); + vtkWriter.write(0.0); + + // instantiate time loop + auto timeLoop = std::make_shared<TimeLoop<Scalar>>(restartTime, dt, tEnd); + timeLoop->setMaxTimeStepSize(maxDt); + + // the assembler with time loop for instationary problem + using Assembler = FVAssembler<TypeTag, DiffMethod::numeric>; + auto assembler = std::make_shared<Assembler>(problem, fvGridGeometry, gridVariables, timeLoop); + + // the linear solver + using LinearSolver = AMGBackend<TypeTag>; + auto linearSolver = std::make_shared<LinearSolver>(leafGridView, fvGridGeometry->elementMapper()); + + // the non-linear solver + using NewtonController = PriVarSwitchNewtonController<TypeTag>; + using NewtonMethod = NewtonMethod<NewtonController, Assembler, LinearSolver>; + auto newtonController = std::make_shared<NewtonController>(leafGridView.comm(), timeLoop); + NewtonMethod nonLinearSolver(newtonController, assembler, linearSolver); + + // time loop + timeLoop->start(); do + { + // set previous solution for storage evaluations + assembler->setPreviousSolution(xOld); + + // try solving the non-linear system + for (int i = 0; i < maxDivisions; ++i) + { + // linearize & solve + auto converged = nonLinearSolver.solve(x); + + if (converged) + break; + + if (!converged && i == maxDivisions-1) + DUNE_THROW(Dune::MathError, + "Newton solver didn't converge after " + << maxDivisions + << " time-step divisions. dt=" + << timeLoop->timeStepSize() + << ".\nThe solutions of the current and the previous time steps " + << "have been saved to restart files."); + } + + // make the new solution the old solution + xOld = x; + gridVariables->advanceTimeStep(); + + // advance to the time loop to the next step + timeLoop->advanceTimeStep(); + + // update the output fields before write + problem->updateVtkOutput(xOld); + + // write vtk output + vtkWriter.write(timeLoop->time()); + + // report statistics of this time step + timeLoop->reportTimeStep(); + + // set new dt as suggested by newton controller + timeLoop->setTimeStepSize(newtonController->suggestTimeStepSize(timeLoop->timeStepSize())); + + } while (!timeLoop->finished()); + + timeLoop->finalize(leafGridView.comm()); + + //////////////////////////////////////////////////////////// + // finalize, print dumux message to say goodbye + //////////////////////////////////////////////////////////// + + // print dumux end message + if (mpiHelper.rank() == 0) + { + Parameters::print(); + DumuxMessage::print(/*firstCall=*/false); + } + + return 0; +} // end main +catch (Dumux::ParameterException &e) +{ + std::cerr << std::endl << e << " ---> Abort!" << std::endl; + return 1; +} +catch (Dune::DGFException & e) +{ + std::cerr << "DGF exception thrown (" << e << + "). Most likely, the DGF file name is wrong " + "or the DGF file is corrupted, " + "e.g. missing hash at end of file or wrong number (dimensions) of entries." + << " ---> Abort!" << std::endl; + return 2; +} +catch (Dune::Exception &e) +{ + std::cerr << "Dune reported error: " << e << " ---> Abort!" << std::endl; + return 3; +} +catch (...) +{ + std::cerr << "Unknown exception thrown! ---> Abort!" << std::endl; + return 4; } diff --git a/test/porousmediumflow/2pncmin/implicit/test_cc2pncmin.cc b/test/porousmediumflow/2pncmin/implicit/test_cc2pncmin.cc index 8f510ad5fb62fb60cff8fe0d3b2b9b0bc4fbce78..ac4d872988b6af0af44004aa13a19f1ce6512d83 100644 --- a/test/porousmediumflow/2pncmin/implicit/test_cc2pncmin.cc +++ b/test/porousmediumflow/2pncmin/implicit/test_cc2pncmin.cc @@ -19,11 +19,37 @@ /*! * \file * - * \brief Test for the two-phase n-component isothermal cc model. + * \brief Test for the two-phase n-component cc model used to model e.g. salt dissolution. */ #include <config.h> + +#include <ctime> +#include <iostream> + +#include <dune/common/parallel/mpihelper.hh> +#include <dune/common/timer.hh> +#include <dune/grid/io/file/dgfparser/dgfexception.hh> +#include <dune/grid/io/file/vtk.hh> +#include <dune/istl/io.hh> + #include "dissolutionproblem.hh" -#include <dumux/common/start.hh> + +#include <dumux/common/propertysystem.hh> +#include <dumux/common/parameters.hh> +#include <dumux/common/valgrind.hh> +#include <dumux/common/dumuxmessage.hh> +#include <dumux/common/defaultusagemessage.hh> + +#include <dumux/linear/amgbackend.hh> +#include <dumux/nonlinear/newtonmethod.hh> +#include <dumux/porousmediumflow/compositional/privarswitchnewtoncontroller.hh> + +#include <dumux/assembly/fvassembler.hh> +#include <dumux/assembly/diffmethod.hh> + +#include <dumux/discretization/methods.hh> + +#include <dumux/io/vtkoutputmodule.hh> /*! * \brief Provides an interface for customizing error messages associated with @@ -48,8 +74,179 @@ void usage(const char *progName, const std::string &errorMsg) } } -int main(int argc, char** argv) +int main(int argc, char** argv) try +{ + using namespace Dumux; + + // define the type tag for this problem + using TypeTag = TTAG(DissolutionCCProblem); + + // initialize MPI, finalize is done automatically on exit + const auto& mpiHelper = Dune::MPIHelper::instance(argc, argv); + + // print dumux start message + if (mpiHelper.rank() == 0) + DumuxMessage::print(/*firstCall=*/true); + + // parse command line arguments and input file + Parameters::init(argc, argv, usage); + + // try to create a grid (from the given grid file or the input file) + using GridCreator = typename GET_PROP_TYPE(TypeTag, GridCreator); + GridCreator::makeGrid(); + GridCreator::loadBalance(); + + //////////////////////////////////////////////////////////// + // run instationary non-linear problem on this grid + //////////////////////////////////////////////////////////// + + // we compute on the leaf grid view + const auto& leafGridView = GridCreator::grid().leafGridView(); + + // create the finite volume grid geometry + using FVGridGeometry = typename GET_PROP_TYPE(TypeTag, FVGridGeometry); + auto fvGridGeometry = std::make_shared<FVGridGeometry>(leafGridView); + fvGridGeometry->update(); + + // the problem (initial and boundary conditions) + using Problem = typename GET_PROP_TYPE(TypeTag, Problem); + auto problem = std::make_shared<Problem>(fvGridGeometry); + + // the solution vector + using SolutionVector = typename GET_PROP_TYPE(TypeTag, SolutionVector); + SolutionVector x(leafGridView.size(0)); + problem->applyInitialSolution(x); + auto xOld = x; + + // the grid variables + using GridVariables = typename GET_PROP_TYPE(TypeTag, GridVariables); + auto gridVariables = std::make_shared<GridVariables>(problem, fvGridGeometry); + gridVariables->init(x, xOld); + + // get some time loop parameters + using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar); + const auto tEnd = getParam<Scalar>("TimeLoop.TEnd"); + const auto maxDivisions = getParam<int>("TimeLoop.MaxTimeStepDivisions"); + const auto maxDt = getParam<Scalar>("TimeLoop.MaxTimeStepSize"); + auto dt = getParam<Scalar>("TimeLoop.DtInitial"); + + // check if we are about to restart a previously interrupted simulation + Scalar restartTime = 0; + if (Parameters::getTree().hasKey("Restart") || Parameters::getTree().hasKey("TimeLoop.Restart")) + restartTime = getParam<Scalar>("TimeLoop.Restart"); + + // intialize the vtk output module + using VtkOutputFields = typename GET_PROP_TYPE(TypeTag, VtkOutputFields); + VtkOutputModule<TypeTag> vtkWriter(*problem, *fvGridGeometry, *gridVariables, x, problem->name()); + VtkOutputFields::init(vtkWriter); //! Add model specific output fields + //add specific output + vtkWriter.addField(problem->getCurrentDensity(), "currentDensity [A/cm^2]"); + vtkWriter.addField(problem->getReactionSourceH2O(), "reactionSourceH2O [mol/(sm^2)]"); + vtkWriter.addField(problem->getReactionSourceO2(), "reactionSourceO2 [mol/(sm^2)]"); + vtkWriter.addField(problem->getKxx(), "Kxx"); + vtkWriter.addField(problem->getKyy(), "Kyy"); + vtkWriter.write(0.0); + + // instantiate time loop + auto timeLoop = std::make_shared<TimeLoop<Scalar>>(restartTime, dt, tEnd); + timeLoop->setMaxTimeStepSize(maxDt); + + // the assembler with time loop for instationary problem + using Assembler = FVAssembler<TypeTag, DiffMethod::numeric>; + auto assembler = std::make_shared<Assembler>(problem, fvGridGeometry, gridVariables, timeLoop); + + // the linear solver + using LinearSolver = AMGBackend<TypeTag>; + auto linearSolver = std::make_shared<LinearSolver>(leafGridView, fvGridGeometry->elementMapper()); + + // the non-linear solver + using NewtonController = PriVarSwitchNewtonController<TypeTag>; + using NewtonMethod = NewtonMethod<NewtonController, Assembler, LinearSolver>; + auto newtonController = std::make_shared<NewtonController>(leafGridView.comm(), timeLoop); + NewtonMethod nonLinearSolver(newtonController, assembler, linearSolver); + + // time loop + timeLoop->start(); do + { + // set previous solution for storage evaluations + assembler->setPreviousSolution(xOld); + + // try solving the non-linear system + for (int i = 0; i < maxDivisions; ++i) + { + // linearize & solve + auto converged = nonLinearSolver.solve(x); + + if (converged) + break; + + if (!converged && i == maxDivisions-1) + DUNE_THROW(Dune::MathError, + "Newton solver didn't converge after " + << maxDivisions + << " time-step divisions. dt=" + << timeLoop->timeStepSize() + << ".\nThe solutions of the current and the previous time steps " + << "have been saved to restart files."); + } + + // make the new solution the old solution + xOld = x; + gridVariables->advanceTimeStep(); + + // advance to the time loop to the next step + timeLoop->advanceTimeStep(); + + // update the output fields before write + problem->updateVtkOutput(xOld); + + // write vtk output + vtkWriter.write(timeLoop->time()); + + // report statistics of this time step + timeLoop->reportTimeStep(); + + // set new dt as suggested by newton controller + timeLoop->setTimeStepSize(newtonController->suggestTimeStepSize(timeLoop->timeStepSize())); + + } while (!timeLoop->finished()); + + timeLoop->finalize(leafGridView.comm()); + + //////////////////////////////////////////////////////////// + // finalize, print dumux message to say goodbye + //////////////////////////////////////////////////////////// + + // print dumux end message + if (mpiHelper.rank() == 0) + { + Parameters::print(); + DumuxMessage::print(/*firstCall=*/false); + } + + return 0; +} // end main +catch (Dumux::ParameterException &e) +{ + std::cerr << std::endl << e << " ---> Abort!" << std::endl; + return 1; +} +catch (Dune::DGFException & e) { - typedef TTAG(DissolutionCCProblem) ProblemTypeTag; - return Dumux::start<ProblemTypeTag>(argc, argv, usage); + std::cerr << "DGF exception thrown (" << e << + "). Most likely, the DGF file name is wrong " + "or the DGF file is corrupted, " + "e.g. missing hash at end of file or wrong number (dimensions) of entries." + << " ---> Abort!" << std::endl; + return 2; } +catch (Dune::Exception &e) +{ + std::cerr << "Dune reported error: " << e << " ---> Abort!" << std::endl; + return 3; +} +catch (...) +{ + std::cerr << "Unknown exception thrown! ---> Abort!" << std::endl; + return 4; +} \ No newline at end of file